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Abstract: This work extends list of recently published constrained automatic reset based
controllers by optimizing one particular “problematic” solutions with the 4th-order output
derivative. Although the proposal itself is derived for integral plus dead-time (IPDT) process
models, thanks to the universality of the used ultra-local model, the field of applicability can be
very wide and include a number of stable and unstable, linear and non-linear processes. With
regard to the progress achieved in the design of generalized automatic reset controllers, the
diversity of their various modifications and also with respect to the genius of original automatic
reset and hyper reset controllers and their inventors, the contribution further discusses related
terminological aspects, especially the misleading designation of these solutions by the term
series PI and PID controllers, which was the source of many misunderstandings, problems and
contributed to the significant lag in the further development of this type of control. Similar
comments it also adds regarding the use of the term anti-reset-windup controller.

Keywords: Automatic reset, higher-order derivatives, disturbance observer, multiple real
dominant pole, constrained control.

1. INTRODUCTION

When pneumatic controllers with disturbance compensa-
tion marked as automatic reset appeared about a cen-
tury ago, it was far from clear in advance that they
were going to dominate the field of automatic control.
They were just one of many solutions, most of which
have since disappeared from industrial practice (Bennet,
1996). Even before the World War II, their generalization
emphasized in the name as hyper reset was established.
In the following decades, there were several waves of in-
novation of these two successful controllers brought by
the introduction of vacuum tubes, transistors, and oper-
ational amplifiers. Although the basic scheme of original
solutions was preserved in principle and still represents
the basis of industrial automation, their designation was
changed. Today, however, only a few people know them
under the original designation, when a new name emerged
from the work of Minorsky (1922) as an abbreviation of
adjectives proportional-integral-derivative (PID) Bennet
(1996). For a long decades, it seemed that the three cor-
responding components related to the present, past and
future of control error best reconciled the requirements of
the automatic control. However, from the point of view
of automatic reset and hyper reset controllers, such an
interpretation diverted attention from the further devel-
opment of their essence. They are equivalent to PIDs with
an explicit integrator only around steady-states of the
system. At the time of dominance of the linear theory of
automatic control, their significantly different properties
during transients with a limited value of the control action
were simply neglected. Instead of automatic reset and
hyper reset, PI and PID controllers started to be used
and another adjective, series (serial) PIDs, was sometimes

used to distinguish the reset based solutions. But many
users forgot about it, which caused problems with the
application of older methods for setting controllers, such
as proposed in Ziegler and Nichols (1942). Another, even
more important consequence of the new interpretation and
terminology was the emergence of the windup problem,
which was able to completely invalidate the activity of
controllers with explicit integrator in the case of control
signal restrictions (Glattfelder and Schaufelberger, 2003).
Although automatic reset controllers do not have an ex-
plicit integrator, and therefore no redundant integration,
the inertia of human thinking created a completely mean-
ingless abbreviation ARW ( from anti reset windup), which
can be encountered in many publications (Glattfelder and
Schaufelberger, 1983, 1987; Huba et al., 1995; Rundqwist,
1990). In this context, one of the goals of this contribution
is to show the meaninglessness of this concept, when in
a correctly set circuit with automatic reset, the limited
control signal does not have any negative effect on the
dynamics of the circuit.

Another important moment is that generalizations of
PIDs with higher-order derivatives are increasingly used
to control more complex processes with difficult-to-control
dynamics (see e.g. Jung and Dorf (1996); Ukakimaparn
et al. (2009); Sahib (2015); Oladipo et al. (2021); Zan-
davi et al. (2022); Boskovic et al. (2020); Veinović et al.
(2023); Kumar and Hote (2021); Ferrari and Visioli (2022);
Visioli and Sánchez-Moreno (2022)). However, with the
increase in the number of used controller components,
traditional explanations based on the presence, past and
future of transients are simply not enough, and even anti-
windup schemes derived from PIDs can be overcome by
solutions returning to structures with automatic reset.
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Fig. 1. 2DoF Series controller for a plant S(s) (1) with
a filter Qn(s) (4), the automatic reset FR(s) (9)
established as a positive feedback from a constrained
controller output u, a stabilizing controller Rs(s)
(2), and a prefilter Fp(s) (16); w=setpoint, di=input
disturbance, δ=measurement noise.

