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Abstract: Control Performance Assessment (CPA) is a critical endeavor in industrial processes,
ensuring optimal functioning of control systems. Traditionally, CPA has been addressed through
solutions using some control performance indicators. Nowadays, the integration of data science
and machine learning has emerged as a viable alternative, particularly in classification tasks
related to CPA. That is, in a binary classification scheme, the goal is to predict whether incoming
data from the control loop belongs to class 0 or 1, representing the absence or presence of an
anomaly (performance degradation). In such a case, a trade-off between false positives and false
negatives should be obtained, via the training phase of a given supervised machine learning
structure for example. Usually, this is a conflicting trade-off, where multi-objective optimization
techniques in the training phase of such learners could bring interesting results. In this paper,
we explore the usability of multi-objective optimization training in machine learning, for control
performance assessment classification. A database describing 30 control performance indicators
(features) in a PID control loop is used. The obtained results indicate that the proposed approach
could bring interesting applications to improve the performance of CPA classification systems.

Keywords: Control performance assessment; machine learning; multi-objective optimization;
PID control; multi-criteria analysis.

1. INTRODUCTION

Control Performance Assessment (CPA) in the industry
is a crucial challenge involving the evaluation of the
effectiveness of control systems. The need to measure and
enhance control performance in industrial settings has
been a persistent issue due to its direct impact on process
quality and operational efficiency (Jelali, 2006).

Traditionally, CPA has been addressed through solu-
tions that might face significant challenges. Conventional
methodologies often focus on specific metrics to assess
control performance but might find difficulties in dealing
with the complexity and variability of modern industrial
systems. In response to these challenges, data science and
machine learning have emerged as promising alternatives.
Their ability to process large datasets and extract com-
plex patterns offers new insights for addressing CPA more
efficiently and effectively (Grelewicz et al., 2023a,b).

For example, the goal of classification tasks within the
machine learning context is to minimize misclassifications.
Nevertheless, misclassifications can be tagged as false pos-
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itives or false negatives; minimizing both simultaneously
can be seen as a multi-objective problem with conflicting
objectives. To overcome such an instance, multi-objective
optimization techniques have proven valuable in dealing
with conflicting objectives. This idea could be effectively
incorporated into the training phase of machine learning,
enabling a more holistic assessment of control perfor-
mance.

In this context, we propose a multi-objective training
approach to address the CPA problem. We present an
application of this approach on a dataset, describing 30
control performance indicators (features) in a PID control
loop. The remainder of this paper is as follows: in Section
2, a brief theoretical background is presented; in Section 3,
methods, tools, and experimental framework for this paper
are described; in Section 4, results are discussed; and in
Section 5, some conclusions and future work are given.

2. THEORETICAL BACKGROUND

Next, theoretical background on CPA, machine learning,
and multi-objective optimization are discussed.
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2.1 Control performance assessment

Control Performance Assessment is a crucial aspect in
evaluating the effectiveness of control systems, ensuring
their optimal functioning within industrial processes (Je-
lali, 2012; Domański et al., 2020). It involves the quan-
titative analysis of how well a control system meets the
desired performance criteria. Mathematically, CPA is often
expressed through performance indices and metrics, such
as the Integral of Time-weighted Absolute Error (ITAE),
Integral of Squared Error (ISE), or other relevant measures
such as the Harris index or minimum variance. These
metrics provide a quantitative basis for assessing the sys-
tem’s ability to maintain stability, reduce oscillations, and
respond accurately to setpoint changes or disturbances.
Several works propose improvements or variations of such
indexes (Horch and Isaksson, 1999; Khosroshahi et al.,
2022). In any case, the formalism of CPA aims to capture
the dynamic behavior of the controlled system, offering
insights into its overall efficiency and robustness.

2.2 Machine learning, supervised learning, and binary
classification

Machine learning refers to computer algorithms that en-
hance their capabilities autonomously through exposure
to data. This learning process can be supervised, unsuper-
vised, or via reinforcement (Mitchell et al., 1997). In super-
vised learning, instances (I) with features (X) are used to
train a learner, employing reliable target information (T )
for each instance. The primary objective is to establish a
relationship that yields an output (target prediction) for
new instances.

