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Abstract: This paper presents a novel constrained PID algorithm that performs almost the
same as a constrained GPC tuned with a unit control horizon and an output soft constraint.
The proposed approach computes the PID tuning parameters using the unconstrained GPC
solution for first or second-order process models and uses a geometric approach, which avoids
the use of an optimiser, to compute the final control action combining the PID tuning with
a constraint-mapping law. Simulation results are used to illustrate the simplicity and good
performance that can be obtained with the proposed approach, which is an interesting solution
for PID applications in which output constraints are considered and low computation time of
the control law is required.
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1. INTRODUCTION

Most processes in industry have physical constraints (Ca-
macho and Bordons, 2013). The most common types of
constraints are saturation in the input variable and in
the process output. Typical examples of input constraints
are mechanical limits on servomotor position, on valve
position, and on voltage from a power amplifier. Such
actuator saturations will appear in any linear control loop
on a real plant (Wang, 2020). Examples of output con-
straints include limits in tank level control, temperature
in boilers, flow and dynamic overpressure in hydraulic sys-
tems, among others (Camacho and Bordons, 2013). These
limits reflect issues such as safety requirements or are there
to prevent excessive maintenance to system components
(Hewing et al., 2020).

Designing a controller in such a way that all the process
constraints are respected is very important for practical
applications. Model Predictive Control (MPC) is a ver-
satile method that integrates constraint handling into its
formulation during the design phase. This approach uses a
process model to predict future outputs and uses this in-
formation to calculate a control sequence that minimises a
cost function, allowing for the consideration of constraints
in the process input and output (Camacho and Bordons,
2013). In the MPC framework, input constraints can, in
general, be considered as hard constraints, but output
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constraints are treated as soft constraints, considering a
slack variable, in order to ensure feasibility. Then, an extra
term is added in the MPC cost function, considering a
quadratic term in the slack variable, so that any violation
of the constraints is penalised. This strategy allows the
controller to use a non null value of the slack variable in
the transients, when this condition is necessary to avoid
infeasibility, and, in the long run, the penalising term in
the objective function will take the auxiliary variable to
zero (Camacho and Bordons, 2013). Although MPC has
several advantages and can be considered the most used
advanced control strategy in practice, it should be noted
that MPC imposes heavy computational burden for on-line
computations when constraints are considered, thereby
limiting its applicability to systems with slow dynamics
or requiring high-cost computational infrastructure for
implementation (Silva et al., 2020).

On the other hand, conventional proportional-integral-
derivative (PID) controllers are widely used in industry,
have fast computation of its control action, and can deal
with many types of processes in practice, thus achieving
a good compromise between performance and computa-
tional cost (Silva et al., 2020). Moreover, several meth-
ods for PID controllers to deal with input constraints
are presented in the literature, mainly focused on anti-
windup strategies or reference governor ideas (Wang, 2020;
Lawrence et al., 2020). However, considering the PID
framework, there are only few studies on how to deal with
output constraints. Aboelhassan et al. (2020) present an
adaptation of PID controllers for a MIMO system with
input and output constraints based on an MPC controller.
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The proposed algorithm is executed in a hierarchical struc-
ture of two levels: one to implement PID controllers and
the other to identify the PID controller gains using the
recursive least squares identification method in order to
achieve a similar performance as an MPC. In Konstan-
topoulos and Baldivieso-Monasterios (2020), a nonlinear
PID control approach is introduced to achieve reference
tracking and ensure that a desired output remains below
a specified threshold for a broad spectrum of nonlinear
systems. An analytical method is presented for selecting
controller gains to ensure closed-loop system stability.
Additionally, the ultimate boundedness theory is used to
demonstrate that the proposed PID maintains the out-
put within a specified bound. Another approach, simpler
than the previous ones, and that can be used with PID
controllers, is the one based on override control (Imani
and Montazeri, 2020; Kumar et al., 2022), which has a
structure closely related to anti-windup strategies. The
idea behind override control is to design an extra loop
whose control action is added to the main controller in
such a way that, when the controlled variable violates the
limits, the control is changed to bring this output below
its limit again. Although these strategies give good results
and are simple, they do not offer the optimal solution.

