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Abstract: Integrating processes can be found in various industries. The main characteristic of such 

processes is that a limited process input can cause an unlimited process output. In general, they are more 

difficult to control compared to stable processes. The recently developed Magnitude optimum multiple 

integration tuning method for integrating processes provides very good closed-loop responses. However, it 

uses a reference-weighting 2-DOF PI(D) controller structure where the weighting parameters for the P and 

D term of the controller are equal (therefore the user can only change one parameter). Another drawback 

of the existing method is that it needs to find the roots of the fourth-order algebraic equation. The method 

proposed here does not require finding these roots and provides better tracking compared to the original 

method while maintaining optimal disturbance rejection for different integrating process models.   

Keywords: PID control, controller tuning, integrating processes, MOMI method, disturbance rejection. 

1. INTRODUCTION 

Integrating processes can be found in chemical, process and oil 

industries in a form of level, pressure or concentration control 

loops (Åström and Hägglund, 1995). Due to the (theoretically) 

unlimited process outputs to limited process input signals, they 

are often more challenging for control when compared to 

stable (self-regulating) processes (Visioli et al., 2011). Typical 

integrating processes are oil–water–gas separator (Visioli et 

al., 2011), distillation column (Chien and Fruehauf, 1990; 

Fuentes and Luyben, 1983; Ruan et al., 2023; Wang and Hang, 

2001), polymerisation reactors (Srividya and Chidambaram, 

2020), processes with liquid tank systems (Ogunnaike and 

Ray, 1994), control of airplane position (Filatov et al., 1996), 

injection moulding processes (Liu and Gao, 2012), and similar 

(Kos et al., 2020b). 

There are many tuning methods existing for integrating 

processes (O’Dwyer, 2009; Kumar and Padma Sree, (2016). 

One of the methods is the Magnitude optimum multiple 

integration (MOMI) tuning method for integrating processes 

(Kos et al., 2020a,b). The method gives stable and fast closed-

loop responses on different integrating processes and does not 

require an explicit process model. Namely, the controller 

tuning needs only the process input and output signals during 

the steady-state change (Kos et al., 2020a,b). Naturally, the 

tuning can also be performed on arbitrary-order and delayed 

integrating process model. However, one of the weaknesses of 

the mentioned MOMI method is that it requires calculating the 

roots of the fourth-order equation. This is not a serious 

obstacle, since the roots can still be analytically calculated. 

However, the second weakness is that the reference-weighting 

factors for the proportional (P) and derivative (D) terms were 

chosen the same due to simplified derivation. This, inherently, 

means that the derived 2-degrees-of-freedom (2-DOF) PID 

controller cannot be optimal.  

In this paper we choose another approach where the control is 

virtually divided into an inner and an outer loop. When the 

parameters of both controllers are derived, the loops are joined 

into one 2-DOF controller. Such approach simplifies the 

derivation of the controller, since it does not require solving 

the roots of the fourth-order equation and it provides the most 

optimal tracking response at optimal disturbance-rejection 

responses, according to the magnitude optimum (MO) control 

requirements. Note that the tuning can still be performed on 

either the measurement of the process input and output signals 

during the steady-state change or on the delayed arbitrary-

order integrating process model.      

The remaining of the paper is as follows. In section 2, the 

virtual block scheme of the proposed control method is given. 

The calculation of the inner controller is given in section 3, 

while the calculation of the outer controller is carried out in 

section 4. Few experiments on different integrating process 

models are given in section 5. The conclusions are given in 

section 6. 

 

2. THE VIRTUAL CONTROL SCHEME 

The proposed control scheme for the integrating process is 

given in Figure 1. The control structure is frequently used in 

the literature, where the GCI controller is frequently used for 
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stabilising the process or when designing adaptive controllers 

(Shiota and Ohmori, 2012).  The control scheme is denoted as 

“virtual”, since it will be later on replaced by one 2-DOF PID 

controller.  

 

 

Fig. 1. The “virtual” control scheme consisting of the inner 

controller (GCI) and the main controller (GCM). 

 

The control strategy is to optimise the disturbance rejection 

response by an inner controller GCI and then to optimise the 

tracking response by a main controller GCM. 

