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ceiA3, Ctra. Sacramento s/n, La Cañada de San Urbano, Almeŕıa
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Abstract: Distributed parameter systems (DPS) are widely recognised in the process industry.
An innovative feedforward control strategy for the DPS of a parabolic trough collector (PTC)
has been developed with the aim of rejecting disturbances. This feedforward is designed on a
transfer function based on a semi-physical model. This transfer function includes an irrational
term that models the resonance dynamics in the system response. For validation, this approach
is compared with a proportional-integral (PI) design and other existing feedforward designs
in literature. The results show that the proposed approach significantly improves the system
performance in the presence of disturbances addressing system dynamics at medium and high
frequencies.
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1. INTRODUCTION

Distributed parameter systems (DPS) are commonly
found in the process industry, such as heat exchangers,
tubular and packed bed reactors and solar collector sys-
tems. These systems are typically represented using partial
differential equations (PDE) and have been a subject of
research since the mid-20th century, as evidenced by the
works of Cohen and Johnston (1956), up to more recent
research such as Song et al. (2020).

To address DPS and their associated challenges, various
strategies are employed. The first involves simplifying
fixed-parameter systems using ordinary differential equa-
tions (ODE). This makes it easier to obtain first or second
order transfer functions through the Laplace’s transform
for tuning Proportional Integral Derivative (PID) con-
trollers (Camacho et al. (2007)). However, this means
that relevant system dynamics are not taken into account
when tuning the PID controller. Alternatively, a higher-
order transfer function can be derived for application in
more complex control systems, such as model predictive
control (MPC) Johansen et al. (2000), but this sacrifices
the physical interpretation of the parameters.

The paper Curtain and Morris (2009) highlights notable
distinctions in the analysis of rational and irrational trans-
fer functions, particularly in their poles and zeros. Fo-
cusing on the transfer functions derived from PDE, the
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location of the poles and zeros depends crucially on the
choice of boundary conditions. Various instances are pro-
vided that use irrational functions operating under diverse
boundary conditions to apply different control strategies
(e.g. heated rod, a vibrating string, a flexible beam).

In the context of solar energy systems, irradiance is the
predominant disturbance that affects the performance of
the parabolic trough collector (PTC). Traditional control
strategies, based on simplified global parameter models, do
not address the specific problems posed by the distributed
nature of the collector and how irradiance affects the
dynamic behaviour of the system. Feedback control can
be a powerful choice to open-loop control, but it does
not prevent by itself the nondesirable behaviour that the
disturbances cause at the process output. Feedforward
control complements the control action to be taken before
any disturbance affects the process output behaviour.
Today, feedforward is implemented in most distributed
control systems and is also used in simple control problems
to improve performance (Guzmán and Hägglund (2011)).

The main contribution of the present research is the devel-
opment of a specific methodology to design a feedforward
controller that accounts for the irrational term by mod-
elling the resonance dynamics in the system response of
a PTC. This approach aims to achieve more effective dis-
turbance rejection compared to other feedforward schemes
present in the literature calculated from low-order transfer
functions obtained through the system open-loop response.

The rest of the document is structured as follows: Section 2
presents a brief description of the DPS model employed in
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the control design. Section 3 elaborates on the feedforward
design. The results of applying the proposed methodology
are presented in Section 4. Finally, Section 5 provides a
summary of the main conclusions and future research.

2. CONTROL STRATEGY

2.1 System model

DPS can be expressed in terms of transfer functions when
linearised, as described in Bellman and Cooke (1963) and
Ramanathan et al. (1989). These appear in (1), which
consists of low-order rational transfer functions, P (s) and
Q(s), and the irrational transfer function R(s). P (s) is the
part of the system without resonance dynamics and R(s)
characterises the transfer function modelling resonance
dynamics. The parameter θ is often associated with the
process residence time.

In this paper, a detailed mathematical derivation leading
to G(s) is not included. However, the interested reader

can refer to Álvarez et al. (2009). Álvarez et al. (2012)
introduced (1), which enables the derivation of first-order
rational equations from G(s). These equations are used
to replicate the open-loop step response of the system,
which typically lacks resonance effects at medium to high
frequencies. Alternatively, higher-order equations can be
derived to account for resonances using a rational ap-
proximation of G(s). When aiming for a high closed-
loop bandwidth, controllers based on first-order models
typically need to be detuned. However, high-order models
require more complex control methods.