A very interesting approach is to use the MPC ideas to
propose a constrained PID algorithm capable of dealing
with stable and unstable processes modelled by simple
transfer functions. As shown in Camacho and Bordons
(2013), an unconstrained Generalised Predictive Control
(GPC) can be posed as a PID controller when the process
dynamics is modelled by a second order model. In this case,
the PID tuning is done in a predictive manner, based on
the ideas underlying MPC. To consider process constraints
in PID, a simple procedure, based on a constraint-mapping
approach, was recently proposed in (Silva et al., 2020). In
this approach, the input, incremental-input, and output
constraints are mapped to a simple input constraint, and
an anti-windup strategy is used in the PID controller to
obtain a constrained PID that emulates the solution of
the constrained GPC tuned with a unit control horizon
(Nu = 1). The disadvantage of this approach it that the
output constraint is considered as a hard constraint and
all the advantages of the soft constraint approach used
in the MPC context are missing. Therefore, to design a
constrained PID algorithm that performs almost equal to
a constrained GPC tuned with Nu = 1 and an output soft
constraint, this paper proposes the following approach:
(i) to compute the PID tuning parameters using the
unconstrained GPC solution considering a second order
model of the process; (ii) to formulate the optimisation
problem of the constrained GPC based on the two decision
variables of the problem: u(k) (the control action to be
applied to the process) and ϵ(k) (the slack variable of the
soft constraint, considered constant over the prediction
horizon); (iii) to compute the optimal solution using a
geometric approach, that avoids the need for an optimiser;
(iv) to compute the final control action combining the
PID tuning with a control governor law that achieves the
optimal solution with low computation time.

The rest of the paper is organised as follows. In Section
2 the simple constrained GPC solution for second-order
processes is presented. Section 3 describes the geometric

procedure to obtain the solution of the GPC optimisation
problem. In Section 4 the proposed control algorithm
for the constrained PID is presented, and in Section 5
simulation results illustrate the advantages of the new
constrained PID algorithm. The paper ends with some
conclusions, in Section 6.

2. CONSTRAINED GPC FOR SECOND ORDER
MODELS

In this paper, a discrete-time second-order CARIMA
model, given by:

(1+a1z
−1+a2z

−2)y(k) = (b0+b1z
−1)u(k−1)+ η(k)

∆
(1)

is used by GPC to predict the plant future outputs, which
are used to calculate the control action by minimising a
cost function (Camacho and Bordons, 2013). In (1), u(k)
and y(k) are the input and output of the process, k is the
discrete time in samples, z−1 is the back-shift operator,
η(k) is a zero-mean white noise, and ∆ = (1 − z−1). The
function to be minimised is given by:

JMPC =

N∑
j=1

[ŷ(k + j|k)− r(k)]2 + λ[∆u(k)]2, (2)

where N is the prediction horizon, the control horizon is 1,
λ is the control increment weight, ŷ(k+j|k) is the predicted
output for k + j at time instant k, r(k) is the reference
signal considered constant in the prediction horizon, and
∆u(k) is the control increment.

For this particular case, the cost function can be written
as:

JMPC =
H

2
[∆u(k)]2 + b∆u(k) + c0, (3)

whereH = 2(gTg+λ), b = 2(f(k)−1r(k))Tg, c0 = (f(k)−
1r(k))T (f(k) − 1r(k)), g is the vector with the N step
response coefficients of the process, 1 ∈ RN is a vector of
ones, and f(k) is the free response vector (Camacho and
Bordons, 2013).

An analytical solution that minimises JMPC, for the uncon-
strained case, can be obtained differentiating JMPC with
respect to ∆u(k) and equating it to zero. Thus, the ob-
tained ∆u(k) is ∆u⋆

UC(k) = − b
H , calculated as (Normey-

Rico and Camacho, 2007):

∆u⋆
UC(k) =

3∑
j=1

lyjy(k−j)+lu1∆u(k−1)+
N∑
i=1

vir(k), (4)

where the coefficients lyj , lu1 , and vi can be calculated from
the model parameters, the prediction horizon, N , and the
control increment weight, λ. That is, the unconstrained-
GPC control law is equivalent to a 2-DOF PID structure
with a controller CPID(z) and a reference filter FPID(z)
given by:

CPID(z) = −
ly1

+ ly2
z−1 + ly3

z−2

(1− z−1)(1− lu1z
−1)

, (5)

