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Abstract: An artificial pancreas system regulates blood glucose in people with type 1 diabetes
by automating the appropriate insulin infusion rate calculation. Insulin cannot be removed once
injected, and thus, the control input is constrained to be positive. Controllers designed without
taking this constraint into consideration often deliver an excessive insulin dose after a meal
intake (postprandial period), which may cause hypoglycemia, a condition related to harmful
complications. The non-negativeness is usually handled indirectly through additional control
structures that compensate for the saturation by cutting off the insulin flow in advance. The
few approaches that consider the non-negativeness of insulin in the controller design process
end up with high-order controllers, which are difficult to analyze. In this work, the design of
a input-constrained PD controller for regulating postprandial glucose is explored. The set of
feasible controller parameters is computed and related to the meal and insulin dynamics.

Keywords: type 1 diabetes, artificial pancreas, postprandial control, PID controllers, positive
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1. INTRODUCTION

Type 1 diabetes is a chronic disease where the pancreas no
longer produces insulin. Cells need insulin to uptake glu-
cose for fueling purposes (Alsahli et al., 2017). As a result,
people with type 1 diabetes need exogenous insulin admin-
istration to survive. The application of control engineering
to the glucose regulation problem has led to the artificial
pancreas system (Nwokolo and Hovorka, 2023): a control
system that automatically computes the insulin infusion
to be administrated with an insulin pump upon glucose
readings obtained with a continuous glucose monitoring
device.

The glucose-insulin regulatory dynamic process consti-
tutes an example of a system with positive input con-
straint: the insulin infusion must be non-negative since
it cannot be extracted from the body once infused, disap-
pearance being subjected to natural insulin degradation
once fully absorbed from the subcutaneous tissue. This fea-
ture limits the glucose control performance, which is spe-
cially revealed when compensating for meal intakes (post-
prandial control). The meal carbohydrate content usually
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increases blood glucose levels at a fast rate compared
to the slow effect of insulin, limited by the long delays
during its subcutaneous absorption (Gingras et al., 2018).
Aggressive controllers may be designed in an attempt to
compensate for the slow process dynamics. However, doing
so without considering the control input saturation will
lead to insulin overdose, causing abnormally low glucose
levels (hypoglycemia), a condition related to short-term
adverse effects if it is not treated timely, such as seizure,
cardiac arrest, coma, or death (Faradji et al., 2019).

Due to the non-negativeness nature of the control ac-
tion, the ideal method to compensate for a meal with a
low risk of hypoglycemia is to deliver an insulin bolus,
i.e., an impulse-like feedforward action, prior to mealtime
(Goodwin et al., 2015). This strategy has been successfully
adopted for commercial artificial pancreas systems, out-
performing conventional open-loop therapies (Boughton
et al., 2019; Bassi et al., 2023). However, to calculate
an insulin bolus, users must inform the controller about
the carbohydrate content of their meals, a complex and
burdensome task that should be removed in the next
generation of artificial pancreas systems.

To handle unannounced meals, most of the controllers
in the literature, except those based on receding horizon
strategies, do not consider the control input constraint
during the design process. Instead, they include addi-
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tional modules that inhibit insulin infusion to avoid hy-
poglycemia (Dovc et al., 2020; Cai et al., 2020; Sanz et al.,
2021; Sala-Mira et al., 2022). In contrast, (Sereno et al.,
2018), (Homayounzade, 2022), and (Sanz et al., 2023) are a
few examples that directly treat the non-negativity of the
insulin during the controller design process. However, these
methodologies lead to high-order controllers or require
elaborate state observers.

In this work, the design of low-order positive controllers
for postprandial control is addressed. Specifically, a PD
controller is designed based on the conditions detailed in
(Lin and Fang, 1997) that characterizes non-overshooting
and monotone nondecreasing steps response of a third-
order linear system. This low-order controller allows to
study how the insulin and meal dynamics affect the regions
of feasible controller parameters.

1.1 Problem statement

The postprandial glucose regulation problem is cast into
the feedback control loop depicted in Fig. 1. The plant and
disturbance processes are assumed to be given by

Gd(s) =
kd

(τ0s+ 1)(τds+ 1)
(1)

and

Gu(s) =
−ku

(τ0s+ 1)(τus+ 1)
(2)

respectively, in which all constants are positive. In the
diabetes context, the structure of these transfer functions
correpond to simplifications of standard models in the
literature (Heusden et al., 2012; Colmegna et al., 2014;
Gondhalekar et al., 2016; Sanz et al., 2023), where Gu

represents the effect of insulin in lowering blood glucose
levels whereas Gd represents the glucose rise that occurs
after a meal intake, modeled by an impulse disturbance
d(s). These linear models are obtained at an equilibrium
point, the so-called basal glucose level yb, that is achieved
by a basal insulin infusion rate ub. The control input u
and the controlled output y are then incremental with
respect to ub and yb, respectively. At this point, it should
be remarked that the actual constraint on the control input
is u(t) ≥ −ub, which implies zero insulin flow. However,
the subsequent analysis is performed assuming that u(t)
must be positive. The conservatism of this assumption will
be addressed in Section 4.