What is surprising, however, is that none of these new
contributions (with exception of Huba et al. (2023b,d)) is
based on the generalization of widely proven automatic
reset based schemes. In addition to contributions that
directly address the design of controllers with higher order
derivatives, there is also a huge number of works where
the use of complex controllers is hidden behind the exotic
designation of fractional order PIDs. Such works were,
for example, the focus of the previous conference IFAC
PID’18 in Ghent (Tepljakov et al., 2018). Higher-order
controllers are created here by Oustaloup approximation
of fractional order operators. Increase in robustness of
the circuit by using higher-order controllers was, however,
shown also by another contribution from the PID’18 con-
ference (Huba and Vrančič, 2018). It should be remem-
bered here that the progress in the design of higher-order
controllers was achieved thanks to the simplified design of
filters. These are not solved for each derivative separately,
which would be unbearable when using higher derivatives.
Instead, one binomial filter is proposed for all control
components (Huba, 2015; Huba et al., 2021b, 2023d).
However, a quasi-continuous-time design must be used,
because discrete-time higher-order filters calculated on the
basis of H0 equivalence may contain unstable numerator
zeros (Åström et al., 1984). Other important features
of the implemented development included the evaluation
of the obtained step responses using monotonicity based
performance measures and the optimization of controllers
using the multiple real dominant pole (MRDP) method.

On the other hand, the declining scope of teaching focused
on the basics of automatic control (Rossiter et al., 2020),
lower readiness of students in mathematics and physics,
lower perseverance and resilience of students, growing
range of theoretical approaches popular in practice focused
on optimality and robustness: PID controllers belong to
them for a long time, see e.g. Skogestad (2003); Vı́teček
and Vı́tečková (2019)), but also new approaches as active
disturbance rejection control (ADRC), trying to combine
needs on simplification with improved performance, are
increasingly used (Nie et al., 2021; Wu et al., 2021)).
All this leads to the fact that, despite the growing pos-
sibilities of application of theory in practice created by
the mass expansion of various applications of automatic
control, their quality can hardly be characterized globally
as growing. And once we accept the legitimacy of such a
statement, another question arises as to whether and what
can be done with such a situation. Our proposal, which has
not yet been tested in practice, is that we need to make
available to users solutions that would enable them to
create better designs for regulators than has been the case

with conventional methods. Of course, even here we can
doubt whether we have such better alternative solutions
available, and especially whether we can persuade users to
work with them.

Progress in the design of controllers with higher-order
derivatives was demonstrated for parallel PIDs in Huba
et al. (2021b), which, for reasons of space limitations, pre-
sented solutions up to derivative degreem = 5. Their prac-
tical application required additional anti-windup modifi-
cations, the complexity of which increased with increasing
m, but they still did not ensure the achievement of ideal
shapes of transients. This brought attention to the careful
examination of the so-called series PIDs, i.e. automatic
reset and hyper reset controllers and their generalizations
(Huba et al., 2021a). The further achieved results were
published in Huba et al. (2023d), which, with regard to
space limitations, dealt again with solutions up to m = 5.
They showed that with regard to removing the deforma-
tion of setpoint responses arising due to control signal
saturation, MRDP controllers should be readjusted opti-
mally so that the smallest time constant of the controller
numerator is chosen as the automatic reset time constant.
Huba et al. (2023b,a) dealt with solving the problem for
even value of m = 2, when the controller numerator
has complex conjugate zeros. Now, these results will be
generalized for the case with m = 4.

The rest of the paper will be structured as follows. Section
2 repeats basic steps of the MRDP-optimal two degree
of freedom (2DoF) controller design for the IPDT system
considering the output derivatives up to m = 4. It shows
how to modify the MRDP controller with the aim of
achieving nearly ideal step responses in the control loop
with saturated controller output. Section 3 continues the
discussion about the necessity of a separate treatment of
higher-order generalizations of PID and automatic reset
controllers and development of a concise terminology.

2. OPTIMAL CONTROLLER FOR IPDT MODELS

For a process with the output y(t) and the input u(t), a
two-parameters integrator plus dead-time (IPDT) model

S(s) =
Y (s)

U(s)
= S0(s)e

−Tdps; S0(s) =
Ksp

s
(1)

will be considered, specified with a gain Ksp and a dead-
time Tdp. In a “nominal” case, the simplified symbols Ks

and Td will be used. The “ideal” stabilizing controller using
output derivatives up to the 4th order is

Rs(s) = Kc +Kd1s+Kd2s
2 +K3

d3s+Kd4s
4 =

= Kc(1 + T1s+ T2s
2 + T3s

3 + T4s
4)

(2)