The process transfer function (note that it is not explicitly 

required by the tuning method) is as follows: 

𝐺𝑃(𝑠) =
1

𝑠
𝐺𝑃0

∗ (𝑠)

𝐺𝑃0
∗ (𝑠) =  

𝐾𝑃𝑅(1 + 𝑏1𝑠 + 𝑏2𝑠2 + 𝑏3𝑠3 + ⋯ )

(1 + 𝑎1𝑠 + 𝑎2𝑠2 + 𝑎3𝑠3 + ⋯ )
𝑒−𝑠𝑇𝑑𝑒𝑙 , (1)

 

where G*
P0(s) represents the process without the integrating 

term. 

The process G*
P0(s) can also be described by the following 

infinite Taylor series around s=0 (Vrančić et al., 2021): 

𝐺𝑃0
∗ (𝑠) = (𝐴0 − 𝐴1𝑠 + 𝐴2𝑠2 − 𝐴3𝑠3 + ⋯ )  , (2) 

where Ai denote the so-called i-th characteristic area or 

moment of the process, which can be analytically calculated 

from the process steady-state change time response or from the 

process model (2) (Vrančić et al., 2001; Vrančić et al., 2021): 

𝐴0 = 𝐾𝑃𝑅

𝐴1 = 𝐾𝑃𝑅(𝑎1 − 𝑏1 + 𝑇𝑑𝑒𝑙)

𝐴2 = 𝐴1𝑎1 + 𝐾𝑃𝑅 (𝑏2 − 𝑎2 − 𝑇𝑑𝑒𝑙𝑏1 +
𝑇𝑑𝑒𝑙

2

2!
)

⋮

𝐴𝑘 = ∑(−1)𝑘+𝑖−1𝐴1𝑎𝑘−𝑖

𝑘−1

𝑖=1

+ (−1)𝑘+1𝐾𝑃𝑅(𝑎𝑘 − 𝑏𝑘) +

+𝐾𝑃𝑅 ∑
(−1)𝑘+𝑖

𝑖!
𝑇𝑑𝑒𝑙

𝑖 𝑏𝑘−𝑖

𝑘

𝑖=1

(3)

 

Since the process is of integrating type, the inner controller can 

be a PD controller. Then, the inner control loop transfer 

function (between signals uCM and y) corresponds to stable 

process without a pole in the origin. The main controller GCM 

will be a PID controller. 

 

3. THE INNER CONTROLLER 

The proposed inner-loop control strategy is to optimise the 

disturbance-rejection performance. Since the process GP(s) 

contains one pole in the origin, the chosen inner controller GCI 

is the following PD controller: 

𝐺𝐶𝐼(𝑠) =
𝐾𝑃𝐼 + 𝐾𝐷𝐼𝑠

1 + 𝑠𝑇𝐹

, (4) 

where KPI is the proportional gain, KDI the derivative gain and 

TF the filter time constant of the inner controller. In order to 

simplify the calculation, the process integrating term is 

virtually moved into the controller. In this case, the inner loop 

consists of the stable process G*
P0(s) (1) and the PI controller 

with filter: 

𝐺𝐶𝐼
∗ (𝑠) =

𝐾𝑃𝐼 + 𝐾𝐷𝐼𝑠

𝑠(1 + 𝑠𝑇𝐹)
, (5) 

where now KPI represents the integrating gain and KDI the 

proportional gain of G*
CI(s). 

To simplify the controller parameters derivation, the controller 

filter is virtually moved to the process. Therefore, the virtual 

controller transfer function becomes: 

𝐺𝐶𝐼
∗∗(𝑠) =

𝐾𝑃𝐼 + 𝐾𝐷𝐼𝑠

𝑠
, (6) 

and the virtual process becomes: 

𝐺𝑃0
∗∗ (𝑠) =

𝐾𝑃𝑅(1 + 𝑏1𝑠 + 𝑏2𝑠2 + 𝑏3𝑠3 + ⋯ )

(1 + 𝑎1𝑠 + 𝑎2𝑠2 + 𝑎3𝑠3 + ⋯ )(1 + 𝑠𝑇𝐹)
𝑒−𝑠𝑇𝑑𝑒𝑙𝑎𝑦 (7) 