Note that both transfer functions have a common pole at
s = −1/τ0, which is related to the glucose self-regulation
dynamics at the equilibrium point. The distinct poles
−1/τu and −1/τd represent the insulin and meal ab-
sorption dynamics, respectively. Typically, one has that
τd ≪ τu, that is, the meal effect is much faster than the
insulin dynamics (Gingras et al., 2018). It has been shown
in the literature that high-order feedback controllers ap-
proaching optimal performance can be constructed (Sanz
et al., 2023), which guarantee the positiveness of the
control signal after a meal intake. In this paper, the de-
sign of low-order controllers that guarantee this constraint
is investigated. More specifically, proportional-derivative
controllers of the form

C(s) = −(α+ β · s) (3)

are considered, with positive gains α, β ≥ 0. Note that the
negative sign in (3) is included, without loss of generality,

C(s) Gu(s)

Gd(s)

yu

d

+ +

−

Fig. 1. Feedback control loop.

so that the controller gains are positive. The closed-loop
relationship from d to u in the feedback control loop
depicted in Fig. 1 is given by

Gdu(s) ≜
u(s)

d(s)
=

−C(s)Gd(s)

1 + C(s)Gu(s)
(4)

The control signal after a meal intake is given by the
impulse response of (4). In what follows, the combinations
of (α, β) that lead to a positive control input after a
meal intake, that is, L−1{Gdu(s)}(t) ≥ 0, ∀t, will be
determined.

2. CONTROLLER DESIGN

Using (3) into (4), the control input after a meal intake is
given by

Gdu(s) =
kdk

−1
u (τus+ 1)(ᾱ+ β̄s)

(τds+ 1)(τ0τus2 + (τ0 + τu + β̄)s+ 1 + ᾱ)
(5)

where

ᾱ ≜ kuα ≥ 0 and β̄ ≜ kuβ ≥ 0 (6)

have been defined for convenience. The poles of (5),
denoted by r1, r2, r3, are computed as

r1 =
−(τ0 + τu + β̄) +

√
∆

2τ0τu

r2 =
−(τ0 + τu + β̄)−

√
∆

2τ0τu
r3 = −1/τd

(7)

where ∆ is the discriminant of the corresponding second-
order polynomial equation, given by

∆ = (τ0 + τu + β̄)2 − 4τ0τu(1 + ᾱ). (8)

For simplicity, the subsequent analysis is limited to the
case in which (5) has distinct real poles, that is, when ∆ >
0 holds (Lin and Fang, 1997). Using (8), this condition is
fulfilled if

ᾱ <
(τ0 + τu + β̄)2

4τ0τu
− 1, (9)

which leads to distinct real closed-loop poles. Furthermore,
provided that ∆ > 0 holds, the closed-loop stability
condition is easily obtained from (7) as ᾱ > −1. Therefore,
it is clear that (6) and (9) guarantee that r1, r2, r3 < 0 are
distinct real stable closed-loop poles.

In order to apply the conditions reported in (Lin and
Fang, 1997), the transfer function (5) is expressed in the
following form

Gdu(s) ≜ K
cs3 + bs2 + as+ 1

(t1s+ 1)(t2s+ 1)(t3s+ 1)
(10)

with K = kdk
−1
u ᾱ(1 + ᾱ)−1,
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Fig. 2. Representation of the (ᾱ, β̄)-regions for the 10 virtual subjects. Feasible regions fulfilling the conditions (13)-(14)
are represented in green. Circles denote the combination of α and β̄ within the feasible region that achieve the
lowest postprandial peak (best tuning). Regions leading to real and complex poles are shown in blue and red,
respectively.

c = 0, b = τu
β̄

ᾱ
, a = τu +

β̄

ᾱ
(11)

t3 = min

{
τd,

2τ0τu

τ0 + τu + β̄ +
√
∆

}
t2 = max

{
τd,

2τ0τu

τ0 + τu + β̄ +
√
∆

}
t1 =

2τ0τu

τ0 + τu + β̄ −
√
∆

(12)

where the latter are selected such that t1 > t2 > t3 > 0.
According to (Lin and Fang, 1997), the transfer function
(5) has a positive impulse response if one of the following
conditions holds

