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Abstract: This paper provides a quantitative comparison between the performance provided by
the use of Proportional-Integral-Derivative (PID) and Fractional-Order Proportional-Integral-
Derivative (FOPID) controllers for the control of second-order processes with inverse response
based on the integrated absolute value of the error (IAE index). These controllers are designed in
order to achieve an optimal performance in both, set-point tracking task and regulatory control
operation, while robustness considerations are taken into account, and, therefore, also the trade-
off between robustness and performance of the control system is considered. The performance
comparison and example, show that FOPID controllers achieve higher performance that PID
controllers mainly for processes with larger normalized dead times as well when more robustness
should be considered in the closed-loop system. These advantages are due to the use of the
fractional parameter µ associated to the derivative part of the FOPID controller.
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1. INTRODUCTION

The presence of non-minimum-phase or inverse response
dynamics is encountered in several applications, for in-
stance, chemical processes as the level of drum boiler in
a distillation column (Seborg et al., 2016), bio-chemical
reactions in Continuous Stirred-Tank Reactor (CSTR)
(Sree and Chidambaram, 2006) and the aircraft pitching-
up action of Boeing 747 aircraft (Sir Elkhatem et al., 2021).
This dynamics is characterized by at least one zero located
at the right-hand side of the complex plane (Camacho
et al., 1999), and this entails a challenge due the decrease
in the margin phase on the open-loop system, and even
more, if the process has dead-time (Balaguer et al., 2011).
In the last decade, the fractional calculus has risen interest
in several stages of the control system design, for instance
in the development of process modelling methods (Kothari
et al., 2019) and in the study of several fractional-order
models (Shah et al., 2019). In the design of the feedback
control systems, the application of the fractional calculus
has also increased because the fractional-order controller
provides more flexibility to achieve suitable performance
and robustness requirements due to the use of two addi-
tional controller parameters, namely, the fractional orders
associated to the integral part and to the derivative part
(El-Khazali, 2013).
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Despite of the study of the benefits of using fractional-
order Proportional-Integral-Derivative controller (FOPID)
in the control of self-regulated processes (overdamped and
underdamped dynamics) (Meneses et al., 2022b) and in-
tegrating process (Meneses et al., 2022a) to achieve par-
ticular performance specifications under robustness con-
siderations, there is still no study that quantifies the im-
provement in the closed-loop systems performance when a
FOPID controller is employed instead of a Proportional-
Integral-Derivative (PID) controller and minimum relative
stability margins are required in order to deal with the
non-linearities found in most of the real processes when
non-minimum phase dynamics has to be controlled. In this
context, this work has the aim to provide this information
to the user with the purpose to facilitate the decision
to choose between a FOPID controller and a PID con-
troller, knowing the increase in the performance that can
be achieved in the control system loop by the fractional-
order controller considering both trade-offs: performance
against robustness (Garpinger et al., 2014) and servo-
control mode against regulatory control operation (Arrieta
and Vilanova, 2017) when a process exhibits an inverse
response. It is important to remember that one of the
main challenges to deal with fractional-order controllers
is focused in their complexity to be implemented (El-
Khazali, 2013) because its discretization requires a real
rational approximation of the fractional term that usually
needs a high number of poles and zeros (Oustaloup et al.,
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2000), and therefore, it is important for the user to know
if it is really worth designing a more complex controller.
The paper is organized as follows. Section 2 provides
a description of the control system configuration with
the concepts required to approach the performance and
robustness issues. Section 3 provides the results of the
closed-loop performance assessment using the integer and
fractional order controllers and shows some cases of the
behavior of the fractional parameter µ which has a relevant
role in this analysis. Section 4 presents an illustrative
example to validate the obtained results. Section 5 ends
with the main conclusions of this work.

2. PROBLEM FORMULATION

2.1 Control System Configuration

The control system considered is shown in Fig. 1, where
P (s) represents the process to be controlled and the
controller is decoupled in Cr(s) and Cy(s) in order to
apply the derivative mode only to the feedback signal. This
avoids extreme changes in the controller output when a
step chance in the set-point value happens.

Figure 1. 2DoF Controller close-loop control system

The signals shown in Fig. 1 are:
• y(s) is the feedback signal (controlled variable).
• r(s) is the set-point value for the process output.
• u(s) is the controller output.
• d(s) represents load-disturbances that change the

controlled variable.
Using the closed-loop control system of Fig. 1, the feedback
signal is described by the following expression:

y(s) = Cr(s)P (s)
1 + Cy(s)P (s)r(s)︸ ︷︷ ︸

servo−control

+ P (s)
1 + Cy(s)P (s)d(s)︸ ︷︷ ︸

regulatory−control

(1)

where Cr(s) is the transfer function of the set-point
controller and Cy(s) is the transfer function of the feedback
controller which are defined in (2) and (3), respectively.

