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Abstract: This paper deals with the design of a proportional-integral-derivative (PID) and
fractional-order proportional-integral-derivative (FOPID) controller tuning rule for second-
order controlled processes with inverse response. The design of the rules takes into account
specific levels of robustness and performance for both load disturbance rejection and set-point
tracking tasks. In the first step, the optimal parameters for both controllers are obtained from
optimizations that seek to minimize the error in both control modes while maintaining the
robustness constraint. Subsequently, fitting functions to the optimal parameters are sought to
capture their behavior with the possibility of finding optimal parameters with the tuning rule
designed between certain ranges of the model parameters. For FOPID and PID controllers, the
rule IRM-RoT (Inverse Response Model Robust Tuning) have been developed. The performance
of the controllers was compared using examples, and the results showed that fractional order
controllers provide a novel solution for inverse response dynamics in process control.
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1. INTRODUCTION

It is widely known in the literature that processes with
inverse response, also known as non-minimum phase sys-
tems, are present in a large number of applications in
industry. For example, in some chemical processes, the
inverse response effect appears, such as reactor drums,
boilers, kettles, as studied in Asimbaya et al. (2017). This
represents a challenge when it comes to finding a controller
that is able to deal with these process dynamics.
In this context, it is important to acknowledge the increas-
ing role of fractional calculus in the field of applied control
theory over the past few decades Abdelbaky et al. (2020),
Babu and Chiranjeevi (2016). Its implementation in the
industrial setting has shown strong acceptance in the de-
velopment and implementation of fractional order control
systems Tepljakov et al. (2021), including its feasibility in
the control of systems with inverse response dynamics has
been studied Sir Elkhatem et al. (2021).
Recent work has analyzed the effectiveness of applying the
fractional order proportional-integral-derivative (FOPID)
control algorithm Meneses et al. (2022), when working in
load disturbance rejection and set-point tracking modes,
and has also studied the achievement of specific levels of
robustness to deal with the nonlinearities encountered in
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real applications. There are studies that have focused on
the applicability and tunability of FOPID controllers for
stable first-order plus dead-time process models Padula
and Visioli (2011), as well as their feasibility for systems
with unstable or integrating dynamics Padula and Visioli
(2012). Returning to the dynamics that we want to study
in this work, several studies have been presented that
analyze from different perspectives the implementation
of FOPID controllers Nagarsheth and Sharma (2020),
Yadav et al. (2022) and Gutiererez et al. (2023), however,
no specific tuning rule has been presented to deal with
processes that possess inverse response involving the use
of fractional order controllers considering specific levels of
robustness.
This paper presents the IRM-RoT (Inverse Response
Model Robust Tuning) rule, which is applicable to both
PID and FOPID controllers, in order to make a comparison
of the performance obtained using both controllers, show-
ing the performance improvement that the use of FOPID
provides, even considering the robustness restrictions. In
addition, it is intended to compare the performance of the
two types of controllers included in the IRMRoT rule, in
order to conclude on the improvement of the implementa-
tion of fractional order controllers, through examples using
inverse response models proposed in other works.
The organization of the research is detailed below: Section
2 presents the formulation of the control problem and
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the corresponding considerations of the proposed control
system, Section 3 studies the methodology proposed to
find the optimal parameters, describes the formulation
of the IRM-RoT rule for PID and FOPID controllers.
Subsequently, in Section 4, the IRM-RoT rule is compared
by means of specific examples that represent the proposed
dynamics, concluding with results that suggest an im-
provement in the system performance taking into account
the robustness achieved when the FOPID controller is
implemented. Finally, Section 5 presents the conclusions
of this research.

2. PROBLEM FORMULATION

2.1 Control System Configuration

The control system considered is shown in Fig. 1, where
P (s) models the controlled process and C(s) represents
the PID or FOPID controller to be tuned.

Figure 1. Close-loop control system.

The variables previously described in Fig. 1 are:
• y(s) is the process output (controlled variable).
• r(s) is the set-point for the process output.
• u(s) is the control signal.
• d(s) is the load-disturbance of the system.

Considering the closed-loop control system of Fig. 1 the
process output is described by the following expression:

y(s) = C(s)P (s)
1 + C(s)P (s)r(s)︸ ︷︷ ︸

servo−control

+ P (s)
1 + C(s)P (s)d(s)︸ ︷︷ ︸
regulatory−control

(1)

in which the output of the process y(s) is determined
by two input signals, r(s) and d(s). Depending on these
signals, the system can operate in either of its two modes:
servo control or regulatory control. The main objective
is design a systems capable of a suitable tracking of
the reference signal and additionally a good rejection of
disturbance using and only tuning of the PID or FOPID
controller.