G(s) = P (s)

(
1− e−θs

(
−βs+ 1

τs+ 1

)
︸ ︷︷ ︸

Q(s)

)

︸ ︷︷ ︸
R(s)

(1)

2.2 Proposed control structure

Álvarez et al. (2012) describe a methodology that has
been shown to be easy and effective. They suggest using
the irrational transfer function provided by (1) for control
design purposes. A simple PID controller can be designed
for the transfer function without resonance dynamics,
P (s), using any of the existing methods in the literature,
such as those proposed in Ziegler and Nichols (1942),
Rivera et al. (1986) or Skogestad (2003). The resonance
dynamics introduced by R(s) can be dealt with with a

specific filter. In Álvarez et al. (2009) is also shown that
in the PTC the transfer function that related the control
variable (volumetric flow) to the controlled variable (the
output temperature) has a similar structure that in (1),
with a low order rational transfer function plus a function
that model the resonance behaviour.

When designing a disturbance rejection controller, the
objective is to combine the classic PID controller with
a feedforward control structure. Feedforward control at-
tempts to compensate for disturbances before they impact
the system. This approach must take into account the
effect of resonances present in the system, which enhances

Fig. 1. Proposed control structure

the ability of the feedforward control to counteract dis-
turbances at specific frequencies. Fig. 1 illustrates the
proposed control structure, where Y (s), Ref(s) and D(s)
represent the closed-loop output, reference, and distur-
bances signal, respectively. The transfer functions G(s),
P (s), and R(s) correspond to (1). Pdd

(s) and Rdd
(s) are

the transfer functions that model the disturbance and they
are showed in (6). Finally, PID(s) is a PID controller and
Fff (s) is the feedforward designed specifically from the
frequency response of R(s).

3. FEEDFORWARD DESIGN PROPOSAL

To validate the proposed methodology, we present an im-
plementation example applied to the case study discussed
in this work: a solar plant that uses PTC technology. The
following non-linear model can be used to model this plant,
which describes the energy balance in the fluid by using (2)
and in the pipe (subscript w) by using (3).

AiρC
∂T

∂t
+ q̇ρC

∂T

∂x
= πDihi(Tω − T ) (2)

ρωCωAo
∂Tω

∂t
= InoG− πDoho (Tω − Tg)

−πDihi (Tω − T )
(3)

The definition of the parameters given in (2) and (3) is
presented in Table 1. Due to the lack of space, not all
mathematical developments are presented in this work,
but, for interested readers, a comprehensive description
of the plant, together with a detailed presentation of the
physical parameters, is available at Camacho et al. (2007).
This type of model is classified as semi-physical and is
characterised by the incorporation of prior knowledge of
the system. They represent a hybrid approach, combining
elements of physical and empirical models and incorporat-
ing adjustable parameters that are amenable to physical
interpretation. The simulations carried out in this study
were performed to obtain a linear approximation of (2)
and (3) of the non-linear model. To achieve the linear
approximation of the non-linear parts mentioned above,
the Taylor series development was implemented. Subse-
quently, (4) and (5) were obtained by simple simplification.

∂T

∂t
= −(v − vs)

dTs

dx
− vs

∂T

∂x
+

1

τ1
(Tw − T ) (4)

∂Tw

∂t
= Iγ − 1

τ2
(Tw − Tg)−

1

τ12
(Tw − T ) (5)

Where τ1, τ2 and τ12 are time constants relating the
temperatures and γ is an auxiliary parameter.
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The work of Álvarez et al. (2009) presents an exhaus-
tive development of the previous expressions, ultimately
leading to individual Single Input Single Output (SISO)
transfer functions relating the input variables: the input
temperature, the ambient temperature, the solar irradi-
ance and the fluid velocity (T (0, s), Tg(s), I(s) and v(s)),
to the output variable, T (L, s), assuming constant of the
rest of the signals. In this paper, we focus on the transfer
functions that relate solar irradiance and fluid velocity,
since the other disturbances can be considered to be almost
constant during the operation of the system. These trans-
fer functions can be used to formulate control strategies,
either by feedback or feedforward, and are presented in a
generalised form in (6) and (7).