Cr(s) = Kp

(
1 + 1

Tisλ

)
(2)

Cy(s) = Kp

(
1 + 1

Tisλ
+ Tdsµ

Td

η s + 1

)
(3)

where Kp is the controller proportional gain, Ti is the
integral time constant and Td is the derivative time con-
stant, Td

η represents the filter constant and λ and µ are
the fractional-order associated to the integral part and
derivative part, respectively. Note that η is defined as:

η = 10T
µ−1

µ

d (4)

in order to locate the cut-off frequency of the pole one
decade above the zero frequency of the derivative part
which is a common practice as it is mentioned in Visioli
(2006).
Note that when λ = 1 and µ = 1 the integer-order PID
controller is obtained, and when either of these parameters
are different from zero, a fractional-order PID controller,
known as FOPID controller is obtained. On this way, the
control signal u(s) will have the following form (Astrom
and Hagglund (2006)):

u(s) = Kp

[(
1 + 1

Tisλ

)
e(s) −

(
Tdsµ

Td

η s + 1

)
y(s)

]
(5)

In order to implement a fractional order controller, the
integer order approximation of (Oustaloup et al. (2000)) is
used. This is based on a recursive approximation composed
by a product of poles and zeros as it is defined in (6).

sµ
[ωl,ωh]

∼= Co

N∏
k=1

1 + s
ωz,k

1 + s
ωp,k

, µ > 0 (6)

In this work, this approximation is defined in the frequency
range {ωl, ωh} = {0.001, 1000}. Additionally, the Co term
is defined in such a way that, the approximation has unity
gain at the gain crossover frequency. Finally, the parameter
N , which refers to the number of poles and zeros for
the real-rational transfer function approximation of the
fractional terms sλ and sµ, is set to N = 8 according to
the recommendation given by (Oustaloup et al., 2000).

2.2 Process Model

The process P (s) to be controlled is modelled by an
inverse-response-second-order-plus-dead-time (IRSOPDT)
transfer function defined as:

P (s) = K(−bTs + 1)e−Ls

(Ts + 1)(αTs + 1) (7)

where K is the process static gain, T is the dominant time
constant, L is the dead-time, α is the ratio between time
constants and b is the parameter that defines the position
of the right half plane zero in relation with the dominant
time constant T , and therefore, it quantifies the inverse
response magnitude.
In order to reduce the parameters used to describe the
process dynamics to α, b, and τ0 = L

T , and to make the
design of the control system easier for different inverse-
response processes, it is useful to employ the normalization
transformation ŝ = Ts. On this way, the normalized
second-order model with inverse response (7) is defined
as:

P (ŝ) = K(−bŝ + 1)e−τ0ŝ

(ŝ + 1)(αŝ + 1) (8)

2.3 Performance criteria

With the purpose to measure the performance of the
closed-loop system, the integrated absolute value of the
error (IAE) is employed. This index is defined as:

IAE =
∫ ∞

0
|e(t)| dt =

∫ ∞

0
|r(t) − y(t)| dt (9)

The IAE is considered for both set-point tracking task
Jsp and for regulatory control mode Jld at the same
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time, therefore, the optimal parameters for the integer and
fractional-order PID controllers will be obtained optimiz-
ing the following cost function:

Jrd = Jsp + Jld (10)
in order to achieve a good performance of the closed-
loop system for both control modes: servo-control and
regulatory control.
To quantify the improvement in the performance due
to the use of FOPID controllers in comparison to PID
controllers, the Jη index defined in (11) is used.

Jη = Jrd−F OP ID

Jrd−P ID
(11)

Because the FOPID controller is a generalization of the
PID controller, it is expected that Jη index will be always
less than or equal to one.

2.4 Robustness criteria

In order to consider relative stability margins in the control
system design due to the non-linear characteristics of most
of real processes, the maximum value of the magnitude of
Sensitivity Function will be used. Therefore, the closed-
loop control system’s robustness will be measured accord-
ing to the following expression:

MS=̇ max
ω

|S(jω)| = max
ω

1
|1 + C(jω)P (jω)| (12)

For self-regulated processes, it is recommended to design
the controller to get MS values from 1.4 to 2.0 (Astrom and
Hagglund (2006)). When MS = 1.4 is selected a smoother
controller output is achieved while when MS = 2.0 a more
aggressive and faster controller output is achieved.
Therefore, an optimization procedure has been used to
solve the optimization problem of minimizing the cost
function (10) subject to the constraint defined by MS =
1.4 or MS = 2.0.

