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Abstract The PID algorithm constitutes the backbone of process control since more than
100 years. The literature considers hundreds, if not thousands, of its variants, analyzing both
theoretical and practical aspects. However, the practice of the process industry is not so rich and
is generally limited to its basic formulations, and mostly only PI. This study tries to return to
the roots of industrial automation by proposing an extremely simple variant of the PI law, but
in a non-linear version. We name it sic!PID: simple intuitive PID controller. The research had
two independent sources: scientific and practical. We propose a simple and intuitive formulation,
which is analyzed through simulations and practically. The proposed structure is successfully
used in several industrial facilities, which easily proves its effectiveness and resilience.
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1. INTRODUCTION

The first article considering the theory of PID control with
application to ship control was published by Minorsky
(1922). Twelve years later, Mitereff (1935) formulated the
time domain regulation law, giving it its current names: P,
PI, PID. Beginning in 1922, tens of thousands, if not more,
articles were published presenting its various variants,
improvements or oddities contributing to various more or
less specific cases. Researchers analyzed both theoretical
issues (margins, stability) and practical issues related to
design and implementation. We can find a number of
its variants, both linear and non-linear. However, if we
look at industrial practice, especially the process industry,
the king becomes naked. The overwhelming majority of
implementations are based on its simplest formulation in
a serial or parallel variant. Solutions that take into account
derivation, the D element, are rare, not to mention such
variants as noise filtering, feedforward, disturbance de-
coupling, anti-windup, linearization of the actuator curve,
gain scheduling, cascaded control or Smith predictor. Sim-
ilar simplicity is often found in the algorithm setup itself
and in the subsequent process of maintaining and evalu-
ating it. It seems that theory and practice have diverged
and it is difficult for them to meet.

As you can see, the basics of PID control were defined
over 100 years ago. However, what is more fascinating is
the later developments and the resulting current situation.
So let’s look at what we have now. Regardless of the
various sources that present summaries of solutions used
in the industry, PID takes the full prize: indisputably and
without any doubts. Regardless of the authors (Åström
and Murray (2012); Samad (2017)), region or industry,
at least 90% of control systems in the process industry
use the broadly understood PID algorithm. According to

Sun et al. (2016), this share even reaches over 98%. Going
further, the situation becomes even more (not) cheerful.
Depending on the analysis, only about 0% of these loops
work correctly, the rest are either poorly designed, poorly
tuned, or not tuned at all. A large number of systems
work in manual mode (measurement problems or problems
with actuators), see Ender (1993). However, a poorly
functioning control system simply means financial losses.
The above results show a picture of misery and despair.
This is largely due to the ignorance of the tuning step of
the control loop. Time courses are rarely analyzed. It works
because it doesn’t trigger alarms. And in practice, you can
see, for example, an oscillating control system where the
average value of the error is equal to zero. What is more
interesting, the observations are the same, both mine and
those of engineers working in industry.

The situation persists despite dozens of years of devel-
opment, progress and what not. Åström (2018) presents
an interesting diagram of the number of publications on
PID, predictive control and control in general. Every year,
more and more publications appear, with an exponential
increase. In the case of control engineering as such, the
trend has been maintained over the last hundred years,
with the exception of a qualitative leap in the second half
of the 1940s (the war effect). The growth of studies on
PID is staggering. Many hypotheses can be formulated as
to the reasons for this particular state of affairs. We find
four: two negatives (power of tradition and inappropriate
education) and two positives (PID is just good and cheap).

The goal of our work is not to create another impractical
complication that would solve some chosen special case at
the fifth decimal place. The idea, as written earlier, was
born independently in two completely different contexts.
The practical context resulted from daily PID observations
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during many years of field work. The practical premise
results from the observation that the engineer expects a
completely different control operation far from the setpoint
value and a completely different one near it. For operating
states distant from the setpoint, achieved, for example, as
a result of disturbances or simply a sudden change in the
setpoint, we want to bring the process close to the reference
value as quickly as possible. In such a transient state, we
require aggressive and sudden action of the controller so
as to be able to bring the process close to the reference
neighborhood as quickly as possible.

In contrast, near the setpoint we expect extremely cautious
and conservative action. The control system should run
the process as calmly as possible while maintaining the
reference point. Moreover, when operating close to the set
value, the system must be resistant to process noise, so
as not to react unnecessarily or excite the actuator when
reacting to noise and not to regulatory requirements. This
aspect has been addressed in Domański (2022). Operation
close to the setpoint should allow to meet to goals: the
reference tracking and filtering of the noises.