In binary classification, the task is to predict whether
incoming data belongs to class 0 (C0) or class 1 (C1). For
anomaly detection, these classes signify the presence or
absence of an anomaly. Class 0 denotes a situation without
anomalies, while class 1 indicates an anomalous situation.
The learner undergoes a training phase using a dataset to
adjust its parameters β through optimization, utilizing an
evaluation criteria or cost function. That is, given a loss
function statement J(β) to minimize misclassifications for
a given hypothesis hβ(x) (learner structure) based on the
tuneable β parameters for a data vector x.

Several machine learning structures have been proposed
over the years. To name few basic approaches: k-Nearest
Neighbors (Cunningham and Delany, 2021), logistic regres-
sion (Mitchell et al., 1997), Naive Bayes (Bielza and Lar-
ranaga, 2014), artificial neural networks (Meireles et al.,
2003), support vector machines (Cortes and Vapnik, 1995),
decision trees (Hernández et al., 2021), ensembles (Gomes
et al., 2017). Each one of them provides a particular
structure that must be trained to adjust its tuneable
parameters β. Several optimization tools and techniques
are used for such a training stage; among them, multi-
objective optimization has brought interesting results.

2.3 Multi-objective optimization

As outlined in Miettinen (1998), a multi-objective problem
(MOP) with m objectives 1 , can be formulated as follows:

min
θ

J(θ)= [J1(θ), . . . , Jm(θ)] (1)

subject to:

K(θ)≤ 0 (2)

L(θ) = 0 (3)

θi ≤ θi ≤ θi, i = [1, . . . , n] (4)

where θ = [θ1, θ2, . . . , θn] is defined as the decision vector
with dim(θ) = n; J(θ) as the objective vector and K(θ),
L(θ) as the inequality and equality constraint vectors
respectively; θi, θi are the lower and the upper bounds in
the decision space.

It is important to note that in MOPs, there is not a
single solution due to the absence of a universally superior
solution across all objectives. Instead, a set of solutions,
the Pareto set ΘP , is defined. Each solution in the Pareto
set corresponds to an objective vector in the Pareto
front JP . Typically, the focus is approximating a Pareto
front and set, J∗

P ,Θ∗
P . All solutions on the Pareto front

represent a set of Pareto optimal and non-dominated
solutions.

• Pareto optimality: An objective vector J(θ1) is Pareto
optimal if there is no other objective J(θ2), such that:

iff Ji(θ
2) ≤ Ji(θ

1) ∀ i ∈ [1, 2, ..., n] and

Jj(θ
2) < Jj(θ

1) ∃ j ∈ [1, 2, ..., n] (5)

• Dominance: Given two objective vectors J(θ1), J(θ2),
the objective vector J(θ1) is dominated by the objec-
tive vector J(θ2) iff:

iff Ji(θ
2) ≤ Ji(θ

1) ∀ i ∈ [1, 2, ..., n] and

Jj(θ
2) < Jj(θ

1) ∃ j ∈ [1, 2, ..., n] (6)

This is denoted as J(θ2) ⪯ J(θ1).

Figure 1. Pareto optimality and dominance concepts for
design objective y1(x), y2(x) for decision variables x.

1 A maximization problem can be converted to a minimization
problem. For each of the objectives that have to be maximized, the
transformation: max Ji(θ) = −min(−Ji(θ)) could be applied.
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2.4 Related Works and Contextual Framework

On the one hand, it is not new to deal with the CPA prob-
lem from the machine learning perspective. For example, in
Grelewicz et al. (2023a,b) a novel machine learning derived
CPA classification system is proposed and implemented
for a wide class of PID-based control industrial loops of
reduced order. On the other hand, the idea of using multi-
objective optimization statements in machine learning ap-
plications has been largely analyzed for machine learning
ensembles (Onan et al., 2016; Ribeiro and Reynoso-Meza,
2020), dynamic ensemble selection (Ribeiro et al., 2020),
feature selection and classification(Ribeiro and Reynoso-
Meza, 2021), and for the learner structure training itself
(Ryu and Baik, 2016; Reynoso-Meza et al., 2022; Nag
and Pal, 2015). In spite of the promising results of using
multi-objective optimization techniques in machine learn-
ing training, to the best of our knowledge, such an idea has
yet to be explored for CPA. Therefore, we move forward
in this direction, addressing the following questions:

Q1 Could machine learning techniques benefit from multi-
objective training for supervised CPA classification sys-
tems?

Q2 If so, which structures benefit the most from this
approach?

3. EXPERIMENTAL FRAMEWORK, TOOLS AND
METHODS

A supervised learning approach using multi-objective op-
timization training is proposed to answer the above-
commented questions.

