
Fractional-Order PID Optimal Tuning Rule
based on a FOPDT Process Model with

Robustness Constraints

S. Madrigal ∗,∗∗, O. Arrieta ∗,∗∗∗, J.D. Rojas ∗∗,∗∗∗,
M. Meneses ∗∗∗, R. Vilanova ∗∗∗

∗ Instituto de Investigaciones en Ingeniería, Facultad de Ingeniería,
Universidad de Costa Rica, 11501-2060 San José, Costa Rica.

∗∗ Departamento de Automática, Escuela de Ingeniería Eléctrica,
Universidad de Costa Rica, 11501-2060 San José, Costa Rica.

∗∗∗ Departament de Telecomunicació i d’Enginyeria de Sistemes,
Escola d’Enginyeria Universitat Autònoma de Barcelona, 08193

Bellaterra, Barcelona, Spain.

Abstract: This paper introduces a tuning rule design for fractional order PID controllers. The
design is based on a first order plus dead time model for the controlled process. The control
problem presented, requires minimizing the integrated absolute error for each control mode, then
making a different set of rules for set-point and load-disturbance response. For the proposed
optimization, a robustness constraint based on the maximum value of the sensitivity function
has been considered so that the tuned controllers have an optimal performance and guarantee
the stability of the control system at the time of implementation. By performing a curve fitting
process towards the optimal controller parameters, the Model based Robust Tuning rule was
designed and its improvement over other tuning methods is validated through examples.
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1. INTRODUCTION

Currently, the PID control algorithm is extensively applied
in industrial environments due to its versatility, which
makes it a remarkable option due to the number of dif-
ferent tuning methods Åström and Hägglund (2006).
However, in recent years, there has been a significant surge
in the study of fractional calculus and its applications.
One area of interest is the use of fractional control, specif-
ically fractional order controllers Babu and Chiranjeevi
(2016). This topic has garnered increasing attention with
published works analyzing the benefits of implementing
fractional order PID controllers (FOPID) compared to
using the traditional PID controller Vinagre et al. (2007).
Recent research has demonstrated the efficacy of utilizing
a fractional order model to describe the dynamics of the
controlled process Meneses et al. (2018). It has also been
analyzed how fractional control can be applied in a way
that ensures system stability and robustness Padula and
Visioli (2015).
In this context, tuning rules have been developed for
FOPID controllers to guarantee a certain level of robust-
ness while obtaining the controller parameters. For exam-
ple, Sanchez et al. (2017) uses a multi-objective optimiza-
tion to establish the tuning rules MsRange and MsValue.
Meanwhile, Padula and Visioli (2011, 2012) employ frac-
tional order controllers for integrating, unstable processes,
processes modeled by a first-order function plus dead time
and create specific tuning rules (P&V rules).
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The Model based Robust Tuning (M-RoT) rule, for FOPID
controllers, is proposed in this work, which is based on
a first order plus dead time (FOPDT) model of the
controlled process, this rule is proposed to separate the
regulatory-control mode from the servo-control, so that
optimal controllers can be found for both cases, addition-
ally it works to achieve different levels of target robust-
ness, in total four different levels are considered for the
implementation of the rule. In all cases, in order to make
the M-RoT rule easy to use, the aim was to use as few
constants as possible for the curve fitting process. The
results obtained are validated by comparing the proposed
rule with other rules that have been trending for several
years in the implementation of fractional order controllers.
The paper is organized in the following sections. Section
2 presents a comprehensive description of the control sys-
tem, including the process model, the FOPID controllers
to be tuned, and the performance and robustness evalu-
ation indices of the system. Section 3 describes the de-
velopment of the M-RoT rule and presents the results of
the rule design and process validation. In Section 4, the
comparison of existing rules for FOPID controllers with
the proposed M-RoT rule is provided. Finally, Section 5
presents the conclusions of the research.

2. PROBLEM FORMULATION

2.1 Control System Considered

The main goal of a control system is to achieve the desired
output of a controlled process with a given input. The
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suggested closed-loop control system is the traditional
one presented in Fig. (1), where P (s) represents the
controlled process model and C(s) is the fractional order
PID controller (FOPID) that can be tuned.