The scientific interpretation has started in previous works
conducted 30 years ago. The non-stationary PID control
has been addressed in Domański (1994a,b), while later in
Domański (1994c, 1995) the similar approach has been
proposed for the predictive control. The above research
has investigated an idea of the fuzzy (knowledge-based)
supervision over the controller. The parameters of the
controller were subject to the modifications according to
the control error and its functions. It’s worth to notice
that error measures the actual process variable distance
from the setpoint, so those works addressed the same issue,
but fully independently and in a different way. Finally,
please notice that the idea is to use the non-stationary (or
non-linear using different interpretation) control for the
linear and stationary plant, which is opposite to the case
frequently addressed by robust or fuzzy control.

Though process control research does not consider that
idea seriously, the approach is quite frequently taken into
account in mechanical and robotic control context. Such
systems often exhibit nonlinear stiffness and therefore
analogous approach through the nonlinear PD-like algo-
rithm is applied Kelly and Carelli (1996). Initially that
type of the control has been used for the nonlinear systems,
while next research addressed the issue of nonlinear PID
control applied to the linear plant as proposed by Arm-
strong et al. (2001) for nonlinear PID servo control and
further developed by Zheng et al. (2005) for the PD parts
of the PID controller. Those works develop mechanical
approach with stiffness interpretation. The first one uses
switching between two values of low and high stiffness
controller gains, while the second one adds some value to
the controller gains according to the control error and its
derivative. From that perspective the approach generally
follows the methodology proposed in Domański (1994a).

As shown, the subject literature is quite limited. And
the existing works are conservative, as the introduced
controller non-linearity is bounded by the notion of the
stability. The researchers are closely attached to that
concept. Any controller considered must be fully stable.
It should be noted that this approach limits the possible

solutions. Perhaps this idea is controversial, but looking
at other fields, it may not have to be so. Once upon a
time, an airplane had to be aerodynamically stable. Now
it doesn’t have to be like this if we are able to control it
through the right approach to its supervision. In return,
we receive previously unattainable performance. Our work
tries to move in this direction at least a little bit beyond
the stability comfort zone. This step is justified by the fact
that such controllers successfully operate 24/7 in industry.

The proposed controller configuration takes into account
additional issue as well. In addition to non-linear control
behavior, the sic!-PID structure also takes into account
the filtering of measurement noise. Domański (2022) shows
that lack of filters can unnecessarily excite the control
system, generate and transmit its oscillations, cause ex-
cessive wear of the actuator device and simply lead to
poorer control performance . These effects are particularly
dangerous when we are dealing with multi-loop systems,
when poor operation of one control loop is transferred
to other systems, generating disruptions for them and
resulting in further accumulation of problems.

Following the above wide introduction we introduce the
simple and intuitive PI controller, named sic!-PID. It al-
lows to track the setpoint, filters the noises, protect the
system from unnecessary excitation, protects the actuator
and extends the time between its maintenance actions.
Section 2 presents the methods used together with the sim-
ulation environment. It is followed by section 3 presenting
the simulated results and section 4 showing industrial case
study. The paper concludes in section 5.

2. ALGORITHMS AND SIMULATIONS

The considered solution uses algorithms that do not go
beyond the basics of automation. The only alternative
solution is the use of ARFIMA-type filters, which are
used to model industrial disturbances that as shown in
Domański (2015) are certainly not Gaussian. Performance
indexes as valve travel, mean square, absolute errors and
robust standard deviation estimators are defined.

2.1 Fractional ARFIMA noise model

The ARFIMA time series is treated as an extension to
the classical ARIMA regression models; see Sheng et al.
(2012). The process xk is denoted as ARFIMA(p, d, q)

Ap(z
−1) · xk = Bq(z

−1) ·
(
1− z−1

)−d
ϵk, (1)

where A(z−1) and B(z−1) are polynomials in the discrete
time delay operator z−1, ϵk is random noise with finite or
infinite variance. We use Gaussian noise in this research.
Fractional order −0.5 < d < 0.5 refers to process memory.

For d ∈ (0, 0.5) the process exhibits long memory or
long-range positive dependence (persistence). The process
has intermediate memory (anti-persistence) or long-range
negative dependence, when d ∈ (−0.5, 0). The process has
short memory for d = 0; it is stationary and invertible
ARMA. ARFIMA(p, d, q) time series is calculated by d-
fractional integrating of a classical ARMA(p, q) process.