T (L, s)

I(s)
=

kI
s3 + a1s2 + a2s+ a3

·
(
1− e−

L
vs s

(
KD

−βs+ 1

τs+ 1

)) (6)

T (L, s)

v(s)
=

kv(b0s+ 1)

s2 + a1s

(
1− e−

L
vs s

(
−βs+ 1

τs+ 1

))
(7)

Where kI , kv refer to static gains, the coefficient b0 is a
zero that appear in (7), whereas the coefficients a1, a2,
a3 refer to the poles appearing in (6) and (7). Note that
a1, β and τ in (6) and (7) are general parameters and do
not have the same value. Finally, KD is a coefficient that
multiplies the part referring to Q(s) and in the case of a
PTC the parameter θ is equal to the residence time of the
fluid inside the pipe, that is, θ = L/vs

The only variable that can be manipulated in this kind
of system is the fluid velocity. In this work, the control
variable is the flow rate or volumetric flow, q̇(s), which
can be easily obtained by multiplying the fluid velocity
by the internal area of the pipe, Ai. For the design of
the control schemes, the transfer function that relates the
volumetric flow, q̇(s), to the output temperature, T (L, s),
described in (8) and the transfer function that relates the
solar irradiance, I, to T (L, s), presented in (9), have been
obtained by means of reaction curve tests in simulation

Table 1. Model parameters of a solar tube heat
exchanger

Parameter Description Unit

Ai Inner pipe area m2

Ao Outer pipe area m2

C Fluid specific heat capacity J/(kg◦C)
Cω Pipe material heat capacity J/(kg◦C)
Di Inner pipe diameter m
Do Outer pipe diameter m
G Opening of the collector m

hi In-pipe convective HTC W/(m2◦C)

ho Convective HTC outside pipeline W/(m2◦C)
I(t) Solar irradiance W/m2

L Pipe length m
n0 Optical efficiency of the collector −
q̇(t) Volumetric flow m3/s
ρ Fluid density kg/m3

ρω Pipe density kg/m3

T (x, t) Fluid temperature ◦C
Tg(t) Ambient temperature ◦C

Tω(x, t) Pipe temperature ◦C
v(t) Fluid velocity m/s

with a non-lineal model that implement in (2) and (3).
Equations (6) and (7) become (9) and (8) respectively.

T (L, s)

q̇(s)
=

kg
τgs+ 1

e−tr,gs (8)

T (L, s)

I(s)
=

kd
τds+ 1

(9)

Where kg and kd refer to the static gains in m3/(s◦C) and
W/(m2◦C), respectively, whereas τg and τd are the time
constants in s and trg is the time delay in s.

A comparison of four control systems will be conducted.
The first system is a Proportional-Integral (PI) controller,
which has been tuned by using (8). The tuning was per-
formed using two different methods designed for first-order
equations with delay. The purpose of this approach is
to validate the applicability of the proposed feedforward
control approach in the context of various tuning methods.
The first tuning method is the one proposed in Ziegler and
Nichols (1942) and the second is the SIMC method (Sko-
gestad (2003)) because of their different approaches and
being considered the most interesting in this study after
comparing them with other tuning methods appearing in
the literature (Åström and Hägglund (2009)).

The second scheme involves incorporating a feedforward
with the PI controller design. The function Fff (s), shown
in Fig. 1, is derived from (8) and (9) obtained during the
open-loop analysis, resulting in the formulation of (10).
The structure of this design is a lead-lag feedforward with-
out time delay that is not considered to avoid problems
with delay inversion.

Fff (s) =
kd
kg

τgs+ 1

τds+ 1
(10)

This scheme constitutes a classical feedforward design
solution that can be improved with other tuning rules
such as the one developed (Guzmán and Hägglund (2011)).
This rule relies on adjusting the feedforward gain and the
time constant, τd, to decrease the overshoot in the output
of the system and minimise the value of the integrated
absolute error (IAE). This rule is the third control scheme
presented in this study and the compensator parameters
are calculated as follows in (11) and (12), taking into
account that in the specific case under study tr,d = 0 and
setting βff = τg.

Fffi(s) = kff
βffs+ 1

τffs+ 1
(11)

τff =


τd tr,g − tr,d ≤ 0

τd −
tr,g − tr,d

1.7
0 < tr,g − tr,d < 1.7τd

0 tr,g − tr,d ≥ 1.7τd

(12)

The compensator gain, kff , is calculated by using (13) and
(14).

kff =
kd
kg

− kp
τi
IE (13)

IE =

{
kd(τff − τd) tr,d ≥ tr,g
kd(tr,g − tr,d − τd + τff ) tr,d < tr,g

(14)

Figures 2 and 3 show the magnitude bode diagram of the
transfer function that relates the disturbance (solar irradi-
ance) to the controlled variable (the output temperature)
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Bode Diagram (Ziegler-Nichols)
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Fig. 2. Bode magnitude plot comparing four control
schemes (Ziegler-Nichols Tuning).

for the PI tuning schemes. The black line corresponds to
the first control scheme, only the PI controller, the blue
represents the second where the feedforward controller is
incorporated to the control scheme and the orange repre-
sents the third with the improved feedforward.