FPID(z) =

∑N
i=1 vi

ly1 + ly2z
−1 + ly3z

−2
, (6)

where FPID(z) has static gain equal to 1. In case a first
order transfer function is used to model the process, the
equivalent controller is a PI plus a reference filter, just
using ly3 = 0 and lu1 = 0 in CPID(z) and FPID(z).
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If constraints in the amplitude and increment of the
control signal and in the amplitude of the process output
are considered, the objective function in (2) must be
minimised taking into account these constraints, which can
be mathematically represented as:

1(ymin − ϵ(k)) ≤ g∆u(k) + f ≤ 1(ymax + ϵ(k)),

umin ≤ ∆u(k) + u(k − 1) ≤ umax,

∆umin ≤ ∆u(k) ≤ ∆umax,

(7)

where ϵ(k) is a slack variable, introduced to prevent
infeasible solutions. Simultaneously, the objective function
in (2) must incorporate ϵ(k) as a decision variable and λϵ

as a penalising weight, resulting in:

JMPC =
H

2
[∆u(k)]2 + b∆u(k) + c0 + λϵ[ϵ(k)]

2. (8)

Since both ∆u(k) and ϵ(k) are decision variables, the cost
function can be expressed in the standard form with a new
variable w as:

JMPCϵ
=

1

2
wTHww + bT

ww + c0, (9)

where

w =

[
∆u(k)
ϵ(k)

]
,Hw =

[
H 0
0 2λϵ

]
, and bT

w = [b 0]. (10)

Thus, the constraints described in (7) can be represented
in a simplified form as:

Acw ≤ bc, (11)

with

Ac =


g −1
−g −1
1 0
−1 0
1 0
−1 0

 , bc =


1ymax − f
−1ymin + f

(umax − u(k − 1))
−(umin − u(k − 1))

∆umax

−∆umin

 . (12)

Finally, to compute the optimal control action, the min-
imisation of a quadratic function with affine constraints
given by:

min JMPCϵ

s.t. Acw ≤ bc
(13)

can be done using any QP solver ∗ . However, this approach
can require a long computation time, and is unappropri-
ated for many practical cases. Alternatively, the optimal
solution can be obtained through a geometric approach,
as detailed in the next section.

3. GEOMETRIC INTERPRETATION OF THE QP
PROBLEM

Consider the cost JMPCϵ in (9). The values of w that
make JMPCϵ = c, where c is a positive real constant,
define ellipses in the plane [∆u(k), ϵ(k)], with centre at
w⋆

UC = −H−1
w bw (which represents the optimal solution

for the unconstrained case, and is obtained with ϵ = 0).
Note that, as Hw is diagonal, the ellipses are aligned with
the ∆u(k) or ϵ axis, depending on the values of H and λϵ.

For the constrained case, the minimisation of (13) may
be interpreted as finding the point at which the smallest

∗ Note that other output constraints (such as monotonic response
and overshoot constraints) can be also represented with the presented
form.

ellipse touches the polygon of the feasible region (Seron
et al., 2000). For a better illustration of the previous
statement, Fig. 1 shows the geometric representation of
the optimal solution of the QP problem considering con-
straints in the process output (using a slack variable)
and the increment of control action, where w⋆

UC is the
optimal solution for the unconstrained case and w⋆ is the
optimal solution for the constrained case. In this figure, a
hypothetical case is drawn, showing only the constraints
that define the feasible region.

ϵ(k)

∆u(k)

RUC Smallest ellipse that
touches the polygon

Feasible region

Constraints

w∗

w∗
UC

Fig. 1. Geometric interpretation of the optimisation prob-
lem for the constrained case.

Note that it is possible to simplify the analysis applying a
simple linear transformation T so that the ellipses become
circumferences by adjusting only their scaling in the ϵ axis.
Thus, using:

T : R2 → R2

T (w) = w̃ = HTw,
(14)

where

HT =

1 0

0

√
H

2λϵ

 , (15)

to map the coordinate system fromw to w̃ = [∆u(k) ϵ̃(k)],
the values of w̃ (in the ∆u(k)× ϵ̃ plane) that give constant
JMPCϵ

are located in circumferences with centre at w̃⋆
UC =

HTw
⋆
UC = −HTH

−1
w bw (which represents the optimal

solution for the unconstrained case in the transformed
coordinates).

