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Abstract: Back-calculation is an anti-windup strategy that consists in adding a feedback path
to act on the integrator of a proportional-integral-derivative (PID) controller when the actuator
causes a saturation. Neuromorphic control (NC) uses neuron models to encode the control signal
into pulses. This paper is a first attempt towards using basis of NC as an anti-windup method
in a PID controller. More precisely, a neuron is utilized to encode the saturation error (namely,
the difference between the controller and the actuator outputs) into pulses, causing that the
back-calculation works in lapses according to error intensity. A classical control problem with
saturation is given as illustrative example of application of the proposed strategy.
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1. INTRODUCTION

Neuromorphic control (NC) is characterized by a control
structure in which the control signal is encoded into
pulses by bioinspired circuits known as silicon neurons or
simply neurons. It is said that this type of information
transmission is robust and efficient (Mead, 1989).

This control strategy arises within a context of exploring
the potential of analog very large-scale integration (aVLSI)
circuits. Analog circuits behavior is closer to biological
systems because they have an asynchronous (event-driven)
nature, while digital circuits are dependent on a clock
signal. Specifically, the first use of NC was as an appli-
cation of pulse-type signals to deal with the movement
of a DC motor at very low speeds, a range in which
nonlinear friction is very relevant. When the reference is
very low, conventional controllers can cause the stick-slip
phenomenon. In addition, the motor can stop due to small
disturbances. NC manages these problems by guaranteeing
that in each pulse the motor receives enough energy to
surpass static friction, in such a way that it is able to
(re)start its movement (DeWeerth et al., 1991).

Nowadays, the term “neuromorphic” commonly encom-
passes a wide range of bioinspired hardware implemen-
tations. For example, recent literature has predominantly
linked this term to neural network-based works (Schuman
et al., 2017). In particular, in many works, “neuromorphic
control” is used to refer to controllers based on artificial
neural networks, which substantially differs from the in-
terpretation of the term considered in this paper. Like-
wise, while NC may be similar to conventional modulation
strategies, it strives to further imitate biological processes.
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Neuromorphic controlled actuators could be used together
with neuromorphic sensors and processing algorithms,
such as vision sensors (Indiveri, 1999) and sensorimotor
integration (Krauhausen et al., 2021), to conform a fully
pulse-driven robotic system.

One of the best-known potential sources of proportional-
integral-derivative (PID) controller degradation in prac-
tice is the so-called windup phenomenon in the integral
part, which occurs when the controller output saturates
due to the limits of the actuator. This generally results in
large overshoots and settling times. A general approach
to overcome such a practical problem is to design the
controller without considering the actuator nonlinearity.
Then, the detrimental effects due to the integrator sat-
uration are compensated by incorporating an additional
functionality to the classical PID algorithm, which is
conveniently designed for this purpose (Visioli, 2006). A
variety of strategies to limit this effect can be found in
the literature. Among them, it is worth mentioning the
following (see e.g. (da Silva et al., 2018; Zaccarian and
Teel, 2011; Tarbouriech and Turner, 2009; Visioli, 2006)
and references therein): limiting or smoothing the set-
point changes and/or selecting a slower controller, condi-
tional integration (such as limiting the integral term to
a predefined value or when the error is greater than a
predefined threshold or the controller output saturates),
recalculating the integral term when it saturates by feeding
back the difference between the saturated and unsaturated
control signals multiplied by a constant gain (this strategy
is known as back-calculation), and automatic reset im-
plementation by inserting the saturation function in the
control scheme.

Although anti-windup techniques have been used in many
studies, there are still some open problems, such as their
application to nonlinear systems (Tarbouriech and Turner,
2009). Likewise, in principle, none of the strategies pro-
posed in the literature can handle this phenomenon for all
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cases or applications, but, depending on the application,
it is common to find adaptations of existing strategies.

Our previous works on NC consisted in exploring the ben-
efits of combining neurons with fractional order controllers
to deal with friction and increase controller robustness
(Serrano-Balbont́ın et al., 2023a). An analog implemen-
tation of this combination was proposed in (Serrano et al.,
2023). Additionally, the extension of NC by using frac-
tional order neurons, which have a closer behavior to that
of actual neurons, was proposed in (Serrano-Balbont́ın
et al., 2023b). In this context, the research initiated with
this paper explores the possibility of using basis of NC
as an anti-windup method in a PID controller due to
its advantages of encoding information into pulses like
those in biological nervous systems. In particular, in this
study a silicon neuron is placed in the back-calculation
feedback path to observe the effect of using a pulse-like
signal instead of continuous.