Note that, incorporating the lead-lag feedforward into the
system control results in a decrease in magnitude at low
frequencies, which is the aim of designing a feedforward
controller. However, as a consequence of using low order
transfer functions approximations, (8) and (9), to calculate
the feedforward controller instead of more accurate trans-
fer functions, (6) and (7), that take into account resonance
dynamics, at medium and high frequencies the magnitude
increases and the resonance modes are emphasised. This
phenomenon is common to both tuning techniques and can
significantly affect the stability and system time response,
posing an additional challenge to achieving the established
control objectives.

With the intention of improving the frequency behaviour
and addressing the cancellation of significant resonances,
the formulation of a new feedforward design is proposed.
This design is based on the SISO transfer functions asso-
ciated with (6) and (7) using the rational part of these
transfer functions. The new transfer function for the feed-
forward is defined in (15) where a filter, F (s), is added.
This filter is composed of a pole in s = 0 to counteract
the zero in s = 0 that appears in (7) and a zero since the
irrational part that models the resonance dynamics in (6)
and (7) is slightly different. a0 is a fitting parameter be-
tween the difference of the system transfer function in (7)
and the disturbance in (6). The value of this parameter
can be adjusted to make the feedforward response more or
less aggressive in terms of disturbance rejection.

Fffnew =

Pdd
(s)︷ ︸︸ ︷

kI

s3 + a1s2 + a2s+ a3

1
Ai

kv(b0s+ 1)

s2 + a1s︸ ︷︷ ︸
P (s)

s+ a0

s︸ ︷︷ ︸
F (s)

(15)

When analysing the frequency response of the proposed
feedforward design, represented by the green line in Figs. 2
and 3, a more attenuated signal is perceived at any

Bode Diagram (SIMC)
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Fig. 3. Bode magnitude plot comparing four control
schemes (SIMC Tuning).

frequency, without the presence of the magnitude peak
that characterised the lead-lag feedforward response. In
addition, the magnitudes at medium and high frequencies
are lower than using the previous feedforward, which
implies that the resonance modes will affect the system
output less than in the previous design.

4. RESULTS

After applying the methodology described in Section 3,
the results obtained for the specific case study are shown.
Firstly, the low-order transfer function approximations
relating I(s) and q(s) to the outlet temperature, T (L, s),
see (8) and (9), are presented:

T (L, s)

q(s)
=

−7.15 · 104

148.22s+ 1
e−22s (16)

T (L, s)

I(s)
=

0.102

323.81s+ 1
(17)

The other disturbances of the system, Tg(s) and T (0, s),
were assumed to be constant for the simulations performed
in this work. The results obtained for the PI controller
parameters for the Ziegler-Nichols rules are: a proportional
gain kp = −8.48 · 10−5 m2/(s◦C) and a time integral
τi = 73.26 s and for the SIMC rules considering a τbc = 0.9·
τg s are: a proportional gain kp = −2.26 · 10−5 m2/(s◦C)
and an integral time τi = 155.55 s are obtained.

The transfer function obtained by applying the classical
feedforward structure outlined in (10) in shown in (18).

Fff (s) = −1.43 · 10−6 148.22s+ 1

323.81s+ 1
(18)

The transfer function obtained by applying the improved
feedforward structure outlined in (11) in shown in (19)
and (20) to each tuning method study.

Fffi(s) = −3.57 · 10−7 148.22s+ 1

310.87s+ 1
(Z−N) (19)

Fffi(s) = −1.34 · 10−6 148.22s+ 1

310.87s+ 1
(SIMC) (20)

However, if the methodology proposed in this work to
design the feedforward controller is applied, the follow-
ing (21) is obtained for the feedforward controller.
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Fffnew =
38.2640s2 + 0.6297s

(−3.35s3 − 0.085s2 − 0.0005s)1 · 109

·s+ 0.00045

s

(21)

Critical to the application of this strategy is the correct
choice of a0, whose value has been obtained by trial and
error. Fig. 4 shows the control system response when
applying this strategy for different values of a0. Solar
irradiance saved during one operation day in the solar
plant for which the model is available is considered for
simulations. Only the response for the SIMC method is
shown due to a lack of space. Fig. 4 1 shows how the
variation of a0 changes the response of the output and
control signal such that the higher the value of a0, the
better IAE but the higher Total Variation (TV) index,
indicating that better reference tracking is penalised with
a more aggressive control signal. The value of a0 is chosen
by finding a trade-off solution between these two features
(reference tracking and control signal variation).