In the modified coordinates, the constrained minimisation
problem involves locating the smallest circumference that
intersects one of the edges of the polygon, which is equiv-
alent to identifying the edge that provides the minimum
Euclidean distance to w̃⋆

UC. If the line that defines the edge
with the closest point to w̃⋆

UC, in the transformed coordi-
nates, is given by the ith constraint, it can be expressed
as:

ϵ̃i(k) = αi∆u(k) + βi, (16)
where

αi = −
ãi1
ãi2

, βi =
bci
ãi2

, (17)

ãij is the j
th element in the ith row of matrix Ãc = AcHT ,

and bci is the ith element of vector bc. The projection of
w̃⋆

UC to the line in (16), denoted as Pϵ̃i(k)(w̃
⋆
UC), can be

obtained as (Boyd and Vandenberghe, 2004):

Pϵ̃i(k)(w̃
⋆
UC) = w̃⋆ = ϵ0 +

(w̃⋆
UC − ϵ0) · v
||v||2

v, (18)
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where v represents the direction vector of the line ϵ̃i(k),
ϵ0 represents any point in the line ϵ̃i(k) and · represents
dot product. MPC techniques exclusively apply the first
increment of the control action, ∆u⋆(k), to the plant.
Given that w̃⋆ = [∆u⋆(k) ϵ̃⋆(k)] and choosing v =
[1 αi] and ϵ0 = [1 αi+βi] for convenience, it is possible
to compute only the first element in (18), which leads to:

∆u⋆(k) =
∆u⋆

UC(k)− αiβi

γi
= −b+Hαiβi

Hγi
, (19)

where
γi = 1 + α2

i . (20)

As can be observed in (19), the optimal constrained solu-
tion, ∆u⋆(k), is a function of the optimal unconstrained
solution, ∆u⋆

UC, and other terms that depend on the values
of αi and βi. Note that only βi and ∆u⋆

UC are computed
online, since the values of αi are constant.

The presented solution is valid for any MPC formulation
that results in a QP problem with any kind or combination
of input and output amplitude constraints, considering
any size of the prediction horizon N (with a constant
slack variable, ϵ(k), over the horizon) and Nu = 1.
Furthermore, the problem can be easily generalised to
accommodate various forms of output constraints, such as
ensuring a monotonic response, eliminating overshoot and
undershoot, or imposing other conditions on the future
values of the process output. However, determining the
line onto which the unconstrained solution w̃UC must be
projected is not an easy task because the number of lines
defined by the output constraints increases linearly with
the size of the prediction horizon and not all of them define
the edges of the feasible region. Nevertheless, a simple
method to obtain a solution which is very close to the
one provided by the GPC is presented in the next section.

4. SUBOPTIMAL SOLUTION FOR THE
CONSTRAINED QP PROBLEM

When amplitude constraints are considered, the feasible
region changes from iteration to iteration, so it is not
possible to determine the edges of the feasible region
offline. Instead, this process must be done at each sample,
which typically makes use of another optimisation problem
(Boyd and Vandenberghe, 2004). This section presents a
suboptimal solution for the QP problem that does not
require any numerical solver or procedure to determine
the edges of the feasible region. The idea comes from the
discussion in Silva et al. (2020), where it is shown that
for problems considering a control horizon of one sam-
ple, Nu = 1, when increment and/or magnitude control
constraints are violated, the optimal constrained solution
can be obtained by saturating the optimal unconstrained
solution considering the upper and lower limits as the most
rigid constraint for increment and magnitude of control
action, which means:

∆u⋆(k) = sat(∆u⋆
UC(k), Ugmin

, Ugmax
), (21)

where
Ugmin

= max(∆umin, umin − u(k − 1)),

Ugmax
= min(∆umax, umax − u(k − 1)).

(22)

The proposed method consists of verifying and correcting
the optimal unconstrained solution, w̃⋆

UC(k), only if any

ϵ̃(k)

∆u(k)

R̃UC

w̃⋆
SO

w⋆
UC

∆u⋆
SO(k)

Most rigid
output constraint

Least Euclidean distance

Fig. 2. Geometric interpretation of the minimisation prob-
lem with constraints in the transformed coordinates.

output constraints are violated. If a violation in the process
output is detected, the optimal unconstrained solution can
be projected onto the line defined by:

ϵ̃i(k) = αimax∆u(k) + βimax ,

where imax represents the most rigid output constraint for
∆u⋆

UC(k), i.e., the line which has the maximum value of
ϵ̃(k) when evaluated at ∆u⋆

UC(k). This process is illus-
trated in Fig. 2 for the same case discussed in Fig. 1,
but now in the transformed coordinates. The most rigid
constraint can be identified by locating the uppermost line
in a vertical direction from the optimal unconstrained so-
lution, identified by the point w̃⋆