Figure 1. Close-loop control system considered.

For the previously described control system, the following
variables were identified: y(s) is the output of the process,
r(s) designates the set-point signal for the process output,
u(s) represents the output of the tuned controller, and
finally d(s) is the load-disturbance signal of the system.
The controlled variable, which is the process output, is
described by the input signals r(s) and d(s), as shown:

y(s) = C(s)P (s)
1 + C(s)P (s)r(s) + P (s)

1 + C(s)P (s)d(s) (1)

This dependence defines the mode of operation for the con-
trol system; in the case of servo control, the main objective
is that the process output efficiently achieves the set-point
tracking task, while in the case of regulatory control, it
is necessary to mitigate the effect of disturbances on the
controlled variable. The tuning rule is proposed to obtain
FOPID controllers which can achieve the two objectives.

2.2 Controlled Process Model

The controlled process P (s) can be modelled by using
a first-order-plus-dead-time (FOPDT) transfer function.
This model is frequently employed in industry to model
process dynamics Visioli (2006).

P (s) = K

Ts + 1e−Ls (2)

This model includes three parameters: K for the process
gain, T for the time constant and L the dead time of
the system. By utilizing these parameters, the controlled
process dynamics can be represented, allowing for the
design of a system controller.
It is possible to normalize the model by means of a
transformation ŝ = Ts, based on the normalized dead time
given by (3). This allows for consideration of cases where
the system is dominated either by the time constant or the
opposite case where the dead time dominates the dynamics
of the system.

τ = L

T
, τ ∈ [0.1, 2] (3)

2.3 Fractional Order PID Controllers

For this paper, a FOPID controller in standard configura-
tion is considered as a tuned controller, this controller has
the form shown below Padula and Visioli (2015):

C(s) = Kp

(
1 + 1

Tisλ
+ Tdsµ

Td

ν s + 1

)
(4)

where Kp represents the proportional gain, Ti represents
the integral time, Td represents the derivative time con-
stant, ν represents the derivative filter parameter, while
λ and µ constitute the non-integer parameters of the
FOPID controller for the integral and derivative action,
respectively.
The expression (5) provides the parameter for the deriva-
tive filter, where µ represents the fractional order of the
controller.

ν = 10T
µ−1

µ

d (5)

To implement the FOPID controller, it is essential to
utilize an integer approximation (Oustaloup et al. (2000)).
This recursive approximation is performed on a product of
poles and zeros, as shown in the following expression:

sµ
[ωl,ωh]

∼= Co

N∏
k=1

1 + s
ωz,k

1 + s
ωp,k

, µ > 0 (6)

When applying this approximation, the valid frequency
range is indicated by {ωl, ωh} = {0.001, 1000}, on the
other hand, the constant Co is chosen in such a way that
the approximation has a unity gain at the cutoff frequency,
and in this case an approximation with N = 8 is used, this
parameter defines the number of poles and zeros for the
real-rational transfer function that will approximate the
derivative fractional term.

2.4 Peformance and Robustness

As introduced initially, the objective is to develop a tuning
rule that seeks an optimal FOPID controller in terms of
performance under a given robustness constraint in both
servo and regulatory control modes.
With this purpose, we introduce an index to measure the
performance acquired by the system after the implementa-
tion of the tuned controller, the Integrated Absolute Error
(IAE), defined as follows:

J = IAE =
∫ ∞

0
|e(t)|dt =

∫ ∞

0
|r(t) − y(t)|dt (7)

This index will be transformed into the cost function after
conducting the optimization process, taking into account
each control mode separately as appropriate (Jsp with
d(t) = 0 or Jld with r(t) = 0).
To ensure that the tuned controller implementation can
handle process non-linearities in reality, it is recommended
to evaluate a robustness index based on the sensitivity
function. The index, defined in (8), indicates how robust
the tuned controller is.