3. PERFORMANCE ASSESSMENT

This section provides a comparison between the optimal
values of the cost function (10) obtained for both FOPID
and PID controllers. In all cases τ0 ranges from 0.1 to
2.0 in steps of 0.1, a ∈ {0.10, 0.25, 0.50, 0.75, 1.0} and b
ranges from 0.25 to 2.0 when the robustness constraint
is defined by MS = 1.4 and from 0.25 to 2.5 when MS

is set to 2.0, in steps of 0.25 for both MS values. It is
important to mention that in all cases the optimal value for
the λ controller parameter was always one, and therefore,
this section only provides for the case of MS = 1.4 (for
brevity purposes) the values of the derivative fractional-
order controller parameter µ which is responsible of the
performance improvement in the closed-loop system.

3.1 Robustness given by MS = 2.0

First, the case when MS = 2.0 is analyzed. The Jη index
for a = 0.1 is shown in Fig. 2. From this figure it
can be seen that the improvement in the control system
performance provided by the use of FOPID controllers over
PID controllers is greater (up to 3 %) for low values of b,
namely, b ∈ {0.25, 0.50, 0.75, 1.0} and for τ0 > 0.7.

0 0.5 1 1.5 2
=

0

0.97

0.975

0.98

0.985

0.99
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1

J 2

b=0.25
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b=1.00
b=1.25
b=1.50
b=1.75
b=2.00
b=2.25
b=2.50

Figure 2. Jη index for a = 0.10 and MS = 2.0

The Jη index for a = 0.25 is shown in Fig. 3. From
this figure it can be seen that the improvement in the
control system performance achieved by the use of FOPID
controllers over PID controllers is greater (up to 4 %)
for a low value of b (b = 0.25) in the whole range of
the normalized dead time τ0. For the rest of the cases,
the performance improvement is marginal. The Jη index
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Figure 3. Jη index for a = 0.25 and MS = 2.0

for a = 0.50 is shown in Fig. 4. From this figure it
can be seen that the improvement in the control system
performance provided by the use of FOPID controllers over
PID controllers is greater (up to 4.5 %) for low values
of b, namely, b ∈ {0.25, 0.50} and for the whole range of
the normalize dead time τ0. The Jη index for a = 0.75 is
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Figure 4. Jη index for a = 0.50 and MS = 2.0

shown in Fig. 5. From this figure it can be seen that the
improvement in the control system performance provided
by the use of FOPID controllers over PID controllers is
greater (up to 5 %) for low values of b, namely, b ∈
{0.25, 0.50, 0.75} and for the whole range of the normalize
dead time τ0. The Jη index for a = 1.0 is shown in Fig.
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Figure 5. Jη index for a = 0.75 and MS = 2.0

6. From this figure it can be seen that the improvement
in the control system performance provided by the use of
FOPID controllers over PID controllers is greater (up to
6 %) for low values of b, namely, b ∈ {0.25, 0.50, 0.75, 1.0}
and for the whole range of the normalize dead time τ0.
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Figure 6. Jη index for a = 1.0 and MS = 2.0

3.2 Robustness given by MS = 1.4

When MS = 1.4 the following results are obtained:
The Jη index for a = 0.1 is shown in Fig. 7. From this figure
it can be seen that the improvement in the control system
performance provided by the use of FOPID controllers
over PID controllers is greater (up to 10 %) for higher
values of b, namely, b ∈ {0.50, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0}
and for the whole range of the normalize dead time τ0.
This suggests that when a more robust closed-loop system
is required and the process has a larger inverse response,
the FOPID controller provides a higher performance than
a PID controller. The Jη index for a = 0.25 is shown
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Figure 7. Jη index for a = 0.10 and MS = 1.4

in Fig. 8. From this figure it can be seen that the im-
provement in the control system performance provided
by the use of FOPID controllers over PID controllers is
greater (up to 9.5 %) for higher values of b, namely, b ∈
{0.75, 1.0, 1.25, 1.5, 1.75, 2.0} and specially for the range
of the normalize dead time τ0 ≥ 0.5. This suggests that
when a more robust closed-loop system is required and
the process has a larger inverse response as well as dead
time, the FOPID controller provides a higher performance
than a PID controller. This performance improvement is
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Figure 8. Jη index for a = 0.25 and MS = 1.4

mainly due of the fractional parameter associated to the
derivative part µ. Its behavior is presented in Fig. 9. The
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Figure 9. µ for MS = 1.4 and a = 0.25