2.2 Controlled Process Model

The controlled process P (s) is modelled by an inverse-
response-second-order-plus-dead-time (IRSOPDT) trans-
fer function of the form:

P (s) = K(−bTs + 1)e−Ls

(Ts + 1)(αTs + 1) (2)

where K is the process gain, T is the time constant, L is
the dead-time, α is the ratio between time constants and
b gives the relative position of the right half plane zero
respect to the dominant time constant.

In this context, characterizing the process parameters
through the normalized dead time τ = L

T is a common
practice Visioli (2006). Performing the transformation ŝ =
Ts, the second-order model with inverse response (2) is
expressed as:

P (ŝ) = K(−bŝ + 1)e−τŝ

(ŝ + 1)(αŝ + 1) (3)

reducing the parameters used to describe the process
dynamics to α, b and τ .
The second-order inverse response plus normalized dead
time model (3) will be used to perform the optimizations
for the IRM-RoT rule.

2.3 1DoF PID and Fractional Order PID Controllers

The control of the process is achieved by implementing
one-degree-of-freedom PID and FOPID controllers; in this
control scheme, the control signal has the following form
Åström and Hägglund (2006):

u(s) = Kp

[(
1 + 1

Tis

)
e(s) −

(
Tds

Td

η s + 1

)
y(s)

]
(4)

where, Kp refers to the proportional controller gain, Ti is
the integral time constant, Td the derivative time constant
and Td/η the constant of the derivative filter.

Figure 2. 1DoF Controller close-loop control system

The control scheme implementing 1DoF controllers is
described in Fig. 2, where Cr(s) is the transfer function
of the set-point controller and Cy(s) of the feedback
controller.

Cr(s) = Kp

(
1 + 1

Tis

)
(5)

Cy(s) = Kp

(
1 + 1

Tis
+ Tds

Td

η s + 1

)
(6)

Considering this, the process output in 1DoF control
scheme, y(s), can be expressed in terms of Cr(s) and Cy(s)
using the following expression:

y(s) = Cr(s)P (s)
1 + Cy(s)P (s)︸ ︷︷ ︸

Myr(s)

r(s) + P (s)
1 + Cy(s)P (s)︸ ︷︷ ︸

Myd(s)

d(s) (7)

Everything above is applicable when implementing a Frac-
tional Order PID, except for the feedback controller trans-
fer function, Cy(s), which has the fractional order of the
derivative action µ.

Cy(s) = Kp

(
1 + 1

Tis
+ Tdsµ

Td

η s + 1

)
(8)

For all scenarios, the constant for the derivative filter can
be defined by (9), where µ equals 1 in the PID controller.

η = 10T
µ−1

µ

d (9)
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When employing a fractional order controller, the integer
order approximation of Oustaloup et al. (2000) is used
to implement the controller. This involves applying the
following recursive approximation based on a product of
poles and zeros:

sµ
[ωl,ωh]

∼= Co

N∏
k=1

1 + s
ωz,k

1 + s
ωp,k

, µ > 0 (10)

The valid frequency range for the approximation is set
to {ωl, ωh} = {0.001, 1000}, the Co term is set in way
that the approximation has unity gain at the crossover
frequency, and the parameter N , which refers to the
number of poles and zeros for the real-rational transfer
function approximating of the fractional term, sµ, is set
to N = 8. By selecting these parameters, it is possible
to obtain a good approximation of the fractional term
without compromising the processing speed.

3. IRM-ROT RULES DEVELOPMENT

The Inverse Response Model Robust Tuning rule was
developed by optimizing the appropriate parameters of
the PID or FOPID controller. In the optimization process,
θc = {Kp, Ti, Td} and θfc = {Kp, Ti, Td, µ} are the PID
and FOPID parameters to be optimized, respectively.
To measure the system performance, the integrated abso-
lute value of the error (IAE), is defined according to the
following equation:

IAE =
∫ ∞

0
|e(t)| dt =

∫ ∞

0
|r(t) − y(t)| dt (11)

In this work, the IAE is considered both Jsp for the
set-point tracking task and Jld for the load disturbance
rejection case, since at the time of defining the cost
function this will be the sum of both:

Jerd =
∫ ∞

0
|r(t) − y(t)| dt︸ ︷︷ ︸
Jsp→d(t)=0

+
∫ ∞

0
| − y(t)| dt︸ ︷︷ ︸

Jld→r(t)=0

(12)

by considering the total sum of both errors without any
weighting, it can be ensured that a good performance of
the tuning rule is achieved for both control modes, servo-
control, and regulatory-control.
The closed-loop control system robustness is considered in
terms of constraints. This is because the design procedure
for the controller typically utilizes a reduced-order linear
model at a specific operating point. This model effectively
characterizes process dynamics. However, since real pro-
cesses involve nonlinearities, it is crucial to consider a
margin of stability or robustness (relative stability) for the
control system.
To assess the relative stability of the system, the Sensitiv-
ity Function’s peak value will serve as an indicator. After
acquiring both optimal sets of θc and θfc, the control sys-
tems maximum sensitivity (Ms), will be used to measure
the closed-loop control system’s robustness according to
the following formula:

Ms=̇ max
ω

|S(jω)| = max
ω

1
|1 + C(jω)P (jω)| (13)

It is common to find Ms values ranging from 1.40 to
2.00 Åström and Hägglund (2006). Where Ms = 2.00

represents the minimum robustness required to obtain
gain and phase margins that guarantee stability, while for
Ms = 1.40 the system is considered quite robust and stable
since the margins obtained are higher. Optimizations were
performed considering the trade-off between system per-
formance and robustness for both controllers, considering
the extreme levels of Ms = {1.40, 2.00} and evaluate both
the robustness achieved and the performance in all cases.
To evaluate the improvement obtained by implementing
fractional order controllers in the control system with
respect to a PID controller, an improvement index is
defined in (14), which can be used for each control mode
separately (for Jsp and Jld) or as a combined performance
index considering Jerd.

Υ =
(

1 − JF OP ID

JP ID

)
· 100% (14)

3.1 Tuning methodology

The IRM-RoT rule was developed using specific values for
normalized dead time τ , the relative position of the right
half plane zero b, and ratio of time constants α. In this
context, the Matlab® fminimax solver has been used for
the optimization procedure to minimize Jerd, considering
the following values:

α = {0.10, 0.25, 0.50, 0.75, 1.00} (15)
as fixed values to find the optimal parameters. For inter-
mediate α values, a linear interpolation is suggested.
Regarding b, the typical values considered were:

b = {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5} (16)
However, in some cases, intermediate values had to be
considered for FOPID controllers in order to improve
the performance and robustness results obtained in linear
interpolation.
Finally, for the normalized dead time, the value is taken
for the ranges 0.1 ≤ τ ≤ 2 as is commonly specified.

3.2 PID and FOPID tuning equations

The optimal parameters θopt
c and θopt

fc obtained from the
optimization procedure were used to adjust the PID and
FOPID controller parameter equations; in the case of
integer controller parameters, equations with a maximum
of four constants were used, and in the case of fractional
order controller, an additional constant was added to the
proposed equations.
For both types of controllers, it is assumed that

κp = KpK, τi = Ti

T
, τd = Td

T µ
(17)

PID tuning: As stated previously, a maximum of four
constants are used for the PID controller parameters.

κp = a1τ2 + a2τ + a3

τ + a4
(18)

τi = k1τ3 + k2τ2 + k3τ + k4 (19)
τd = c1τ3 + c2τ2 + c3τ + c4 (20)

In all cases, cftool has been used to find equations for the
controller parameters that provide a low level of SSE (Sum
Squared Error) with respect to the actual optimal values.
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To implement the IRM-RoT rule for PID controllers, the
constants ai, ki and ci for i = {1, 2, 3, 4} are used, whose
optimal values are shown in tables (1) and (2) given below:

Table 1. PID parameter constants for α = 0.75
and a target Ms = 1.40.

b 0, 25 0, 50 0, 75 1.00 1, 25 1, 50 1, 75 2.00
a1 -0.0159 -0.0162 -0.0399 -0.0406 0.0077 0.2531 0.0247 0.1314
a2 0.2630 0.2923 0.3436 0.2948 0.1014 -0.7611 0.0717 -0.3134
a3 0.4257 0.3437 0.2109 0.2062 0.5457 2.9362 0.4872 2.1339
a4 0.2052 0.3459 0.3234 0.4331 1.4796 9.8750 1.9536 9.9994
k1 0.0786 -0.0160 -0.1282 -0.0504 -0.0589 0.0074 -0.1039 0.0165
k2 -0.2081 0.1513 0.4623 0.1668 0.1908 0.0319 0.3453 -0.0121
k3 0.2873 -0.0355 -0.1337 0.1411 0.0936 0.1818 -0.0211 0.2513
k4 1.4663 1.4626 1.4023 1.3728 1.3729 1.3434 1.3516 1.3166
c1 -0.0191 -0.0332 0.0244 0.0698 0.1083 0.0935 0.1621 0.1024
c2 0.0663 0.0845 -0.1658 -0.2771 -0.3792 -0.3455 -0.5338 -0.3456
c3 0.2571 0.2892 0.4853 0.4811 0.5053 0.4468 0.5315 0.3504
c4 0.3204 0.3570 0.3743 0.4063 0.4313 0.4642 0.4787 0.5136