Ms=̇ max
ω

|S(jω)| = max
ω

1
|1 + C(jω)P (jω)| (8)

This metric indicates the relative stability of the system
and typically falls in the range of Ms = {1.4, 2.0}. A
value of 1.4 denotes robust tuning, while a value of 2.0
indicates more aggressive tuning. The metric will serve as
a constraint during the optimization process. In this work,
four levels of robustness are considered in order to present
different options for tuning:

Ms = {1.4, 1.6, 1.8, 2.0} (9)
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Figure 2. Tuning parameters for the M-RoT rule FOPID controller with target robustness Ms = 1.4.

3. TUNING RULE DESIGN

The design process of the rule starts with the search
of the optimal parameters of the FOPID controller, this
procedure is carried out through optimizations using the
Matlab® fmincon solver, where the Jsp or Jld index
is minimized according to the case and considering the
robustness constraint of the target level.

Table 1. Load-Disturbance rejection FOPID
tuning Ms = {1.4, 1.6, 1.8}.

Kp Ti Td µ

Target robustness Ms = 1.4 0.1 ≤ τ ≤ 2.0
a 0.5831 4.6390 −0.0193 −0.0540
b −0.9512 0.0842 0.0556 1.4121
c 0.1191 −3.5150 0.2870 1.1612
d - - −0.0019 -

Target robustness Ms = 1.6 0.2 ≤ τ ≤ 2.0
a 0.7173 2.2233 −0.0077 −0.0315
b −0.9978 0.2536 0.0036 1.2507
c 0.2384 −0.9993 0.2925 1.1751
d - - −0.0055 -

Target robustness Ms = 1.8 0.2 ≤ τ ≤ 2.0
a 0.8768 1.9658 −0.0050 −0.0324
b −0.9934 0.3276 −0.0042 1.2812
c 0.2774 −0.6829 0.2906 1.1850
d - - −0.0103 -

After finding the set of optimal parameters, the next
procedure is the curve fitting, the intention with this
process is to find a fitting function that describes the trend
of each parameter of the controller, in order to find an
approximation of the optimal value as a function of the
normalized dead time, this procedure is performed with
the cftool toolbox searching to a fit function with the
minimum Sum Square Error (SSE) respect to the optimal
parameters.
Finally, a validation of the fitted parameters determined
by the proposed functions is performed to ensure that the
imposed robustness constraint is achieved over the entire
range of normalized dead time values.

3.1 M-RoT rule target robustness Ms = {1.4, 1.6, 1.8}

Set-Point and Load-Disturbance tuning: For M-RoT rule
in the Ms = {1.4, 1.6, 1.8} target levels, the set of tuned
parameters is described by the following equations for
normalized proportional gain, normalized derivative time,
derivative integral time, integral order and derivative or-
der.

KpK = κp
Td

T µ
= τd

Ti

T λ
= τi (10)

κp = aτ b + c (11)
τi = aτ b + c (12)
τd = aτ3 + bτ2 + cτ + d (13)
µ = aτ b + c (14)
λ = 1 (15)

Tables (1) and (2) provide the values of constants a, b, c,
and d for the tuning rule in the both modes of control.

Table 2. Set-Point tracking task FOPID tuning
Ms = {1.4, 1.6, 1.8}.

Kp Ti Td µ

Target robustness Ms = 1.4 0.1 ≤ τ ≤ 2.0
a 0.5818 0.2596 −0.0277 −0.1006
b −0.9889 0.9322 0.0918 0.9120
c 0.1421 1.0063 0.2306 1.2446
d - - −0.0094 -
Target robustness Ms = 1.6 0.2 ≤ τ ≤ 2.0

a 0.7558 0.4082 −0.0075 −0.0498
b −0.9735 0.8719 0.0037 0.9063
c 0.2172 0.9961 0.2860 1.2031
d - - −0.0116 -
Target robustness Ms = 1.8 0.2 ≤ τ ≤ 2.0

a 0.9015 0.4704 −0.0078 −0.0257
b −0.9115 0.8264 −0.0030 1.5405
c 0.2224 0.9654 0.3128 1.1538
d - - −0.0037 -
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Figure 3. Performance and robustness indexes for a normalized FOPDT process model for the M-RoT and P&V rules.