R1 = (C1 ≤ 0) ∧ (C2 ≥ 0)

R2 = (C2 < 0) ∧ (C4 ≥ 0)

R3 = (C1 ≤ 0) ∧ (C2 < 0) ∧ (C4 < 0) ∧ (C5 ≥ 0)

(13)

where

Table 1. Identified parameters

Subject ku kd τ0 τu τd

ID
mg/dL

pmol/kg/min
mg/dL

g/mg/min
min min min

1 -191.5 6.19×104 336 94 23.9
2 -182.7 4.92×104 324 59 13.8
3 -124.6 6.02×104 373 78 34.2
4 -184.7 5.80×104 379 126 31.5
5 -121.8 6.00×104 246 115 57.0
6 -66.8 4.77×104 226 92 25.0
7 -207.7 7.81×104 445 79 29.2
8 -93.8 7.10×104 195 116 52.4
9 -169.1 5.33×104 286 97 27.1
10 -86.3 3.77×104 252 124 28.1

C1 = t21(a− t1)− t1b

C2 = t22(a− t2)− t2b

C3 = t23(a− t3)− t3b

C4 = t2t3a− (t2 + t3)b

C5 =
t1(t2 − t3)

t3(t1 − t2)
ln

t32C1
t31C2

− ln
t33C2
t32C3

(14)

The conditions (13)-(14) reduce the feasible (ᾱ, β̄) to a
subset of the parameter space, denoted by R = {(ᾱ, β̄) :
R1 ∨ R2 ∨ R3}. Within that subset, the proposed tuning
is based on minimizing the peak of the postprandial
response, given by y(t) = L−1{Gdy(s)d(s)}(t), where

Gdy(s) ≜
y(s)

d(s)
=

−Gd(s)

1 + C(s)Gu(s)
(15)

Since d(s) is an impulse disturbance, the proposed design
can be stated as

(ᾱ∗, β̄∗) = argmin
(ᾱ,β̄)∈R

∥L−1 {Gdy(s)} (t)∥∞ (16)

3. CASE STUDY

To study the feasibility of the methodology described in
the above section, the conditions (13)-(14) were applied
to the 10 virtual subjects identified from the adult cohort
of the UVa/Padova simulator (Dalla Man et al., 2014).
This simulator is widely used in the field since it is
the only one that received approval from the Food and
Drug Administration for being a substitute for preclinical
trials with animals. The identification scenario consisted of
two announced meals, one with an overestimated insulin
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Fig. 3. Unit impulse disturbance responses for subject #3:
incremental glucose (top) and incremental insulin
(bottom). Green lines correspond to the responses
with a sample of (ᾱ, β̄) taken from the feasible region.
The red line represents the best tuning inside the
feasible region. The dashed black line shows the open-
loop response of Gd(s).

bolus and another with an underestimated bolus. The
parameters of the transfer functions (1)–(2) were obtained
by minimizing the root-mean-squared output error. The
identified parameters are shown in Table 1. The following
subsections study the feasibility of the positive regions in
more detail.

3.1 Feasible (ᾱ, β̄)-regions

The conditions (13)-(14) were computed for each patient
by partitioning the (ᾱ, β̄)-space, leading to the feasibility
regions shown in Fig. 2. The red regions correspond to
the (ᾱ, β̄) combinations that lead to complex poles, which
are not considered for simplicity, as stated in the previous
section. The combinations of parameters that fulfill (13)-
(14) are highlighted in green, which are embedded into
the blue region, corresponding to real poles, that is, ∆ >
0. The parameters corresponding to the solution of the
minimization problem (16) are marked with circles.

The results of the proposed tuning methodology are illus-
trated next. The patient #3, which has a large feasible
region, was chosen as an example. The ideal closed-loop
responses, given by (4), for all the controller parameters
in the partitioned space, were computed under a unit
impulse disturbance, corresponding to a meal size with
a carbohydrate content of 1 g/BW, where BW refers to
the patient body weight. The ideal closed-loop trajecto-
ries are shown in Fig. 3 (green). One can see that all
control input signals satisfy u(t) > 0 for all t. Moreover,
the response corresponding to (ᾱ∗, β̄∗) is highlighted in
red, which indeed yields the best performance (minimum
peak). For illustration purposes, the open-loop response
of Gd is also shown (dashed-black), representing the effect
the meal would have with no incremental insulin delivery.
It should be pointed out that the proposed tuning consid-
erably reduces the postprandial peak without increasing
hypoglycemia.