The d-fractional integrating through the
(
1− z−1

)−d
op-

erator causes the dependence between observations, even
as they are far apart in time.

IFAC PID 2024
Almería, Spain | June 12-14, 2024

449



2.2 Loop performance measures

The Domański (2020) describes various key performance
indicators (KPI) used to measure control performance. We
use uses three indexes: mean square error (MSE), integral
absolute error (IAE) and valve travel. The MSE - mean
square error is:

MSE =
1

N

N∑
i=1

(y∗i − yi)
2
, (2)

where N - number of samples, y∗ - setpoint (reference
signal), y - process output. The IAE - integral of absolute
error is evaluated by:

IAE =
1

N

N∑
i=1

|y∗i − yi| . (3)

The valve travel KV T ) is is a quantitative measure of
how much an actuator moves in time. It is evaluated
as a cumulative sum of absolute moves traveled by the
valve. It’s practical index measure of the actuator wear
giving an indications when the preventive maintenance
actions should be run. Moreover, the actuator performance
analysis is improved with another indicator, which collects
the number of direction changes in the actuator operation
per some time period (KV S) named the valve stroke.

2.3 Robust statistics

Robust statistics is used to address the presence of outliers
Huber and Ronchetti (2009). It enables estimation of the
shift or the scale for data affected by outliers. We use the
M-estimators with logistic psi-function.

M-estimators include the maximum likelihood estimator
(ML), which uses the log-likelihood formulation of a given
distribution Fµ,σ is

N∑
i=1

{
log f0

(
xi − µ

σ
− log σ

)}
, (4)

The M-estimator of location µ̂ is defined as a solution of:

1

n

n∑
i=1

ψ

(
xi − µ̂

σ0

)
= 0, (5)

where ψ(.) is the influence function, µ̂ is the location
estimator and σ0 = σG is a preliminary assumed scale. In
a similar way we define M-estimator for the scale σR = σ̂

1

n

n∑
i=1

ρ

(
xi − µ0

σ̂

)
= 1, (6)

where ρ(.) is a loss function, σ is a location estimator and
µ0 is a preliminary location. The paper uses the logistic
functions ρL(ξ) and ψL(ξ) given by

ρL(ξ) = k2L ln

[
cosh

(
ξ

kL

)]
, (7)

ψL(ξ) = kL tanh

(
ξ

kL

)
. (8)

2.4 Simulation models and environment

The simulation environment shown in Fig. 1 is imple-
mented in Simulink using blocks, such as transfer function,

dead zone, integrator and a Matlab function. It comprises
of the sic!-PI controller with the noise reduction mecha-
nisms at the controller input.

1
Tfa1s + 1

filtering

F(x)

nonlinearity

1
Tis

integration

ARFIMA

Gaussian noise

G(s)
PROCESS

PVSTP

sic!-PI

+ +

+-

deadzone

noise reduction

actuator

Figure 1. Simulation environment

Simulations use the process proposed in Faanes and Sko-
gestad (2004) and comprise of two tanks, in which we con-
trol temperature in second tank T2 using valve connected
to cold flow qc going into second tank as shown in Fig. 2.
The first tank is supplied with the hot flow qin acting as
a disturbance simulated as the ARFIMA noise.

Tank 1

Tank 1

qc 
Tc

T2

q1 T1 

qin Tin 

V2

V1

Figure 2. Process and the nominal data: V o
1 = 100[l],

V o
2 = 70[l], qoin = qo1 = 16[l/s], , qoc = 4[l/s],
T o
c = T o

2 = −40[oC]

The analysis compares two controllers: proportional (sic!-
P) and proportional-integral (sic!-PI). They are compared
with their classical parallel counterparts. Basic controller
are tuned using the Simulink PID autotuner build-in block,
which uses tuned frequency response to calculate new
parameters. Steps to tune non-stationary are as follows,
first seletcs the best set of coefficients from 6000 checked
combinations based on minimal values of implemented
metrics. Next, the gradient-descend based optimization
function fmincon is used. It starts from values found in
the previous step. Finally, the parameters are manually
fine tuned and their values are sketched in Table 1.