The remainder of this paper is organized as follows.
Section 2 briefly describes the basics of the most common
anti-windup strategies, namely classical back-calculation
and conditional integration. Section 3 presents a neuron-
based back-calculation strategy, including the description
of the neuron model used to handle the windup of the
integrator. The effectiveness of the mentioned strategy
is demonstrated in Section 4 through a classical control
problem in comparison with other existing anti-windup
strategies. Section 5 covers concluding remarks of this
study.

2. FUNDAMENTALS ON ANTI-WINDUP
STRATEGIES

PID controllers dealing with limited actuators are often
designed to work on the so-called small signal range, i.e.,
expecting the PID to work within the limits. Nonetheless,
for certain reference values there exists a risk of integral
windup. Instead of changing the design of the controller,
the PID structure is preserved and some mechanisms
acting on the integral part are added to deal with those
cases. Two classical anti-windup strategies are recalled
next: back-calculation and conditional integration.

2.1 Classical back-calculation

In classical back-calculation, an additional feedback path
is generated by feeding the error es between the actual
controller output u, and the output of the actuator v
(henceforth referred to as saturation error: es = v − u)
through a gain of value kt, as shown in Fig. 1. This serves
to recompute the integral term in the controller and do
not have any effect when the actuator does not saturate
(Åström and Hägglund, 2006).

2.2 Conditional integration

Conditional integration or integrator clamping consists
in switching off the integration when a certain condition
is verified (Visioli, 2006). The possible condition more
similar to back-calculation is related to saturation error,
in contrast with other conditions involving the control
error (e). The most common approach is to switch off the

Plant

Actuator

Fig. 1. Diagram of classical back-calculation structure.

integration when there exists actuator saturation (es ̸=
0). Conditional integration structure is illustrated in Fig.
2, where the new feedback path consists in determining
whether the error es equals to zero. If true, the PID
controller works normally, but, if the condition is no longer
satisfied, the integrator receives a zero as input.

Plant

Actuator

Fig. 2. Diagram of conditional integration structure based
on saturation error.

3. NEURON-BASED BACK-CALCULATION

In this section, a new back-calculation structure is pro-
posed in order to reach a control loop able to handle
integral windup using neuromorphic principles.

3.1 Neuron model

The output of a neuron is a succession of pulses of
constant amplitude whose firing frequency varies according
to the input amplitude. In Fig. 3, the relation between the
input i and the output n of a neuron is illustrated. It
shows how the firing frequency of spikes decreases as the
amplitude of i decreases. Specifically, the firing frequency
of neuron models known as integrate-and-fire neurons is
determined by a process of integration until a threshold
is reached, at which point the neuron resets and begins
again (Indiveri et al., 2011). The most appropriate variant
for control purposes is one able to produce pulse frequency
modulation (PFM) (Tzafestas and Frangakis, 1980) as it
is able to preserve average information transmission unlike
other models that are thought to reproduce biophysical
dynamics of actual neurons. It can be modeled as follows:

x(t) =

∫ t

tk−1

i(t)dt, if x(t) < Kti (1)

x(t+k )← 0, if x(tk) = Kti (2)

where x(t) is the value of the integral at time t, tk the
instant at which k-th pulse is fired, and Kti the threshold.
It is important to remark that the input to a neuron is
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positive (i(t) ≥ 0). The output of the neuron n(t) is ruled
by:

n(t) =

{
A if 0 ≤ t− tk−1 ≤ th
0 if th < t− tk−1 < tk

(3)

where A is the amplitude of the pulses, th the width of the
pulses or duration in high state, and tl the time between
pulses or low state, as seen in Fig. 3. Equation (1) can be
rewritten as

tk − tk−1 = th + tl =
Kti

ī
(4)

to show that the period of fired pulses varies according
to the inverse of the average input amplitude, ī, in that
interval with a proportional constant equal to the thresh-
old. The input-to-output gain of the neuron GN can be
deducted from the average value of the output in one
period and is given by:

GN =
Ath
Kti

(5)

Fig. 3. Description of input to output relation of a neuron.

3.2 Neuron-based back-calculation structure

The proposed structure uses neurons in substitution of the
gain kt from the classical back-calculation structure (see
Fig. 4). This scheme can be thought as an intermediate
case between classical back-calculation and conditional
integration, since the neuron switches between two states,
and modulates a continuous signal. The effect of the
neuron gain,GN , should be similar to that of classical gain,
kt. However, a total of three parameters can be tuned in
the proposed strategy, which offers more flexibility than
both conditional integration and classical back-calculation
anti-windup schemes. In general, two neurons will be
needed to encode both positive and negative values of es,
although only one neuron can be used when saturation
occurs systematically by just one of the limits. In addition,
we expect that the recalculation of integral signal during
saturation occurs in certain instants at which the neuron
is fired instead of continuous recalculation. It should be
highlighted that the proper selection of the parameters
could lead to minimal distortion of the PID controller
action when the neuron is off.