3.1 Learner structures under consideration

In the same way that PID control, a common, simple,
and reliable technique for automation, can benefit from
a multi-objective optimization tuning approach, we intend
to verify if simple machine learning structures could bene-
fit in the same way for the CPA problem; future work will
focus on more complex techniques. Therefore, two basic
structures will be posed in this work: Logistic Regression
(7) and Naive Bayes (8).

hβ(x) =
1

1 + expβ0+β1x1+β2x2+···+βnxn
(7)

h(x) = p(Ck|x) =
1

Z
p(C0)

N∏
i=1

p(xi|Ck) (8)

Naive Bayes (8), in particular, is known for assuming
that the features are conditionally independent, given the
target class Ck. It is a probabilistic model and, therefore,
without tuneable β parameters a priori.

3.2 Data set description

The data set proposed by Grelewicz et al. (2023a) will be
used. It consists of a data set of 30 control performance
indicators computed from the rejection response when a
disturbance step change is applied in a PID control loop. A
large and representative set of different second-order plus

deadtime processes was defined to build the database. For
each process, a PID tuning was derived via an optimization
problem, and several controllers were proposed in the
proximities of them via random perturbation of the PID
parameters. The labeling process was performed in the
following way: if the disturbance rejection response was
similar to the reference one, the instance is labeled as OK ;
otherwise, as NOK. This similarity was calculated in terms
of gain margin, phase margin, and normalized error. The
training dataset consists of 60,000 instances, while the test
database has 10,000 instances, both of them with equally
balanced classes.

3.3 Multi-objective problem statement

Instead of using an aggregation function for FP (false
positives) and FN (false negatives), classification perfor-
mance will be evaluated simultaneously via multi-criteria
analysis. Therefore, a multi-objective problem is consid-
ered as shown in Equation (9) and previously proposed in
Reynoso-Meza et al. (2022):

min
β

J(β)= [FP + CEm(β), FN + CEm(β)] (9)

With:

CEm(β) = − [y log(hβ(x)) + (1− y) log(1− hβ(x))]

M · log(ϵ)
− 1

(10)

subject to:

βi ≤ βi ≤ βi, i = [0, . . . , n] (11)

While it is straightforward for the Logistic regression
case to use the above-commented optimization statement,
it is not the case for Naive Bayes. Therefore, here we
use the modified structure of equation (12), where β =
[β0, . . . , βN ] are the weighting coefficients, that are ad-
justed givenM observations or instances and β0 = p(C0)as
proposed by Ryu and Baik (2016).

p(Ck|x) =
1

Z
β0

N∏
i=1

p(xi|Ck)
βi (12)

3.4 Multi-objective optimization process

As an initial population, a set of learners trained with
the classical approach is calculated. Such a set of learners
are trained using a different number of features, using
the Minimum Redundancy Maximum Relevance (mRMR)
criteria (Radovic et al., 2017). That is, a total of 30 learners
are adjusted, ranging from 1 to 30 features, according to
the mRMR criteria.

For the experiments presented here, the spMODEx 2 al-
gorithm will be used. It is a multi-objective evolution-
ary algorithm based on Differential Evolution (Storn and
Price, 1997; Pant et al., 2020), using as a diversity mecha-
nism a spherical pruning (Reynoso-Meza et al., 2014). The

2 https://www.mathworks.com/matlabcentral/fileexchange/

65145
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following hyper-parameters are used: binomial mutation;
scaling factor F = 0.5; crossover rate Cr = 0.9; population
Pop = 50; function evaluations FEs = 2e4 and 100 arcs
in the spherical grid.

For pertinency improvement, the physical programming
matrix of Table 1 is used, where β0 is the baseline solution
using all available features for the learner structure via
classical training phase (i.e. single objective criteria). Per-
tinency (Reynoso-Meza et al., 2014) is a well-documented
technique useful to approximate a Pareto front with useful
solutions. In this case, just learners dominating the base-
line β0 are allowed.

3.5 Multi-criteria Analysis and performance measures

As two design objectives will be discussed, a simple 2D vi-
sualization is enough to interpret the approximated Pareto
fronts. With the Dominance criteria, it will be possible to
analyze the impact of Multi-objective optimization train-
ing when compared with the initial population and the
baseline learner.