Table 1. Parameters of the applied controllers

Controller
proportional integral

Kp x0 a1 a2 Ti

P 2.446 — — — —
sic!-P — 0.1 1.0 3.0 —

PI 0.886 — — — 0.384
sic!-PI — 0.7 1.0 2.8 3.2
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The sic!-PI structure composes of the classical I element
and modified (nonlinear) P part, which is implemented as
Matlab non-linear function block shown in Fig. 3.

Figure 3. Non-linearity gain F(x) curve definition

This function is symmetrical about point (0,0). Parameter
x0 denotes the range ⟨−x0,+x0⟩ of the function gain equal
to a1, while outside this region the gain equal to a2 applies.
This function offers less aggressive control for small errors
close to the setpoint and more aggressive reaction further
from the reference value. The noise element uses the
method from Domański (2022), which consists of the dead-
band and the first order filter connected in series.

3. SIMULATION RESULTS

Simulation experiments are run in two versions: setpoint
tracking without the impact of the disturbance generated
as the ARFIMA noise or with this impact. In both cases
the system output is affected by normal noise. The com-
parison includes the P versus sic!-P and the PI versus sic!-
PI. The Fig. 4 presents time trends for the undisturbed and
ARFIMA disturbed cases using the proportional control.

(a) undisturbed (b) disturbed

Figure 4. Loop assessment for the proportional P control

We see the steady-state error effect due to the lack of
integration inside of the feedback loop. It should be noted
that in all simulations the same noise realization is used
to keep the analogous conditions of the performance as-
sessment. The Fig. 5 shows analogous time trends for the
PI control, in both undistributed and disturbed scenarios.
Process output in this case exhibits zero steady state error.

Visual inspection of the above loop trends does not bring
any decisive observations. During the assessment we take
into account the dynamic behavior of the loop, which is
represented by the properties of the control error signal
and the performance of the manipulated variable. The
general loop quality is assessed using two integral measures

MSE and IAE and two statistical factors: normal standard
deviation σG and its robust counterpart in form of the
logistic M-estimator σR. However, quantitative analysis
using the above indicators is preceded by a qualitative
review and comparison of the obtained histograms of
control errors. The analysis consist of the comparison of
the control error time trends, their histogram and scale
factors (standard deviations) of the fitted normal and
robust Gauss distributions.

(a) undisturbed (b) disturbed

Figure 5. Loop assessment for the PI control

The analysis starts with the comparison of the loop perfor-
mance for the proportional P controllers. Fig. 6 shows the
time trends and the histograms for disturbed controllers:
P and sic!-P. we see that due to the fact that the loops
exhibit non-zero steady state errors the statistical analysis
is highly biased. Similarly the integrals MSE and IAE
should be considered with caution, because we should
remember that MSE is equivalent to the normal standard
deviation and IAE to the scale factor of the Laplace dis-
tribution. Moreover, the non-zero steady state error biases
the integrals and limits proper interpretation of the results.
Therefore, only the analysis of the manipulated variable is
clear and unbiased in that case.
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(b) sic!-P controller

Figure 6. The loop assessment for the disturbed P control

Figs. 7 shows respective plots for the undisturbed case
for both regular PI and sic!-PI. The consecutive Fig. 8
presents the analogous data for the ARFIMA disturbed
scenarios. Due to the zero steady-state error the control
error time series are detrended and therefore they are
trend stationary. The evaluation of the indexes starts to
be unbiased, comparable and reasonable.

The introduction of the robust scale factor σR requires
some attention and explanation. Even these simple sim-
ulations show that the control error time trends, though
detrended, exhibit fat tails. The tails occur due to the
outlying observations that might appear due to the several
reasons. In the considered case we observe two separate
occasions: In the undisturbed case the simple changes in
the setpoint behavior cause them, while the disturbed case
is additionally impeded by the persistent ARFIMA noise.

IFAC PID 2024
Almería, Spain | June 12-14, 2024

451



200 400 600 800 1000 1200 1400 1600 1800 2000

time [samples]

-2

0

2

4

co
nt

ro
l e

rr
or

control error

Histogram and normal distribution fitting

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

control error

0

50

100

150

200

no
 o

f d
at

a

histogram
Gauss: x

o
=-0.00; <

G
=0.167

robust: x
o
=-0.00; <

R
=0.044

(a) PI controller
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(b) sic!-PI controller

Figure 7. Loop assessment for the undisturbed PI control
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(a) PI controller
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(b) sic!-PI controller

Figure 8. Loop assessment for the disturbed PI control

Observations of the histograms and fitted Gaussian normal
distributions clearly shows that normal standard deviation
σG is biased and artificially increased – red Gaussian dis-
tribution functions. In contrary, its robust versions allow
to capture the peak and shoulder regions of the histograms
neglecting of what occurs in the tails. Therefore, the σR
estimator is unbiased (blue Gaussian distribution func-
tions) and properly captures dynamics of the control error
allowing for the credible loop performance assessment and
comparison. The behavior of the manipulated variable is
independent on the loop properties being always reliable.