Jη index for a = 0.50 is shown in Fig. 10. From this figure
it can be seen that the improvement in the control system
performance provided by the use of FOPID controllers
over PID controllers is greater (up to 10 %) in general,
for higher values of b, namely, b ∈ {1.0, 1.25, 1.5, 1.75, 2.0}
and specially for the range of the normalize dead time
τ0 ≥ 0.5. This suggests that when a more robust closed-
loop system is required and the process has a larger inverse
response as well as dead time, the FOPID controller pro-
vides a higher performance than a PID controller. This
performance improvement is mainly due of the fractional
parameter associated to the derivative part µ. Its behavior
is presented in Fig. 11. The Jη index for a = 0.75 is
shown in Fig. 12. From this figure it can be seen that the
improvement in the control system performance provided
by the use of FOPID controllers over PID controllers is
greater (up to 13 %) in general, for the whole range of b
values except for b = 0.75 and b = 1.0, and for the range
of the normalize dead time τ0 ≥ 0.5. This performance
improvement is mainly due of the fractional parameter as-
sociated to the derivative part µ. Its behavior is presented
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Figure 10. Jη index for a = 0.50 and MS = 1.4
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Figure 11. µ for MS = 1.4 and a = 0.50
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Figure 12. Jη index for a = 0.75 and MS = 1.4

in Fig. 13. The Jη index for a = 1.0 is shown in Fig. 14.
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Figure 13. µ for MS = 1.4 and a = 0.75

From this figure it can be seen that the improvement in the
control system performance provided by the use of FOPID
controllers over PID controllers is greater (up to 13 %) in

general, for the whole range of b values except for b = 1.0,
and for the range of the normalize dead time τ0 ≥ 0.5. This
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Figure 14. Jη index for a = 1.0 and MS = 1.4

performance improvement is mainly due of the fractional
parameter associated to the derivative part µ. Its behavior
is presented in Fig. 15.
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Figure 15. µ for MS = 1.4 and a = 1.0

4. SIMULATION EXAMPLE

As an illustrative example consider the IRSOPDT process
defined by the transfer function (13) which has a large
dead time.

P1(s) = (−0.25s + 1)e−1.6s

(s + 1)2 (13)

The optimal parameters for the PID and FOPID controller
were obtained for both MS = 1.4 and MS = 2.0 and
they are shown in Table 1. This Table also shows the
Jη index in order to quantify the improvement in the
performance provided by the use of FOPID controllers in
comparison with the PID controllers for both MS = 1.4
and MS = 2.0. The Table (1) shows that the performance

Table 1. Controller Parameters and Jη index

PID MS = 1.4 FOPID MS = 1.4 PID MS = 2.0 FOPID MS = 2.0

Kp 0.479 0.702 0.865 1.059

Ti 1.914 2.582 2.365 2.770

Td 0.868 0.891 0.747 0.856

λ — 1.000 — 1.000

µ — 1.298 — 1.190

Jη 0.885 0.945

of the FOPID controllers is better than the PID controllers
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in a 11.5% for a robustness defined by MS = 1.4 and
in a 5.5% for a robustness defined by MS = 2.0. These
results as well as the ones presented in Section 3 indicate
that FOPID controllers allow a remarkable performance
improvement in the closed-loop system when higher ro-
bustness is required. Moreover, this Table presents that for
MS = 1.4 the fractional-order parameter associated to the
derivative part µ is further away from one than the case for
MS = 2.0, and this confirms the effect of this parameter
when more robustness is required in the feedback system.
Fig. (16) presents the closed-loop system response when
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Figure 16. Set-Point and Load-Disturbance response for
P1(s) α = 0.75 process example.

a unit step change in the set-point value is applied in
t = 1 s and when a unit load-disturbance is applied in
t = 25 s. This figure also shows also the controller output
which is more aggressive for fractional-order controllers
that their integer counterpart and therefore, this allows
a better performance in the closed-loop system using this
kind of controllers.

5. CONCLUSIONS

The present work proposes a quantitative evaluation of
the performance provided by the use of fractional-order
and integer-order PID controllers when robustness con-
siderations should be considered for the control of non-
minimum-phase systems with or without dead-time. The
performance comparison between both types of control al-
gorithms proves the advantages of using an additional pa-
rameter in the controller structure given by the fractional-
order parameter µ. The results show that for higher inverse
responses defined by larger values of b and for larger
normalized dead-times τ0, the performance provided by
the use of FOPID controllers is most prominent and even
more if more robustness is required in the closed-loop
systems as happens when MS is set to 1.4. It is expected
that this works contribute to those researchers that require
to design a feedback-loop for an application based on
a non-minimum-phase system and fractional-order PID
controllers.
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