Table 2. PID parameter constants for α = 1.00
and a target Ms = 1.40.

b 0, 25 0, 50 0, 75 1.00 1, 25 1, 50 1, 75 2.00
a1 -0.0134 -0.0217 -0.0157 -0.0434 -0.0401 0.1315 0.1502 0.1368
a2 0.2511 0.3031 0.3038 0.3463 0.2881 -0.6682 -0.5404 -0.3983
a3 0.5015 0.4001 0.3219 0.1843 0.2131 3.3674 2.8648 2.4641
a4 0.2094 0.3503 0.4304 0.3325 0.4966 9.7851 9.9990 9.9975
k1 0.1279 -0.0326 -0.0274 -0.1331 -0.0648 0.0075 -0.0113 -0.0160
k2 -0.3993 0.1843 0.2000 0.4663 0.2017 -0.0514 0.0538 0.0899
k3 0.4768 -0.0903 -0.0298 -0.1339 0.1057 0.3008 0.1884 0.1515
k4 1.6472 1.7154 1.6006 1.6061 1.5663 1.5374 1.5142 1.5137
c1 -0.0038 -0.0122 -0.0549 0.0507 0.0902 0.0864 0.1251 0.1464
c2 0.0223 0.0343 0.1148 -0.2493 -0.3443 -0.3075 -0.4424 -0.5115
c3 0.2837 0.3170 0.2878 0.5360 0.5385 0.4560 0.5317 0.5517
c4 0.3650 0.3931 0.4467 0.4478 0.4803 0.5164 0.5452 0.5626

FOPID tuning: In this case, the derivative fractional
order needs adjustment.

τi = k1τ4 + k2τ3 + k3τ2 + k4τ + k5 (21)
τd = c1τ4 + c2τ3 + c3τ2 + c4τ + c5 (22)
µ = d1τ4 + d2τ3 + d3τ2 + d4τ + d5 (23)
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Figure 3. κp parameter of the FOPID for α = 0.75 and
b = 1.25 with target Ms = 1.40.
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Figure 4. τi parameter of the FOPID for α = 0.75 and
b = 1.25 with target Ms = 1.40.
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Figure 5. τd parameter of the FOPID for α = 0.75 and
b = 1.25 with target Ms = 1.40.
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Figure 6. µ parameter of the FOPID for α = 0.75 and
b = 1.25 with target Ms = 1.40.

Table 3. FOPID parameter constants α = 0.75
with target Ms = 1.40.

b 0, 25 0, 50 0, 75 1.00 1, 25 1, 50 1, 75 2.00
a1 -0.0573 0.0033 0.0325 0.1147 0.3024 0.2241 0.1205 -0.0706
a2 0.3404 0.1784 0.0360 -0.2914 -1.1746 -0.9007 -0.5570 0.2221
a3 0.7900 0.6861 0.7650 1.4255 3.6364 3.0371 2.4511 0.0593
a4 0.3270 0.6087 1.0860 2.9263 9.6852 9.9995 9.9852 0.3160
k1 0.0533 0.1184 -0.0264 0.0100 -0.0225 -0.1552 -0.2804 -0.1372
k2 -0.1758 -0.5279 0.1159 -0.0514 0.2090 0.8733 1.3827 0.6198
k3 0.0741 0.7775 -0.1009 0.1786 -0.3823 -1.4731 -2.1784 -1.1286
k4 0.4645 -0.1739 0.1006 -0.0380 0.2604 0.8476 1.2282 0.7380
k5 1.6837 1.6915 1.5916 1.4918 1.4046 1.2801 1.1555 1.1903
c1 -0.0022 -0.0558 -0.0080 -0.0291 -0.0515 0.0608 0.1805 0.4861
c2 -0.0125 0.2478 0.0260 0.1545 0.1433 -0.4519 -0.9061 -1.5808
c3 0.0438 -0.3850 -0.0824 -0.3841 -0.2320 0.7529 1.2708 1.7999
c4 0.3304 0.5484 0.4261 0.6302 0.5472 0.0361 -0.1460 -0.2894
c5 0.2422 0.2734 0.3255 0.3511 0.3983 0.4965 0.5651 0.6001
d1 -0.0627 0.0023 -0.0244 -0.1281 -0.0306 -0.1763 -0.2382 -0.1266
d2 0.3455 -0.0090 0.1053 0.5552 0.2704 0.8937 1.1985 0.7532
d3 -0.7061 -0.0043 -0.1146 -0.7226 -0.5251 -1.4319 -1.9449 -1.4183
d4 0.5827 -0.0176 -0.0954 0.1764 0.1119 0.5761 0.8987 0.6979
d5 1.1217 1.1668 1.1545 1.0659 1.0484 0.9476 0.8509 0.8365