The controller G**
CI(s) parameters for the process G**

P0(s) can 

now be optimised according to the disturbance rejection 

magnitude optimum (DRMO) tuning method (Vrančić et al., 

2004, 2010). The final equation for the PI controller is the 

following (Vrančić et al., 2004): 

𝐾𝐷𝐼 =
𝛾2 − 𝑠𝑔𝑛(𝛾2)𝐴1√𝐴2

2 − 𝐴1𝐴3

𝛾1

,

𝐾𝑃𝐼 =
(1 + 𝐴0𝐾𝐷𝐼

∗ )2

2𝐴1

 

𝛾1 = 𝐴0
2𝐴3 − 2𝐴0𝐴1𝐴2 + 𝐴1

3

𝛾2 = 𝐴1𝐴2 − 𝐴0𝐴3 (8)

 

Note that the areas Ai in (3) should be derived for the process 

(7) which also contains the controller filter term in the 

denominator. 

Note that the calculation of the inner controller parameters is 

based on moving the process integrating term inside the GCI 

and the controller filter inside the process. This is used only to 

simplify the derivation of the controller parameters. Note that 

the calculation of the main controller parameters will be based 

on the actual inner control configuration.   

r
GP

u

+

e y

GCI

+
_

GCM

inner loop

uCM

d

+

_

uCI

+
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4. THE MAIN CONTROLLER 

The main controller GCM controls the inner loop. By using 

block manipulations, it can be shown that the inner loop 

transfer function GPI (from signal uCM to y), when applying (2) 

and (4) is the following: 

𝐺𝑃𝐼(𝑠) =
𝑓0 − 𝑓1𝑠 + 𝑓2𝑠2 − 𝑓3𝑠3 + ⋯

𝑒0 − 𝑒1𝑠 + 𝑒2𝑠2 − 𝑒3𝑠3 + ⋯
  , (9) 

where 

𝑒0 = 𝐴0𝐾𝑃𝐼

𝑒1 = 𝐴1𝐾𝑃𝐼 − 𝐴0𝐾𝐷𝐼 + 1

𝑒2 = 𝐴2𝐾𝑃𝐼 − 𝐴1𝐾𝐷𝐼 + 𝑇𝐹

𝑒𝑘 = 𝐴𝑘𝐾𝑃𝐼 − 𝐴𝑘−1𝐾𝐷𝐼  ; 𝑘 ≥ 3

𝑓0 = 𝐴0

𝑓𝑘 = 𝐴𝑘 − 𝐴𝑘−1𝑇𝐹  ; 𝑘 ≥ 1 , (10)

 

and where Ai are the characteristic areas of the process G*
P0(s) 

(2), TF is the controller filter, and the inner controller 

parameters are KPI and KDI (8). 

The main controller is the filtered PID controller: 

𝐺𝐶𝑀(𝑠) =
𝐾𝐼 + 𝐾𝑃

∗𝑠 + 𝐾𝐷
∗𝑠2

𝑠(1 + 𝑠𝑇𝐹)
, (11) 

where the filter time constant TF is fixed to the same value as 

in inner controller (4). The main PID can then be calculated 

for process (9), where the MOMI tuning method can be used 

(Vrančić et al., 2021). Note that the filter term in the 

denominator of (11) should be considered as a part of the 

process (9) when calculating the process characteristic areas 

Ai. The calculation of the PID controller parameters is as 

follows (Vrančić et al., 2010): 

[

𝐾𝐼

𝐾𝑃
∗

𝐾𝐷
∗
] = [

−𝐴1 𝐴0 0
−𝐴3 𝐴2 −𝐴1

−𝐴5 𝐴4 −𝐴3

]

−1

[
−0.5

0
0

] , (12) 

Note that areas Ai in (12) differ from the ones in (10). 