4. ILLUSTRATIVE EXAMPLE OF APPLICATION

An example is formulated next to show the performance
of the proposed neuron-based back-calculation strategy in
comparison with other classical anti-windup strategies.

4.1 Problem formulation

The plant to be controlled is modeled as a first order
transfer function:

P (s) =
1.5

20s+ 1
(6)

Plant

Neuron

Actuator

Fig. 4. Structure of back-calculation with neuromorphic
feedback.

The actuator is subject to a saturation with the following
limits:

[umin, umax] = [−0.8,+0.8] (7)

A proportional-integral (PI) controller is designed to con-
trol the system for the ideal case, i.e., considering that the
saturation limits are not reached in normal operation. It
is designed using the root locus as

C(s) = kp +
ki
s

= 17.69 +
6.32

s
(8)

4.2 Control scheme

Simulations are performed in Simulink. Fig. 5 shows the
neuron-based back calculation structure designed for this
application example (top) and the neuron subsystem block
(bottom). Notice that each neuron has a rectifier at its
input, and that the input to the second neuron is inverted
in order to administrate a positive input. Likewise, the
output of the second neuron is fed to the inverting input
of an adder block to produce a negative pulse train.

4.3 Simulation results

Firstly, the response of the closed loop system without
saturation to an input of 0.5 is compared with the case
considering the saturation limits. The output of the system
in both cases are plotted in Fig. 6. It is observed that the

Fig. 5. Simulink model of: neuron-based back-calculation
anti-windup control scheme (top), and neuron subsys-
tem (bottom).
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Fig. 6. System output without and with saturation in
absence of anti-windup mechanism.
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Fig. 7. Controller (top) and actuator (bottom) signals
without and with saturation in absence of anti-windup
mechanism.

overshoot is largely increased from 10% to 56%, as well as
the settling time from 10 s to 30 s.

In Fig. 7, the controller output, u, (top) and the actuator
signal, v, (bottom) are plotted in both cases: with and
without saturation. It is observed that the actuator signal
without saturation begins above 8 and suddenly decreases.
Meanwhile, when the saturation is considered, the signal
of the actuator is limited to 0.8 for almost 20 s, which
causes the slow rising transient shown in previous figure.
Additionally, it produces the controller to increase its
integral part during this saturated state causing the overall
to increase as well. This situation leads to an increased
overshoot as it takes more time to reduce integral part
once the reference has been surpassed.

Results introducing the traditional back-calculation feed-
back path are shown and commented next. In Fig. 8, the
system output when varying kt from 0 (without back-
calculation) to 1 is shown. It is seen how it is possible to
adjust both the overshoot and the settling time by tuning
this parameter as follows: lower values of kt causes the
response to be closer to the case without back-calculation,
i.e., higher overshoot and settling time. As the value of
kt is increased, it is possible to damp the response and
eliminate the overshoot. Values of kt higher than 1, in this
example, can further slow down the response, leading to
an increase in settling time.
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Fig. 8. Output curves for different kt values using classical
back-calculation anti-windup mechanism.
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Fig. 9. PI controller output, u, (top) and actuator output,
v (bottom) for different values of kt using classical
back-calculation anti-windup mechanism.

Controller (top) and actuator (bottom) outputs when
considering traditional back-calculation are plotted in Fig.
9. It is observed that, although saturation persists in order
to achieve the minimum rising time, the actuator output
leaves saturation earlier as kt is increased, reducing its
settling time. The controller signal is more similar to
saturation-less case as kt is increased because integral part
is reduced, which explains the reduction in overshoot.

In the following simulations, the results using the neuron-
based back-calculation anti-windup strategy are shown
and compared with the previous cases. Tuning of neu-
ron parameters is analyzed. First, in Fig. 10, the output
changes due to changes in the value of th are shown. The
simulations were performed with A = 20, and Kti =
Ath/0.25 (GN = 0.25). For narrow pulses th ≤ 0.01 s,
the output is very similar to the continuous case shown
previously. In this case, the neuron acts as a good modu-
lator that introduces little distortion. As th is increased,
although preserving the neuron gain, the pulses cause the
output to lose smoothness, in general. For th = 0.15 s, the
overshoot is eliminated. The value th = 0.2 s causes and
undershoot. Further increases, such as th = 1 s, produce
the output to deviate from the saturation path earlier
when compared to the previous cases, causing a backward
movement that has not been observed in the traditional
back-calculation structure.