Table 4. FOPID parameter constants α = 1.00
with target Ms = 1.40.

b 0, 25 0, 50 0, 75 1.00 1, 25 1, 50 1, 75 2.00
a1 -0.0782 0.0403 0.0824 0.1382 0.3746 0.1845 0.0298 -0.0491
a2 0.4330 0.0539 -0.1391 -0.4090 -1.5169 -0.9012 -0.3486 0.2438
a3 0.8360 1.0435 1.2470 1.7757 4.4568 3.5317 2.5213 0.0032
a4 0.2912 0.8237 1.5533 3.0737 9.9995 9.9999 8.8950 0.0189
k1 0.1177 -0.0339 -0.1224 -0.1300 -0.0897 -0.2128 -0.0830 0.0417
k2 -0.5244 0.1537 0.5262 0.5734 0.5489 0.9933 0.4861 0.0022
k3 0.6747 -0.2377 -0.7016 -0.7614 -0.9578 -1.4856 -0.9104 -0.3854
k4 0.1600 0.4181 0.4883 0.4241 0.5723 0.8113 0.6683 0.4917
k5 1.9695 1.8389 1.7678 1.7142 1.6243 1.5236 1.4434 1.4079
c1 -0.0064 -0.0094 0.0072 0.0166 -0.0354 0.0816 -0.0155 -0.1813
c2 0.0121 0.0473 -0.0180 -0.0564 0.0577 -0.3729 0.0173 0.6916
c3 0.0038 -0.1062 -0.0432 -0.0246 -0.0392 0.4385 -0.0614 -0.8954
c4 0.3746 0.4366 0.4116 0.4427 0.4175 0.2476 0.4479 0.8246
c5 0.2746 0.3341 0.3816 0.4130 0.4565 0.5147 0.5475 0.5395
d1 -0.0399 -0.0524 -0.0706 -0.1004 -0.0864 -0.1482 -0.1224 -0.0975
d2 0.2250 0.2412 0.3117 0.4464 0.4559 0.7455 0.6349 0.5715
d3 -0.5114 -0.3921 -0.4471 -0.6243 -0.7509 -1.2123 -1.0767 -1.1057
d4 0.5150 0.2321 0.1600 0.1744 0.2593 0.5240 0.4718 0.5751
d5 1.1229 1.1363 1.1195 1.1011 1.0554 0.9792 0.9511 0.8864

Figures (3), (4), (5), and (6), shown arbitrary examples of
how the proposed equations fit to the optimal parameters.

IFAC PID 2024
Almería, Spain | June 12-14, 2024

349



4. EXAMPLES

4.1 Example 1.

In Luyben (2000) analysis of the IRSOPDT process, the
process was characterized with a high value of dead time
and a ratio between time constants α = 1.00. However,
for the purpose of this analysis, the range of α specified
in (15) is considered, and the performance and robustness
obtained for the PID and FOPID controllers are analyzed
with Ms = 1.40 as the desired robustness.
The inverse response model P1(s) is defined by the follow-
ing expression.

P1(s) = (−1.6s + 1)e−1.6s

(s + 1)(αs + 1) (24)

In table (5), the integral values of the absolute error for

Table 5. Performance indices to compare PID
and FOPID IRMRoT for Example 1.