It operates on the control error

e = w − y (3)

defined as the difference among the setpoint w and the out-
put y. To get access to the particular output derivatives,
Rs(s) has to be combined with a low-pass filter

Qn (s) = 1/(Tfs+ 1)
n
= 1/Pn(s) (4)

Its delay can already be included in the process model (1)
(Huba et al., 2021a; Bisták et al., 2023), or be approxi-
mated by a delay equivalence (Huba and Vrančić, 2021;
Huba et al., 2023b), adding an “equivalent” filter delay Te

to the process delay Tdp, when the “total” dead-time is

Td = Tdp + Te (5)
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Te can be simply determined (Huba et al., 2023d) from the
parameters n and Tf of the filter (4) according to

Te = nTf (6)

Output us of Rs(s) can be modified by an offset uoff

uL = us + uoff (7)

used for compensation of acting disturbances and limited
by a saturation nonlinearity block (Fig. 1) defined as

u (t) = sat {uL} =
/
−
\

Umax ;
uL ;
Umin ;

u > Umax

Umin ≤ uL ≤ Umax,
u < Umin

(8)

By a positive feedback loop with a low-pass filter FR(s)

FR(s) = 1//(1 + Tis) (9)

with a time constant Ti, used for calculating the offset
signal uoff from uHuba et al. (2023d), it is constructed the
simplest known disturbance observer (DOB) (Huba and
Gao, 2022). In steady states, the controller output acting
on integral models has to be equal to the negative value of
input disturbances di. Thus, this DOB can be interpreted
as being based on steady states of integral models. In the
zone of proportional control defined by the limit values
Umin and Umax

u ∈ [Umin, Umax], (10)

the positive feedback called originally as automatic reset
establishes an integral component of control, when

R(s) =
U(s)

E(s)
=

Rs(s)

1− FR(s)
=

=
(Kc +Kd1s+Kd2s

2 +K3
d3s+Kd4s

4)(1 + Tis)

Tis

(11)

For a nominal plant (1) with parameters Ks and Td, the
controller (11) yields the closed loop transfer function

Fc(s)) =
Y (s)

W (s)
=

R(s)S(s)

1 +R(s)S(s)
=

B(s)

A(s)
B(s) = Ks(Kc +Kd1s+Kd2s

2 +K3
d3s+Kd4s

4)(1 + Tis)
A(s) = s2Tie

Tds +B(s)
(12)

Remember that the positive feedback yields (11) with an
integral term just in the proportional zone of control, when
the control does not exceeds the (always existing) limits.
Outside the proportional zone [Umin, Umax] the controller
with automatic reset behaves completely differently than
the controllers with explicit parallel integral (I) term. To
prevent redundant integration (controller windup), which
occurs after exceeding the output limitations of parallel
controllers, various anti-windup measures must be used
(Kothare et al., 1994). In the case of the automatic reset
based controller, the correct operation under constraints
can be simply guaranteed by an appropriate tuning of the
controller parameters (Huba et al., 2023b, 2021b).

2.1 MRDP-optimal controller design

Application of the multiple real dominant pole (MRDP)
method avoids existence of slow modes which would pro-
long the transient responses. Its calculation is based on
simple analytical conditions: The dominant pole multi-
plicity follows from the number of unknown controller
parameters (six) that has to be increased by the position
of the pole itself. Thus, for the controller design, there

are a total of 7 unknowns. To achieve the given dominant
pole, it is necessary to ensure that for the characteristic
quasi-polynomial A(s) (12) the equations are fulfilled[

di

dsi
A(s)

]
s=so

= 0; i = 0, 1, ..., 6 (13)

From d6A(s)/ds6 (Huba et al., 2023d) one gets the domi-
nant pole so, or the equivalent time constant To as

so = −(m+ 2−
√
m+ 2)/Td = −3.551/Td;

To = −1/so = 0.282Td
(14)

Solution of (13) then yields (Huba et al., 2023d)

Kc =
κ

KsTd
; Ti = τiTd;

T1 = τ1Td; T2 = τ2T
2
d ; T3 = τ3T

3
d ; T4 = τ4T

4
d ;

κ = 1.2702; τi = 1.8283; τ1 = 0.55149;
τ2 = 0.1227; τ3 = 0.01297; τ4 = 0.000546

(15)

To remove high overshooting after setpoint step responses
appearing under the one-degree-of-freedom (1DoF) con-
trol, a prefilter can be proposed to cancel the zeros of Fc(s)
(12) given by the polynomial B(s)/(KcKs)