The temporal results of the four control systems, the PI
controller, the PI with the classical feedforward scheme,
the PI with improved feedforward and the PI with the
proposed new feedforward design, taking into account the
resonances, are shown in detail in Figs. 5 and 6 for both
tuning methods. Table 2 shows a comparison of IAE, which
is used as a metric to evaluate the deviation between the
system output and the reference over time. Table 3 shows
a comparison of TV, which is used as a metric to evaluate
the control action effort.

Table 2. IAE of Four Control Schemes

Tuning method PI PI+FF PI+FFi PI+ New FF

Ziegler-Nichols 91.240 52.524 68.936 32.808
SIMC 803.263 349.796 155.666 133.426

Table 3. TV of Four Control Schemes

Tuning method PI PI+FF PI+FFi PI+ New FF

Ziegler-Nichols 1.462 4.358 1.420 1.790
SIMC 0.886 7.580 3.569 1.310

Figures 5 and 6 show in the upper graph the time response
of the output temperature, whereas in the lower graph
only the control signal is shown, which refers to how the
volumetric flow varies over time to maintain the output
temperature constant. It can be seen that the output
temperature for the first control scheme (black line) has
large oscillations over the reference reference, which has
been considered as 230 ◦C since the results are shown
in a general way. The addition of the classic feedforward
scheme, the blue line, results in a more aggressive control
signal, leading to recurrent oscillations for both tuning
rules. This is caused by the excitation of resonances at
intermediate frequencies, as shown in Figs. 2 and 3.

Regarding the output temperature evolution shown in
Fig. 5, it is worth noting that this tuning method is more
aggressive in rejecting disturbances. As a result, it can
cause oscillations, which, despite having a smaller error
with respect to the reference, may affect the stability of
the system. The SIMC tuning method (refer to Fig. 6)

1 Please note that for a better understanding the volumetric flow is
expressed in this graph and subsequent in litres per second (l/s)
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Fig. 4. Comparison of Control Schemes for Temperature
Regulation using SIMC Tuning

results in a more conservative evolution of the output
temperature, with less notable temperature variations,
slower action, and less pronounced oscillations. The third
scheme, the improved feedforward, avoids this undesired
effect on the control signal, as in the previous case without
excessively penalising the reference tracking.

The addition of the four scheme, which incorporates the
new feedforward proposal, leads to a significant reduction
in oscillations in the control signals. Fig. 5 illustrates
a decrease in these oscillations in the case of reference
tracking, resulting in improved reference compliance. Re-
gardless of the adjustment method used for the controller,
the IAE shows that the feedforward design suggested in
this study demonstrates greater efficiency in suppressing
disturbances and results in a lower steady-state error at
the output. Furthermore, this design prevents the genera-
tion of an aggressive control signal that is observed when
the feedforward lead-lag scheme is incorporated into the
control system.

5. CONCLUSION

In this work, we present an innovative feedforward control
strategy tailored to distributed parameter systems and
highlight its effectiveness in disturbance rejection. Using
both the transfer functions derived from the reaction curve
method and those obtained from the linear model based
on the semi-physical nonlinear model, it is verified that
the implementation of feedforward control from the func-
tions derived from the linear model exhibits superior per-
formance in benchmark tracking. This approach demon-
strates an effective reduction of oscillations in the control
signal compared to conventional feedforward designs. In
addition, it significantly improves system performance in
the presence of disturbances, addressing, in particular, the
dynamics at medium and high frequencies.

Future work will aim to design filters for higher frequencies
to eliminate resonances in the frequency response. The

IFAC PID 2024
Almería, Spain | June 12-14, 2024

49



0 1000 2000 3000 4000 5000 6000 7000

Time(s)

229

229.5

230

230.5

231
Process Output

Reference

PI, IAE = 91.24

PI+FF, IAE=52.52

PI+FF improved, IAE=68.94

PI+New FF Design, IAE=32.81

0 1000 2000 3000 4000 5000 6000 7000

Time(s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Control Signal

PI, TV = 1.46

PI+FF, TV = 4.36

PI+FF improved, TV = 1.42

PI+New FF Design, TV = 1.79

Comparison of Control Systems (Ziegler-Nichols)

0 1000 2000 3000 4000 5000 6000 7000

Time(s)

400

500

600

700

800

900
Input Solar Irradiance

Fig. 5. Comparison of Control Schemes for Temperature
Regulation using Ziegler-Nichols Tuning

objective is to verify whether this modification contributes
to a resonance-free frequency response, with the aim of
improving the system’s disturbance rejection capability
and reference tracking.
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