Second, Fig. 11 shows the effects on the controlled system
of changing parameter A. As can be seen, for values close
to A = 20, the neuron is able to reduce windup as in
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the continuous case, only influenced by the value of GN .
Nonetheless, if the amplitude is largely increased up to 500,
the structure eliminates the overshoot. Further increases
cause undershoot, as in the case with A = 1000. It is
observed that an increase of A has similar consequences
as increasing th, but it is somehow more robust as it
has to bee greatly changed in order to produce significant
differences.

Lastly, three different values of the parameter Kti are
considered in Fig. 12, while A and th are chosen to provide
a smooth response (th = 0.01 s and A = 20). From eq. (5),
it is known that, as Kti is varied, GN is varied in the
inverse proportion. Only slight differences can be found
between the three plotted curves in comparison with the
continuous case, meaning that the behavior of Kti is closer
to the behavior of 1/kt than the other two parameters.

Once the influence of neuron parameters has been observed
for the system output, the differences in the feedback
signal error are shown next. Fig. 13 contains three different
simulations: one case with the classical structure and two
cases of the neuron-based strategy. Neuron parameters in
common in these two cases are: A = 20 and GN = 0.25.
The width of the pulses is different: th = 10 ms in one
case and th = 500 ms in the other. These two cases are
expected to be representative because the variation in A
has similar effects to the variation of th on output, as ob-
served previously. The first obvious difference between the
simulated cases is that the traditional structure produces
a continuous curve, while the information is encoded into
pulses in the neuromorphic structure. Secondly, when the
pulse duration (or amplitude) is increased, less pulses are
fired. In this case, only two pulses are fired. The second
pulse occurs closely to the last instant when the continuous
case leaves saturation. In other words, it can recompute
the integral part immediately before the moment at which
controller should leave the saturation state, which is rem-
iniscent of the behavior of conditional integration anti-
windup schemes.

Fig. 14 shows the controller signal that receives the ac-
tuator. It is observed that the discontinuities are only
produced by the neuron when the limits are surpassed.
On average, the performance is the same, but as th (or A)
is increased, the observed ripple increases.

In the following figures, the results of using conditional
integration are shown. Fig. 15 shows the output using
conditional integration structure using the condition es ̸=
0. It is observed that it produces no overshoot and behaves
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Fig. 10. Output curves for different th values. A =
20, GN = 0.25 when using neuron-based back-
calculation.
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Fig. 11. Output curves for different A values. th = 10
ms, GN = 0.25 when using neuron-based back-
calculation.
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Fig. 12. Output curves for different Kti values. A =
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Fig. 13. Back-calculation feedback signal (es) in classical
and two cases of neuron-based structures (kt = GN =
0.25).
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Fig. 14. Controller output in classical and two cases of
neuron-based back-calculation.

similarly to the case of traditional and neuron-based
back-calculation structure when kt = 1 and Gn = 1,
respectively. Neither the overshoot nor the speed can be
adjusted which can be seen as an inconvenient to certain
applications. Finally, the controller output is plotted in
Fig. 16. This signal differs from both traditional and
neuron-based back-calculation because the integral part is
not activated during the first 10 s and, therefore, only the
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Fig. 16. Controller output with conditional integration
strategy.

proportional part is being computed. As soon as es = 0,
the integral part is activated and produces a smooth
transient response with zero steady state error.

5. CONCLUSION

This paper has explored the possibility of using neuro-
morphic principles as anti-windup strategies. It has been
observed that the introduction of neurons in the anti-
windup loop, with the proper selection of their parameters,
produce similar results to the back-calculation algorithm.
In addition, if amplitude or width of the pulses of the
neuron are increased, the number of instants at which the
controller signal has to be recomputed becomes minimal.
Nonetheless, it has been seen that excessive values of these
parameters can cause an undesired backward motion in the
output.

The scheme proposed here was compared with two
classical anti-windup strategies, namely classical back-
calculation and conditional integration. The neuron-based
back-calculation can be interpreted as an anti-windup
mechanism that has elements in common with both strate-
gies, and provides more flexibility.

In future work, the use of neurons to encode the con-
troller signal together with the back-calculation strategy
will be explored. It could serve to obtain a controller
that can simultaneously handle friction-limited systems
and saturation-constrained actuators using neuromorphic
principles. Potential benefits of using neurons include noise
robustness and power efficiency.

REFERENCES
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