Fp(s) =
Np(s)

(1 + Tis)(1 + T1s+ T2s2 + T3s3 + T4s4)
Np(s) = b5s

5 + b4s
4 + b3s

3 + b2s
2 + b1s+ 1

(16)

The simplest and the most robust prefilter tuning is

bi = 0; i = 0, 1, ..., 5 (17)

According to Vı́teček and Vı́tečková (2019), faster setpoint
step responses correspond to Np(s) canceling one domi-
nant closed loop time constant To (14)

b5 = 0; b4 = 0; b3 = 0; b2 = 0; b1 = To (18)

Real contribution of such a design should always be veri-
fied, as the cancellation of one, or even several poles can re-
duce the robustness of the control. Without control signal
limitations, the MRDP-PIDA controller gives ideal shapes
with a minimum number of input and output monotonic
sections after both setpoint and input disturbance steps.
The problem is that the MRDP-optimal parameters lead
under constrained control to output and input overshoot-
ing both in the setpoint and disturbance responses (see
Fig. 2). Because such overshoots also occur when using
higher-order PID controllers in anti-windup setup based
on the conditioning technique (Huba et al., 2021b), the
first question therefore was whether it is possible to avoid
them at all with some modified controller.

2.2 Constrained controller tuning

With p = Tds the MRDP controller numerator can be
factorized as follows
NR(p) = 1 + τ1p+ τ2p

2 + τ3p
3 + τ4p

4 =
= τ4(p

2 + 13.3641p+ 46.0994)(p2 + 10.3920p+ 39.7253)
(19)

It has the complex conjugate zeros

p1,2 = −5.1960± j3.5675,
p3,4 = −6.6821± j1.2039

(20)

By choosing the new feedback time constant as

τ = 1/5.1960 = 0.1925 (21)

or
τ = 1/6.6821 = 0.1497 (22)

calculated by neglecting the imaginary part of p1,2, or p3,4,
one could ensure a faster settling down of the automatic
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reset than with the calculated MRDP value τi = Ti/Td =
0.55149. As in Huba et al. (2023c,a), an “optimal” value
of τ i could also be derived by replacing the complex zeros
p1,2, or p3,4 with their modulus. In order to verify the
properties of such modifications of the MRDP controller
for a wider range of the optional parameter τ i = τ , let
us consider the controller transformation defined by the
modified transfer function expressed for p = Tds as

κ
τ4(p+ 1/τ)2(p2 + 10.3920p+ 39.7253)(1 + τis)

τis
=

=
κτ4
τiτ

(τp+ 1)(p2 + 10.3920p+ 39.7253)(1 + τis)(τp+ 1)

τp
=

= κ
(1 + τ1p+ τ2p

2 + τ3p
3 + τ4p

4)(1 + τp)

τp
(23)

From the requirement to preserve the controller transfer
function after the replacement of the complex zero by a
double real zero (22), the parameter transformations result

κ = 0.01507/τ ; τ i = τ
τ1 = 2.08989 + τ ; τ2 = 2.08989τ + 0.503449; ;
τ3 = 0.046023 + 0.503449τ ; τ4 = 0.0460236τ.

(24)

When changing the parameter τ ∈ [0.1, 0.21], which cor-
responds to the range from approximately 70 to 100%
of (22), we get setpoint and disturbance step responses
as in Fig. 2 (n = 5, red). The evaluation of achieved
IAE values and shape related deviations from the ideal
shapes of responses with a minimal number of monotonic
intervals (introduced e.g. in Huba et al. (2023d,a)) in
Fig. 3 confirm the suitability of adjusting the controller
transfer function at least around the value (22). The most
interesting is the course of deviations of the control signal
TV1(ud), where the influence of the complex zero with a
possible real approximation (21) seems to be visible. In
the future, it therefore seems interesting to verify also the
modification of the controller based on the approximation
of this zero, or to verify the possibility of the simultaneous
approximation of both complex zeros. To illustrate the
meaning of automatic reset in disturbance reconstruction
and compensation, Fig. 2 also shows the reconstructed dis-
turbance responses. Since the disturbance observer (DOB)
used is based on steady-state output values of the con-
troller output, in MRDP controller it is manifested by the
time constant τi = 1.8283 that is longer than the dominant
time constants τo = To/Td = 0.282 (14) of the equiv-
alent stabilizing controllers. In the modified constrained
controller it can still be observed that the reconstructed
disturbance settles down just after the output reaches the
neighborhood of the required reference value. The τi values
can’t be further decreased, because then the DOB would
react significantly to stabilization interventions in the first
part of the transients. Therefore, there is no point in
looking for more perfect optimization methods that would
achieve this. But what makes sense is to shorten the values
of τo by using controllers with higher order derivatives,
which will create space for further reduction of τi.