α
PID Ms = 1.40 FOPID Ms = 1.40

Jsp Jld Ms Jsp Jld Ms

0.10 9.2693 5.2648 1.3988 8.8119 4.8020 1.3868
0.25 9.0961 5.1527 1.4035 8.8341 4.7755 1.4088
0.50 9.0393 5.0593 1.3975 8.7166 4.8101 1.3962
0.75 8.8563 4.9097 1.3997 8.4116 4.5590 1.4120
1.00 8.6617 4.7631 1.4023 8.3779 4.5084 1.4037

the set-point tracking and load-disturbance rejection tasks
are presented. In each case, the analysis is performed for
a step setpoint response of magnitude 1 at t = 0 and a
negative step disturbance change of 50% of the set-point
at t = 40s. As demonstrated, the IAE values decrease with
an increasing time constant ratio in both modes of control.
However, it is clear that there is an improvement when
implementing the fractional order controller for both,
servo-control and regulatory-control in all cases. With
regard to robustness, both the PID and FOPID IRM-RoT
controllers achieve an optimal desired robustness value at
the target value as shown.

Table 6. Improvement index values for the
Example 1.

α 0.10 0.25 0.50 0.75 1.00
Υsp (%) 4.935 2.880 3.570 5.021 3.279
Υld (%) 8.790 7.320 4.926 7.143 5.347

Υerd (%) 6.331 4.486 4.056 5.778 4.011
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Figure 7. Set-Point and Load-Disturbance response for
P1(s) α = 0.75 process example.

Fig. (7) presented the response of the close-loop control
system under the conditions described in the α = 0.75
case. The controller parameters for this case are Kp =
0.1986, Ti = 1.7582s, Td = 0.6571s for the PID and
Kp = 0.1767, Ti = 1.4030s, Td = 1.040s, µ = 0.68848
for FOPID.
As anticipated, the response of the system improves with
the fractional order controller, as shown in the graphical
analysis and confirmed in 6, where the improvement in-
dices are shown, even obtaining a Υerd = 6.331% improve-
ment with respect to the PID controller, considering the
errors of both operating modes simultaneously.

4.2 Example 2.

Another example is proposed to evaluate the performance
of IRM-RoT controllers with respect to the tuning rule
proposed in Kaya and Cengiz (2017). In this instance, the
controlled process model of (25) is proposed, where inter-
polated parameters of the IRM-RoT rule are employed.

P2(s) = (−0.8s + 1)e−0.6s

(2s + 1)2 (25)

For this model, the IRM-RoT PID controller parameters
are Kp = 0.5407, Ti = 3.2160s, Td = 1.1020s and
Kp = 0.6222, Ti = 3.6979s, Td = 1.1139s, µ = 1.1298
for the FOPID, Kp = 1.2160, Ti = 3.9983s, Td = 1.2262s
in the case of the Kaya-Cengiz PID.

Table 7. Performance and robustness values
evaluation for the Example 2.

Tuning Rule Metric Index
Jsp Jld Jrd Ms

IRM-RoT PID 6.8864 6.7380 13.6244 1.4037
IRM-RoT FOPID 6.3828 6.4535 12.8363 1.4033
Kaya-Cengiz PID 10.0112 6.8361 16.8473 4.2262

Table (7) presents the performance and robustness metrics
for the diferent tuning rules and Fig. (8) shows the closed-
loop system response implementing the three controllers.
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Figure 8. Set-Point and Load-Disturbance step response
for P2(s) process example.

The implementation of IRM-RoT controllers in both con-
trol modes shows a significant enhancement of system
performance compared to Kaya-Cengiz tuning, as demon-
strated in Table (8).
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Table 8. Improvement index with Kaya-Cengiz
PID as base controller.

Tuning Rule Υsp (%) Υld (%) Υerd (%)
IRM-RoT PID 31.213 1.435 19.130

IRM-RoT FOPID 36.243 5.597 23.808

Furthermore, when implementing the Kaya-Cengiz rule for
IRSOPDT models, it is restricted to using only the time
constants ratio α = 1. This results in the rule being highly
impractical for inverse response processes, unlike what is
proposed by IRM-RoT rule.

5. CONCLUSIONS AND FUTURE WORK

The present work proposes the IRM-RoT rule for PID
and FOPID controllers, considering a trade-off between
the performance and robustness of the control system by
implementing an IRSOPDT model to determine the opti-
mal parameters. The study validates the enhancement ob-
tained by implementing a IRM-RoT controller for inverse-
response process control by means of concrete examples.
Given the complexity of controlling processes with inverse
response, controller parameters are obtained by fitting
equations with either 4 or 5 constants. This results in a
substantial amount of tables needed to implement the rule.
Therefore, future work proposes to develop an auto-tuning
tool for the IRM-RoT rule.
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