UC(k). After that, w̃⋆
UC(k)

is projected onto this line in the direction of the least
Euclidean distance to obtain the proposed suboptimal
solution, w̃⋆

SO(k). Since the linear transformation T in (14)
does not scale the ∆u(k) axis, the suboptimal value of
∆u(k) is obtained by just checking the first element of
w̃⋆

SO(k). In this particular case illustrated in Fig. 2, the
solution is exactly the same one obtained by a regular op-
timisation algorithm, i.e., the proposed solution is optimal.

Even though the proposed method can provide a compu-
tationally efficient solution for the problem, the solution
is not always optimal. Suboptimality occurs either when
the line that contains the most rigid output constraint does
not define an edge of the feasible region or when the slopes
and intercepts of the lines are such that there is another
point over the edge which has a lower Euclidean distance
to w̃⋆

UC(k) than the projected one.

Once the suboptimal control increment is obtained consid-
ering only the soft output constraints, it can be considered
as the optimum value in (21) to take the control rate
and magnitude constraints into account. By following this
procedure, the resulting controller can deal with ampli-
tude constraints on both the manipulated and the process
variables, as well as with rate constraints on the control
signal.

As shown in Section 2, the unconstrained GPC control
law, when considering first or second-order models, can be
represented as a PID structure. Thus, the main idea of the
proposed method is to compute the optimal unconstrained
solution, ∆u⋆

UC, by using the GPC-based PID controller
and then applying the method discussed previously. The
method described earlier can be presented in a pseudo-
code form, as shown in Algorithm 1.
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Algorithm 1: PID algorithm for processes with input
and output constraints

initialise variables;
compute αi for i = 1 to 2N using Equation (17);
compute γi for i = 1 to 2N using Equation (20);
repeat

compute ∆u⋆
UC(k) using GPC-based PID;

compute Ugmin
and Ugmax

using Equation (22);
ϵ̃max ← −1010;
for i = 1 to 2N do

ϵ̃i(k)← αi∆u⋆
UC(k) + βi;

if ϵ̃i(k) > ϵ̃max then
ϵ̃max ← ϵ̃i(k);
imax ← i;

end
end
if ϵ̃max > 0 then

∆u⋆
SO(k)←

∆u⋆
UC(k)−αimaxβimax

γimax
;

∆uaux ← ∆u⋆
SO(k);

else
∆uaux ← ∆u⋆

UC(k);
end
∆u(k)← sat(∆uaux, Ugmin , Ugmax);
u(k)← u(k − 1) + ∆u(k);
apply u(k) to the plant;
update the variables;
k ← k + 1;
wait Ts;

until controller is stopped ;

5. CASE STUDY

In order to evaluate the proposed approach, a case study
consisting of the control of a second-order non-minimum
phase process given by:

P (s) =
−0.8s+ 1

(1.5s+ 1)2
(23)

is considered. This type of process was chosen for the case
study because the GPC optimisation problem becomes
infeasible when a constraint aimed at preventing the
inverse response, caused by the zero outside the unit circle,
is included without the consideration of a slack variable,
making this case study more challenging than other types
of processes. The discrete-time process model obtained
using a zero-order hold and a sampling time of Ts = 0.1 s
is:

P (z) =
−0.031z + 0.035

z2 − 1.871z + 0.875
. (24)

The proposed approach was compared with the original
GPC and a PID with constraints mapping, presented in
(Silva et al., 2020). For all cases, the controller tuning
parameters were set as: N = 20, Nu = 1, and λ = 0.
The slack variable penalising weight used for the GPC
and the proposed PID was λϵ = 1000. The simulation of
the closed-loop system considers constraints on increment
and magnitude of control action and on the process output
as: ∆umin = −0.5, ∆umax = 0.5, umin = 0, umax = 0.9,
ymin = 0, and ymax = 0.7. The PID controller and the
reference filter obtained based on the GPC-based tuning
are:

CPID(z) =
379.25(1− 0.975z−1)(1− 0.867z−1)

(1 + 12.94z−1)(1− z−1)
,

FPID(z) =
0.003

(1− 0.975z−1)(1− 0.867z−1)
.