3.2 Influence of plant dynamics on the (ᾱ, β̄)-regions

Meals and insulin may have different dynamics even for the
same patient due to the variability in the meal or insulin
absorption, the different nutritional composition of meals,
and the different formulations of insulin. For this reason,
it may be interesting to assess how the model paramters
impact the size of the feasible regions.

To this end, first of all a way to measure the size of
feasible regions is needed. A normalized size SR ∈ [0, 1]
is computed by dividing the area of the feasible region
and the maximum area that region could have within the
considered space partition. Then, for each patient three
sensitivity analysis were carried out by varying one of
the parameters {τd, τu, τ0} one at a time while keeping
the others constant. The parameters were varied within
the intervals τd ∈ [0, τu], τu ∈ [τd, τ0] and τ0 ∈ [0,∞).
Note that these intervals are different for each patient.
Therefore, in order normalize the results among patients,
the sensitivity analysis is reported in terms of the new
parameters

θd(x) =
x

τu
, θu(x) =

x− τd
τ0 − τd

, θ0(x) = 1− τu
x
, (17)

which perform the mappings θd(τd) : [0, τu] → [0, 1],
θu(τu) : [τd, τ0] → [0, 1] and θ0(τ0) : [0,∞) → [0, 1).

The results are shown in Figure 4. As the figure shows,
for all patients, the feasible region expands for increasing
values of θd (or τd) and decreasing values of θu (or τu).
In other words, slower meals and faster insulin analogs
increase the achievable performance. On the other hand,
increasing the parameter θ0 (or τ0) also results in a
monotone increment of the feasible region size. Finally,
one limit behavior should be pointed out. Note that the
feasible regions become arbitrarily large when θ0 → 1.
The same occurs when θd → 1 or θu → 0, which in turn
imply τd → τu, which is in accordance, for instance, with
improved postprandial control in dual-hormone systems
with insulin and pramlintide, where pramlintide slows
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Fig. 4. Influence of insulin and meal dynamics onto the
feasible region size for the 10 virtual subjects. SR
denotes the normalized size of the feasible regions.
θd, θu, and θ0 are the normalized values of τd, τu, and
τ0.
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Fig. 5. Representation of the extended (ᾱ, β̄)-regions for the 10 virtual subjects. Red regions represents the combinations
fulfilling (13)-(14) with a 25% variation in the time constants, while green regions correspond to the actual feasible
regions shown in Fig. 2. Circles denote the combination of α and β̄ within the feasible region that achieve the
lowest postprandial peak (best tuning).

down meal dynamics, i.e., τd, by delaying gastric emptying
(Haidar et al., 2020).

4. REDUCING THE CONSERVATISM OF THE
CONTROLLER

The whole analysis performed so far has relied on the
assumption that only positive control actions are feasible.
As discussed in the Introduction, this is a conservative
assumption. In the previous subsection, the influence of
the open-loop plant parameters on the size of the feasibility
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Fig. 6. Comparison of the unit impulse disturbance re-
sponse for the original feasible region (green) and
the extended region (yellow). The dashed line in the
bottom panel indicates the −ub threshold.

region was established. Therefore, a naive approach to re-
duce conservatism is to perform the analysis upon slightly
modified parameters τ0, τd and τu so as to enlarge the
resulting region and thus violate the positivity constraint
by a small amount.

In order to illustrate this approach, the analysis in Sec-
tion 3.1 was repeated increasing τ0, τd by 25% and reducing
τu by the same amount. The resulting regions are depicted
in Fig. 5 (yellow) along with the original ones (green).
One can see that the regions are significantly enlarged
with respect to the originals. The best-performance tuning
in both cases is marked with circles. The new tuning is
illustrated again using Patient #3. The results are shown
in Fig. 6. The response with the new tuning (red) leads
to a smaller postprandial peak (green). Furthermore, the
new control signal (yellow) does not fulfill the positivity
constraint by a small amount, as expected, without reach-
ing the minimum value −ub (dashed-black). Note that
this result was obtained by trial-and-error changing the
percentage of variation in the aforementioned parameters.

5. CONCLUSION

In this article, a PD controller that ensures a non-negative
control action is designed for the postprandial control of
patients with type 1 diabetes. Simulations show that the
proposed controller reduces the postprandial peak while
keeping the insulin positive. In addition, the impact of
the meal and insulin dynamics on the feasibility of the
controller has been studied. This analysis showed that
the difference between the insulin and meal dynamics
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considerably influences the size of the feasible regions and
thus plays a crucial role in the achievable performance.
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