The summary of performance indexes is shown in Table 2.
We clearly see that introduction of the nonlinear controller
versions improves the loop performance and the wear and
use of the actuating element. We should note that the lower
valve travel is, the less energy is consumed by the actuator,
what is an important aspect nowadays.

Table 2. Simulations: performance indexes

MSE IAE σG σR KV T

noDist
P 0.395 0.515 0.374 0.408 53.1

sic!-P 0.910 0.868 0.412 0.354 37.6

Dist
P 0.398 0.517 0.381 0.416 112.9

sic!-P 0.911 0.874 0.432 0.358 83.8

noDist
PI 0.028 0.049 0.167 0.044 18.4

sic!-PI 0.029 0.050 0.170 0.045 30.3

Dist
PI 0.035 0.085 0.188 0.091 72.0

sic!-PI 0.034 0.077 0.184 0.082 68.5

4. INDUSTRIAL CASE STUDY

Industrial case study uses the oxygen level control done
for the pulverized coal boiler rated at 100 t/h. Due to the
anonymity precautions we cannot give more details on the
case. Fig.9 presents the data and control error statistical
preview for the PI case, while Fig.10 shows analogous
results for the sic!-PI control. The time periods used in
comparison are cross-checked to keep similar operational
conditions, like the similar boiler load, actuators not in sat-
uration and lack of external disturbances like fuel changes,
mill switching/configuration or boiler load fluctuations.
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Figure 9. The assessment for oxygen standard PI control
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Figure 10. The assessment for oxygen sic!-PI control

Visual comparison of the time trends shows serious differ-
ences. The sic!-PI makes control error close to be normally
distributed, which is good. Classical P control exhibits
oscillations, which are removed by the sic!-PI. This effect
is very important and achieved with simple means. Table
3 compares performance measures for both datasets.

Table 3. Boiler O2 control KPIs

MSE IAE σG σR KV T KV S

PI 0.111 0.279 0.333 0.372 1.479 1174
sic!-PI 0.028 0.136 0.166 0.164 1.465 1004

change 75% 51% 50% 56% 1% 14%

The second real example considers another type of the
boiler control. It is the boiler working at the pulp and
paper company and combusting various wooden fractions.
It aims at the HCl level control. Similarly to the previous
case we cannot give more details on the plant. Fig.11 shows
the data and control error statistics for the PI case, while
Fig.12 shows the results for the sic!-PI control.

Table 4 compares measures for both datasets. The ob-
servation is similar as previously. The sic!-PI controller
improves the performance, but in a different way. In the
first case, the controller puts much attention to the general
loop performance, while the HCl controller improves the
controller output and aims at better actuator usage.

The sic!-PI controller has two degrees of freedom allowing
the user to focus in an intuitive way on the right issue.
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Figure 11. The assessment for oxygen standard PI control
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Figure 12. The assessment for oxygen sic!-PI control

Table 4. Boiler HCL control KPIs

MSE IAE σG σR KV T KV S

PI 1.019 0.850 1.005 1.025 393 360
sic!-PI 0.980 0.784 0.984 0.999 285 271

change 4% 8% 2% 3% 27% 25%

5. CONCLUSION

This paper presents practically motivated simple and in-
tuitive nonlinear versions of common P and PI controllers.
They were initially validated in industry and proved their
efficiency. This paper reminds the idea of the PID simple
nonlinearity showing its positive effect both in simulations
and industrial cases. The sic!-PI configuration allows to
achieve two degrees of freedom (controller versus the actu-
ator) in a simple an intuitive way. We would like to stress
that the tuning of sic!-PI controllers allows reliable loop
operation delimiting aggressive action far away from the
setpoint from circumspect response close to the setpoint.

We have to be aware that cautious is required during the
design of the F(x) non-linearity block. As for now it is
done using the tuner’s experience, however there is a need
to develop some indications and tuning procedure.
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