3.2 M-RoT rule with target robustness Ms = 2.0

For the final instance of the M-RoT rule, the desired level
of robustness is considered to be Ms = 2.0, resulting in
the following set of fitting functions.

Set-Point tuning: In this control mode, the same func-
tions (11)-(15), are used for the Ms = 2.0 case, as in the
previous tuning.

Table 3. Set-Point tracking FOPID tuning with
target robustness Ms = 2.0.

a b c d

Normalized dead-time range 0.1 ≤ τ ≤ 0.2
Kp −142.2470 2.4068 7.5521 -
Td −10.1304 6.1024 −0.8391 0.0644
µ 2.1660e−4 −2.2738 1.1559 -

0.2 < τ ≤ 0.4
Kp 0.7505 −1.0606 0.4559 -
Td 2.5364 −2.1958 0.9569 −0.0641
µ −0.0370 1.2102 1.1667 -

0.4 < τ ≤ 2
Kp 0.9001 −0.9509 0.2866 -
Td 0.0016 −0.0388 0.3681 −0.0114
µ −0.0370 1.2102 1.1667 -

0.1 ≤ τ ≤ 2.0
Ti 0.4608 0.8826 0.9828 -

Load-Disturbance tuning: For this particular mode, the
normalized proportional gain fit function transforms into
a rational function type given by the following equation:

κp = aτ2 + bτ + c

τ + d
(16)

However, the other four normalized parameters of the
FOPID controller are also tuned utilizing the same tuning
functions as in the previous case.
In all cases, we validated the tuned parameters to find the
optimal fit for each specific trend, as illustrated in Fig. (2),
to finally determine all cases of the M-RoT rule, validating
the performance index obtained and the robustness of the

Table 4. Load-Disturbance rejection FOPID
Tuning with target robustness Ms = 2.0.

a b c d

Normalized dead-time range 0.1 ≤ τ ≤ 0.4
Td −3.1504 2.9868 −0.6132 0.0694

0.4 < τ ≤ 2.0
Td −0.0054 9.8542e−4 0.3025 −0.0215

0.1 ≤ τ ≤ 2.0
Kp 0.1784 −0.2455 1.5107 0.1155
Ti 2.0947 0.3136 −0.7890 -
µ −0.0418 1.3629 1.1884 -

normalized system for the entire range of normalized dead
time worked, as shown in Fig. (3).

4. EXAMPLES

4.1 Example 1

As an initial case study to evaluate the performance of the
M-RoT rule, the FOPDT process model given by (17) is
proposed.

P1(s) = 1
s + 1e−0.67s (17)

The model parameters are K = 1, T = 1, and L = 0.67,
giving a normalized dead time, τ = 0.67, in which the M-
RoT rule can be applied and the tuned FOPID controllers
can be obtained.
In this case, a comparison is made with the MsValue
rule proposed in Sanchez et al. (2017) and with the rule
proposed by Padula and Visioli (2011), in both cases
there are target robustness values of Ms = {1.4, 2.0}, for
fractional order controllers.
MsValue performs the rule by applying a multi-objective
optimization without separating the servo and regulatory
control modes; on the other hand, the Padula-Visioli rule
(P&V rule) considers a specific optimization for both
servo-regulatory control modes.
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Figure 4. System response shown in both control modes for Example 1. Figures (a) and (b) represent the Ms = 1.40
target tuning, while Figures (c) and (d) represent the Ms = 2.00 target case.

Table 5. Results in regard to Example 1.

Tuning Rule Kp Ti Td µ λ Jsp Jld Ms

MsValue 1.4 0.97 1.04 0.20 1.12 1 1.26 1.10 1.40
MsValue 2.0 1.67 1.02 0.21 1.11 1 1.05 0.64 1.97
P&V SP 1.4 0.83 0.98 0.22 1.20 1 1.26 1.20 1.43
P&V SP 2.0 1.26 1.03 0.28 1.20 1 0.92 0.82 2.17
P&V LD 1.4 0.61 0.54 0.33 1.20 1 1.38 1.12 1.44
P&V LD 2.0 0.91 0.52 0.38 1.10 1 1.15 0.70 1.95