By considering the inner (4) and the main (11) controller 

structures the following overall control equation is obtained: 

𝑢 =
𝐾𝐼 + 𝐾𝑃

∗𝑠 + 𝐾𝐷
∗𝑠2

𝑠(1 + 𝑠𝑇𝐹)
(𝑟 − 𝑦) −

𝐾𝑃𝐼 + 𝐾𝐷𝐼𝑠

1 + 𝑠𝑇𝐹

𝑦 =

𝐾𝐼 + 𝑏𝐾𝑃𝑠 + 𝑐𝐾𝐷𝑠2

𝑠(1 + 𝑠𝑇𝐹)
𝑟 −

𝐾𝐼 + 𝐾𝑃𝑠 + 𝐾𝐷𝑠2

𝑠(1 + 𝑠𝑇𝐹)
𝑦

𝐾𝑃 = 𝐾𝑃
∗ + 𝐾𝑃𝐼   

𝐾𝐷 = 𝐾𝐷
∗ + 𝐾𝐷𝐼

𝑏 =
𝐾𝑃

∗

𝐾𝑃

, 𝑐 =
𝐾𝐷

∗

𝐾𝐷

(13)

 

Therefore, the controller in Figure 1 can be realised by the 2-

DOF PID controller with reference weighting factors b (for P 

term) and c (for D term), as given in (13) and Figure 2. 

 

 

Fig. 2. The 2-DOF control realisation of the scheme in Figure 1. 

 

5. EXAMPLES 

Let us illustrate the proposed design on the following process 

models: 

𝐺𝑃1(𝑠) =
𝑒−0.2𝑠

𝑠(1 + 𝑠)(1 + 0.2𝑠)

𝐺𝑃2(𝑠) =
𝑒−𝑠

𝑠

𝐺𝑃3(𝑠) =
1

𝑠(1 + 𝑠)4
(14)

 

The chosen models are the same as the ones used in Kos et al. 

(2020b), since the results will be compared to the mentioned 

method. For all the processes, the controller filter time constant 

was TF=0.01 s, since the same value was used by Kos et al. 

(2020b).  

The calculated characteristic areas, according to the process 

GP1(s) (14), without the controller filter, are according to (3): 

𝐴0 = 1,  𝐴1 = 1.4,  𝐴2 = 1.5,  𝐴3 = 1.52. (15) 

The calculated specific areas, according to the process GP1(s) 

(14), including the controller filter, are, according to (3): 

𝐴0 = 1,  𝐴1 = 1.41,  𝐴2 = 1.514,  𝐴3 = 1.537. (16) 

The inner controller parameters (8) are: 

𝐾𝑃𝐼 = 2.04,  𝐾𝐷𝐼 = 1.40. (17) 

The calculated characteristic areas of the inner loop (9), 

including the main controller filter, are: 

𝐴0 = 0.49,  𝐴1 = 0.577,  𝐴2 = 0.339,  𝐴3 = 0.114,

𝐴4 = 0.01682,  𝐴5 = 0.00152 (18)
 

The main PID controller parameters (12) are: 

𝐾𝐼 = 1.346,  𝐾𝑃
∗ = 0.563,  𝐾𝐷

∗ = 0.065. (19) 

This corresponds to the following 2-DOF PID controller:     

𝐾𝐼 = 1.346,  𝐾𝑃 = 2.603,  𝐾𝐷 = 1.463,

𝑏 = 0.22, 𝑐 = 0.04. (20)
 

The obtained 2-DOF controller (20) will be compared with the 

controller provided in Kos et al. (2020b), which is set to the 

most optimal disturbance rejection response (b=c=0): 

r

GP

u

+

e

y

+

d

+

_

+

b

KI/s

c

KP

KDs

+
_

+
_

+

+
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𝐾𝐼 = 1.399,  𝐾𝑃 = 2.63,  𝐾𝐷 = 1.466,

𝑏 = 0, 𝑐 = 0. (21)
 

The closed-loop results are given in Figure 3. At t=0, the 

reference changes to r=1 and at the half time of the experiment, 

the disturbance signal changes to d=1 for all three examples. 

Since the controller parameters, without considering the 

weighting factors, are virtually the same, the disturbance 

rejection performance is almost the same, as seen in Figure 3. 

The only difference is slightly smaller undershoot of the 

proposed method. However, due to different weighting factors 

b and c, the reference tracking response of the proposed 

method is faster with slightly smaller overshoot.  