(25)

Fig. 3 shows the simulation of the closed-loop system,
comparing the performance of the three approaches. The
simulation considers a step reference of amplitude 0.5 at
t = 1 s, a load disturbance step of amplitude −0.1 at
t = 30 s and a final change in the reference considering
a step of amplitude 0.3 at t = 45 s. From the results,
it is clear that that GPC-based PID with mapping was
unable to mitigate the inverse response, which leads to
violating the constraint on the lower bound of the process
variable. Furthermore, the same method was unable to
avoid the violation of the upper bound constraint, when
a change in the reference occurred towards the end of
the simulation. Both the GPC and the proposed PID
presented very similar responses for reference tracking
and were able to provide responses which slightly violate
the lower bound constraint to avoid infeasibility while
successfully preventing a violation of the upper bound
constraints by the end of the simulation. In terms of
disturbance rejection, all the controllers exhibited exactly
the same performance.

0 10 20 30 40 50 60

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

y

Output

GPC

Reference

Constraints

PID with mapping

Proposed PID

0 10 20 30 40 50 60

Time (s)

-0.5

0

0.5

u

Control signal rate

0 10 20 30 40 50 60

Time (s)

0

0.2

0.4

0.6

0.8

u

Control signal

Fig. 3. Performance comparison between the GPC, PID
with mapping, and the proposed PID.

In order to quantify the similarity between both PID con-
trollers and the original GPC, Table 1 shows the integral of
JMPCϵ over the set-point tracking interval, from t = 1 s to
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t = 25 s. This timeframe chosen for integration highlights
the differences of the controllers when the lower bound out-
put constraint violation occurs. The other windows were
not considered because the disturbance rejection responses
are the same and the last reference change increase too
much the cost associated with the PID with mapping, since
the constraint is violated for a long period of time.

Table 1. Integral of cost function JMPCϵ for
reference tracking.

Method JMPCϵ

GPC 0.10
Proposed PID 0.15

PID with mapping 4.76

As shown in Table 1, the proposed PID exhibits a cost
which is similar to the one of the GPC. In contrast,
the PID with mapping demonstrates a higher cost value,
mainly attributed to the penalisation for the violation of
output constraints after the first reference change.

Even though the responses of the GPC and the proposed
PID are quite similar, the computational effort required
by the GPC is significantly higher. The simulations were
executed on a computer equipped with an Intel Core i5
processor operating at 2.0GHz and 16GB of RAM. Ex-
ecution time measurements were obtained using the tic-
toc command provided by MATLAB®. Table 2 presents
a comparative analysis of mean and maximum (worst-
case) execution times considering both controllers. When
considering both average and worst-case execution times,
the proposed PID outperforms GPC by a factor of ap-
proximately 100. This difference can be attributed to the
computational efficiency of the proposed algorithm, which
requires only if statements, a single loop, and straightfor-
ward arithmetic operations. Moreover, when considering
the application of GPC in practical scenarios, using a mi-
crocontroller, the proposed method exhibits notably lower
implementation complexity compared to a conventional
QP solver.

Table 2. Mean and worst-case execution times
of GPC and proposed PID with N = 20 and

Nu = 1.

Method Mean Worst case

GPC (quadprog) 1900µs 5000µs
Proposed PID 18µs 43µs

6. CONCLUSION

This paper presented a novel GPC-based PID controller
capable to achieve almost optimal performance for pro-
cesses with input and output constraints. This method
is derived from the geometric interpretation of the QP
problem associated with GPC. The resulting PID algo-
rithm, characterised by its simplified tuning and effective
constraint handling, proves efficient for controlling pro-
cesses modelled by either a first or second-order trans-
fer function. In the presented case study, considering a
second-order non-minimum phase process, the proposed
PID was able to deal with all the constraints considered

and achieves almost the same performance as the GPC
while demonstrating a execution time improvement of two
orders of magnitude. Also, a comparison of the integral
of the cost function shows that the proposed PID per-
forms very closely to the constrained GPC. The proposed
method emerges as a effective and powerful tool for practi-
cal applications, especially well-suited for implementation
in microcontrollers with low-power computation require-
ments, as it avoids the need for an online optimiser. This
effectiveness is primarily attributed to its inherent sim-
plicity in implementation, making it an efficient choice in
scenarios where constraints on the process variable and
inputs are critical considerations.
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