M-RoT SP 1.4 1.00 1.18 0.18 1.17 1 1.22 1.17 1.40
M-RoT LD 1.4 0.97 0.97 0.21 1.13 1 1.28 1.07 1.40
M-RoT SP 2.0 1.60 1.30 0.22 1.14 1 0.88 0.81 2.00
M-RoT LD 2.0 1.81 1.06 0.18 1.16 1 1.05 0.60 2.03

Table (5) presents the results obtained from the response
of the process to a step input in both set-point and load-
disturbance of the system, in this table all the mentioned
cases of the three rules are compared, a graphical analysis
is shown in Fig. (4) where the performance of the system
in both control modes can be analized.
Results presented in (5), illustrates the superiority of the
M-RoT rule compared to the MsValue and Padula-Visioli
rules in terms of accuracy in achieving robustness target
levels and for the general performance of the system. The
M-RoT rule achieved the required robustness levels for all
four cases, and outperformed in both the set-point tracking
task and load-disturbance rejection performance index.
Graphically, the improvement of the system response is ev-
ident with the implementation of M-RoT rule controllers.
In all cases, the system demonstrates a more accurate and
smoother response compared to the other rules used in the
example.

4.2 Example 2 High-order process

For this example, a high-order process presented by
Åström and Hägglund (2000), is used as one of the
processes presented as a benchmark to analyze different
closed-loop system responses.

P2(s) = 1
(s + 1)8 (18)

After reduction to an FOPDT process model, the param-
eters of the reduced model are K = 1, T = 3.06, L = 4.95
to obtain a normalized dead time τ = 1.62. This controlled
process model is characterized by a highly dominant dead
time.

Table 6. Results in regard to Example 2.

Tuning Rule Kp Ti Td µ λ Jsp Jld Ms

MsValue 1.6 0.67 5.16 1.47 1.08 1 7.62 7.60 1.60
MsValue 1.8 0.80 4.89 1.48 1.08 1 6.67 6.13 1.81

M-RoT SP 1.6 0.69 4.95 1.51 1.12 1 7.25 7.14 1.60
M-RoT LD 1.6 0.68 4.63 1.55 1.11 1 7.30 7.01 1.60
M-RoT SP 1.8 0.80 5.09 1.58 1.10 1 6.57 6.33 1.80
M-RoT LD 1.8 0.82 4.95 1.50 1.13 1 6.73 6.10 1.80

For this case, the M-RoT and MsValue rules were applied
in the cases with robustness objective Ms = {1.6, 1.8}, in
order to analyze all the instances of the proposed rule.
Table (6) presents the obtained results for this example.
Due to the process having a large dead time, the simulation
time was set at t = 35s for this case. Additionally, we
observe the system response for a step input in both
control modes in Fig. (5) in the both rules used in the
comparison.
The obtained results indicate again an outperformance
of the M-RoT rule for FOPID controllers against the
MsValue rule, but it can be highlighted that both rules
present a great precision to reach the target robustness
levels proposed in each case, but with the same level of
robustness reached, the M-RoT rule is able to obtain a
performance index even lower than that of MsValue, in
both control modes.
Including the scenario where the controller obtained by
tuning specifically for set-point tracking with Ms = 1.6 of
the M-RoT rule outperforms the MsValue controller with
the same robustness target working in load-disturbance
rejection.
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Figure 5. System response shown in both control modes for Example 2. Figures (a) and (b) represent the Ms = 1.6
target tuning, while Figures (c) and (d) are the Ms = 1.8 target case.

5. CONCLUSIONS

The M-RoT rule was validated in terms of performance
and robustness, with cases where the performance of the
rule is analyzed for the tuning of both control modes,
against rules such as MsValue, which uses a more robust
optimization method to be designed, or the Padula-Visioli
rule, which has been a reference rule for fractional order
PID controllers for a considerable time.
The proposed tuning rule is easy to use since it avoids the
use of a large number of constants for the tuning functions
and can provide optimal performance for controlling first-
order plus dead-time models, which are widely used in
industry and academia. The M-RoT rule also can achieve
the desired level of robustness for the control system.
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