3. DISCUSSION

The realized derivation can be used for several purposes.
First of all, it showed MRDP design as an effective tool for
designing high-quality linear and constrained controllers,
whose performance can be modified in several simple ways.

If we add to the above treated constrained controller mod-
ification also several possibilities of specifying the closed
loop dynamics by differently grouped sets of real poles
(Huba and Vrančić, 2022), the use of this optimal design
methodology will be further expanded. It is interesting
that the MRDP methodology was already used by one of
the first textbooks of automatic control Oldenbourg and
Sartorius (1944), but in the further development it largely
disappeared from the design of automatic controllers.

However, from the point of view of the discussion of in-
terest to the wider control community, the derived con-
strained modification is extremely important as a new
counterexample, which shows the used term “anti reset
windup” as an inherently meaningless concoction. Au-
tomatic reset can be optimally set even in tasks with
saturating controller output. Thus, no further anti-windup
adjustments are needed. And that brings us to the main
point of discussion, namely the need for separate naming
and designing of constrained PID and automatic reset
controller families. It is not only a question of respect for
the inventors of these still dominantly used industrial so-
lutions, but also of avoiding their mutual confusion, which
are committed not only by a large number of students, but
also often by the academics themselves. However, the most
important thing is the terminological chaos caused by the
fact that in the family of PID controllers, which shows
an increasing number of members (see e.g. Huba et al.
(2021b)), it is senseless to derive the name of the entire
family from the name of one specific family member. This
creates meaningless formulations of the type “the most fre-
quently used PID controllers are PI controllers”. And there
is a lack of uniform terminology for controllers with higher
order derivatives. We have, for example, PIDA controllers,
but also PIDD2, or PIDD2. Because with higher order
controllers it is no longer practical to enumerate all the
components (as e.g. PIDD2D3 controller), in Huba et al.
(2021b) we proposed the use of the term PIDm

n control,
which would take into account not only the maximum
order of the used derivative, but also the order of the
used filter, which represents one of the most important
aspects of the design. With regard to use in abstracts
and other texts that do not allow indexes, however, it
might be more appropriate to make an agreement on using
the designation of PIDmn controller. Of course, a similar
problem awaits in the family of generalized automatic reset
controllers. In Huba et al. (2023d), we used the abbrevia-
tion PDm

n PI to distinguish it from PIDm
n . But, by its very

nature, it was not a good proposal, because there are no
historical or functional specifics for it - in automatic reset
there is no explicit integral term. From this point of view,
to be as short as possible, it might be more appropriate to
use the acronym PDm

n R, or PDmnR, expressing the use of
reset. In any case, due to the rapidly growing interest in
higher order controllers, it would be helpful to solve these
terminology problems as soon as possible.

4. CONCLUSIONS

The article showed how it is possible in a simple way to
modify MRDP optimal automatic reset controllers with
output derivatives of the fourth order, so that even with
saturating controller output, the shapes of closed loop
variables still have ideal waveforms. Because by solving
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Fig. 2. Setpoint (left) and input disturbance step responses (right) of constrained series MRDP-controller (black) and
controllers approximated for τ ∈ [0.1, 0.21] according to (24) (red), ∆τ = 0.01; Umax = 0.1, Umin = −0.1 for the
setpoint steps and Umax = 0.1, Umin = −1.1 for the input disturbance steps; Ks = 1; Tdp = 1; Te = 1; n = 5;
Tf = Te/n; Ts = 0.001
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Fig. 3. Impact of numerator time constant τ of the parameter transformation (24) for n = 4 and n = 5 (τ ∈
[0.1, 0.21],∆τ = 0.01) on performance of setpoint responses (Umax = 0.1, Umin = −0.1, left) and disturbance
responses (Umax = 0.1, Umin = −1.1, right); Ks = 1; Tdp = 1; Te = 1; Tf = Te/n; Ts = 0.001

several important problems, it is possible to expect in the
near future the use of a large number of members of these
two families of controllers with an explicit integral term
and with automatic reset, the article also proposes to use
the PID’24 conference for a wider discussion regarding the
appropriate terminology for the higher-order controllers.
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