To evaluate the performance of a given binary classifier,
the confusion matrix could provide valuable information in
terms of false positives and false negatives. Nevertheless, as
we are approximating a Pareto front with several learners,
it will be impractical to include a confusion matrix for each
of them. Therefore, we propose a different visualization
approach, named Pareto Confusion Matrix, based on the
classical array of a Confusion matrix, but with violin
plots 3 to depict the distribution of false positives and
negatives of the approximated Pareto front.

4. RESULTS AND DISCUSSION

Tests were performed in a Desktop DELL precision 3561,
Intel(R) 11th. generation i7-11800H, 2.30 GHz, and 16GB
RAM running Matlab© R2021b. In Figures 2 and 3,
results from the training phase for the Logistic regression
and the Naive Bayes are depicted. Red diamonds represent
the approximated Pareto front, blue squares the initial
population, and the black hex star is the baseline solution.
In the first case, it is possible to appreciate that the
approximated Pareto front dominates the baseline solution
and also the initial population. This shows the potential 4

viability of using the multi-objective training to adjust the
logistic regression structure. In particular, it is possible to
perceive that the logistic regression structure benefits from
using all available features, given that the baseline solution
also dominates several learners from the initial population.
In the second case, contrasting with Logistic regression,
the naive Bayes structure benefits the most from using
fewer features; this can be observed given that several
members of the initial population (using less than 30
features) dominate the baseline solution. One such solution
is almost Pareto-optimal; nevertheless, the approximated
Pareto front can dominate all but three solutions from
the initial population; this was mainly in part because
they are outside of the boundary box defined by the
baseline solution. Therefore, we can conclude that the

3 https://github.com/bastibe/Violinplot-Matlab.git
4 We say potential, because we need to discard an over-fitting, which
will be discussed next.

Figure 2. Approximated Pareto set performance on the
training data set for Logistic Regression.

Figure 3. Approximated Pareto set performance on the
training data set for Naive Bayes.

Naive Bayes also benefit from the multi-objective training.
Figures 4 and 5 depict the performance of the Pareto set
approximation with test data. As we can observe that most
of the trade-off relations are preserved, we can conclude
that we do not have over-fitted learners; besides, as we
can observe that solutions from the initial population are
still being dominated, the performance improvement of the
multi-objective training is validated and thus, answering
Q1.

In Figures 6 and 7, we can appreciate the Pareto Confusion
matrix for each learning structure, respectively, and its
comparison with the baseline learner. In the case of the
Logistic regression, it is possible to appreciate that the
main advantage of this approach relies on the minimization
of the false negatives. In the case of the Naive Bayes,
the benefits of this approach are the minimization of false
positives and negatives. Finally, we can perform a learner
structure comparison (or design concept comparison as
defined by Mattson and Messac (2005)) in Figure 8. It
is possible to notice that Naive Bayes with the multi-
objective training approach minimizes false negatives in
exchange for false positives. This could also guide the
structure selection for a given problem, thus answering Q2.
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Table 1. Preference matrix m for MOP statement. Five preference ranges have been defined:
highly desirable (HD), desirable (D), tolerable (T), undesirable (U), and highly undesirable

(HU).

Preference Matrix

← HD → ← D → ← T → ← U → ← HU →
Objective J0

i J1
i J2

i J3
i J4

i J5
i

J1(β) 0.4 ∗ J1(β0) 0.6 ∗ J1(β0) 0.8 ∗ J1(β0) 1.0 ∗ J1(β0) 2.0 ∗ J1(β0) 5.0 ∗ J1(β0)

J2(β) 0.4 ∗ J2(β0) 0.6 ∗ J2(β0) 0.8 ∗ J2(β0) 1.0 ∗ J2(β0) 2.0 ∗ J2(β0) 5.0 ∗ J2(β0)

Figure 4. Approximated Pareto set performance on the
test data set for Logistic Regression.

Figure 5. Approximated Pareto set performance on the
test data set for Naive Bayes.

5. CONCLUSIONS

In this paper, a multi-objective optimization training pro-
cess for machine learning structures was presented to
tackle the CPA classification problem. Two questions were
posed and answered by the experimental results. Regard-
ing the first question, learning structures such as Logistic
Regression and Naive Bayes for this problem benefit from
multi-objective optimization training. Furthermore, via
the Pareto Confusion Matrix visualization approach, it is
possible to compare the classification performance between
structures, helping to decide which structure to implement
and answering the second question. Future work will focus

Figure 6. Pareto Confusion matrix of Logistic regression.

Figure 7. Pareto Confusion matrix of Naive Bayes.

on using this approach for different and more complex
structures.
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