 

 

Fig. 3. The closed-loop process responses with integrating process 

GP1(s).  

 

Similarly, the same procedure is repeated for the process 

GP2(s). The inner controller parameters (8) are: 

𝐾𝑃𝐼 = 0.796,  𝐾𝐷𝐼 = 0.268. (22) 

The main PID controller parameters (12) are: 

𝐾𝐼 = 0.441,  𝐾𝑃
∗ = 0.304,  𝐾𝐷

∗ = 0.0649. (23) 

This corresponds to the following 2-DOF PID controller:     

𝐾𝐼 = 0.441,  𝐾𝑃 = 1.10,  𝐾𝐷 = 0.333,

𝑏 = 0.276, 𝑐 = 0.195. (24)
 

The obtained 2-DOF controller (24) will be compared with the 

controller calculated in Kos et al. (2020b), set to the most 

optimal disturbance rejection response: 

𝐾𝐼 = 0.475,  𝐾𝑃 = 1.128,  𝐾𝐷 = 0.339,

𝑏 = 0, 𝑐 = 0. (25)
 

The closed-loop results are given in Figure 4. Again, the 

disturbance rejection performance of the proposed method has 

slightly smaller undershoot, while the reference tracking 

response of the proposed method is significantly improved 

with faster response and slightly smaller overshoot. 

The same tuning procedure has been applied to the process 

GP3(s). The calculated (proposed) 2-DOF PID controller is:     

𝐾𝐼 = 0.0438,  𝐾𝑃 = 0.375,  𝐾𝐷 = 0.576,

𝑏 = 0.226, 𝑐 = 0.086. (24)
 

The obtained 2-DOF controller (24) will be compared with the 

controller calculated in Kos et al. (2020b), set to the most 

optimal disturbance rejection response: 

𝐾𝐼 = 0.0455,  𝐾𝑃 = 0.379,  𝐾𝐷 = 0.578,

𝑏 = 0, 𝑐 = 0. (25)
 

The closed-loop results are given in Figure 5. Again, the 

disturbance rejection performances are almost the same with 

slightly smaller undershoot of the proposed method. The 

reference tracking response of the proposed method is visibly 

improved. 

The integral of absolute error (IAE) values for all three tested 

processes for tracking (IAEt) and disturbance rejection (IAEd) 

responses are given in Table 1. It can be seen that all the IAE 

values are lower (better) when using the proposed method 

(note that the IAEd values are comparable). 

Due to space limitations, the fourth process (a non-minimum 

phase process) in Kos et al. (2020) is not presented herein. 

However, the proposed method again results in better IAEt 

value and in comparable IAEd value. 

 

 

Fig. 4. The closed-loop process responses with integrating process 

GP2(s).  
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Fig. 5. The closed-loop process responses with integrating process 

GP3(s).  

 

Table 1. The IAE values for tracking (IAEt) and disturbance (IAEd) 

rejection response for all three processes. 

 proposed Kos et al., 2020 

process IAEt IAEd IAEt IAEd 

GP1 1.79 0.92 2.18 0.93 

GP2 2.06 2.67 2.68 2.71 

GP3 7.87 28.57 9.67 28.69 

 

 

6.  CONCLUSIONS 

The proposed simplified method for the calculation of the 2-

DOF PID controller parameters gives virtually the same 

(optimal) disturbance rejection performance when compared 

to the original MOMI tuning method for three different 

integrating processes. At the same time, the proposed method 

visibly improves the tracking performance. The method was 

tested on three very different integrating process models where 

the results suggests that it is overall more optimal than the 

existing MOMI tuning method for integrating processes (Kos 

et al., 2020b). Another advantage of the proposed modification 

is that it does not require finding roots of the fourth-order 

equation. 

The sensitivity and stability analyses of the proposed method 

are not performed, since the control performance is effectively 

the same as in Kos et al., 2020b, where both analyses were 

already carried out extensively. Currently, the implementation 

of the proposed method to higher-order controller structures is 

under investigation. The second line of research is adding user-

defined parameter to define a trade-off between tracking and 

disturbance rejection performance. The online tool for the 

calculation of the controller parameters is also under 

preparation. 
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