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Abstract: The paper presents a modification of the Magnitude Optimum Multiple Integration (MOMI) 

method process non-parametric data in the frequency domain instead of the time domain. The required 

frequency data are obtained directly from the filtered amplitude-shifted process step response and have 

been shown to be relatively insensitive to normally distributed process noise. All calculations, including 

the calculation of the PID controller parameters, are performed analytically. The closed loop responses to 

tested processes with added normally distributed noise were relatively fast with small or no overshoot, all 

according to the Magnitude Optimum (MO) method. The proposed method is not limited to open loop step 

responses or to the PID controller structure.    

Keywords: controller tuning, PID control, Magnitude Optimum, frequency response, nonparametric 
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1. INTRODUCTION 

Tuning of the PID controller parameters is a hot topic for many 

decades (Visioli, 2006; Vilanova and Visioli, 2012). In 

general, PID controller tuning methods can be divided into 

parametric and non-parametric methods. The parametric 

methods are based on the process models, while the non-

parametric methods use only the process measurements in the 

time or frequency domain. 

The representative of the non-parametric tuning method is the 

Magnitude Optimum Multiple Integration (MOMI) tuning 

method (Vrančić et al., 1999; Vrančić et al., 2001), which is 

based on magnitude (amplitude) optimum principle (see, e.g., 

Veinović et al., 2023). The MOMI method does not require an 

explicit process model and the tuning can be based solely on 

process time response during the steady-state change. 

The closed loop responses to reference changes are relatively 

fast with small overshoots for a wide range of process models 

(lower order, higher order, delayed and non-minimum phase 

processes). The method was later applied to Smith predictors 

(Vrečko et al., 2001), optimised for disturbance rejection 

(Vrančić et al., 2010) and applied to integrating processes (Kos 

et al., 2020). 

While the method has been successfully applied in practice as 

well, it has one inherent shortcoming. The MOMI method is 

based on repeated integrations of the process input and output 

signals in order to calculate the so-called “characteristic areas” 

or “moments” of the process (Vrančić et al., 2001; Vrančić and 

Huba, 2021). Those moments are then used for the calculation 

of the controller parameters. However, in practice, the problem 

arises when the process output and/or input signals contain 

lower-frequency noise or disturbances. In this case, the 

calculation of the lower moments may contain some error 

which is then propagated and amplified when calculating 

higher moments. Naturally, the process moments can also be 

calculated directly from the process transfer function, but this 

defies the advantages of the proposed tuning method (which is 

based on non-parametric process data). Another way to use 

non-parametric process data is to use frequency response data 

(Vrančić et al., 2000). This means that the frequency response 

of the process transfer function (Nyquist points) at a low 

frequency and the first two derivatives of this frequency 

response over the frequency can also be used to tune the PID 

controller. 

However, although the first derivative of the frequency 

response can be obtained by choosing appropriate excitation 

signals (DeKeyser et al., 2019), the obtained derivative can 

still be sensitive to process noise. The second-order derivative 

is even harder to compute reliably. Therefore, the direct 

application of the proposed tuning method in Vrančić et al. 

(2000) is challenging. 

Here, we propose a novel tuning approach in which multiple 

measurements of the Nyquist points of the process at lower 

frequencies are used for the calculation without the need for 

the derivatives of the frequency response. In addition to the 

proposed tuning approach, we also propose an alternative way 

to calculate the process Nyquist response from the input and 

output signals of the process. As shown in this paper, the 

proposed approach is also relatively insensitive to the process 

noise. 
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The rest of the paper will be as follows. The proposed MO 

tuning method based on the frequency response of the process 

is explained in Section 2. Section 3 focuses on the 

measurement of the process frequency response in practice, 

where an innovative method for measuring the frequency 

response is presented. Examples on two process models will 

be carried out in section 4 and concluding remarks are given 

in section 5. 

 

2. MO FREQUENCY TUNING METHOD 

The Magnitude Optimum (MO) tuning method is aiming at 

achieving flat closed-loop amplitude (magnitude) frequency 

response in lower-frequency region. The amplitude should 

remain equal to 1 from ω=0 to as high frequency ω as possible. 

|𝐺𝐶𝐿(𝑗𝜔)| ≈ 1, (1) 

where GCL(jω) denotes the closed-loop frequency response. 

This criterion can be represented by the open-loop Nyquist 

curve of the controller and the process (GOL(jω)) which follows 

vertical line with real value -0.5:  

𝑅𝑒{𝐺𝑂𝐿(𝑗𝜔)} ≈ −0.5 (2) 

from ω=0 to the highest frequency possible, where  

𝐺𝑂𝐿(𝑗𝜔) = 𝐺𝐶(𝑗𝜔)𝐺𝑃(𝑗𝜔). (3) 

GC and GP in expression (3) stand for the controller and the 

process transfer function, respectively (Vrančić et al., 1999). 

The proposed PID tuning method, therefore, finds such 

controller parameters that expression (2) approximately holds 

in the lower frequency region.  

The PID controller transfer function, in Laplace domain, is: 

𝐺𝐶(𝑠) =
𝐾𝐼 + 𝐾𝑃𝑠 + 𝐾𝐷𝑠2

𝑠(1 + 𝑠𝑇𝐹)
, (4) 

where KI, KP, and KD are integral, proportional and derivative 

gains, respectively, while TF is the controller filter time 

constant.  

In the proposed method, to simplify the calculations, the 

denominator of (4) will be considered as a part of the process. 

Such filtered and integrated process transfer function G*
P 

becomes: 

𝐺𝑃
∗(𝑠) =

𝐺𝑃(𝑠)

𝑠(1 + 𝑠𝑇𝐹)
. (5) 

The modified controller transfer function therefore loses the 

filter and integrating term: 

𝐺𝐶
∗(𝑠) = 𝐾𝐼 + 𝐾𝑃𝑠 + 𝐾𝐷𝑠2 (6) 

Note that the open-loop transfer function  

𝐺𝑂𝐿(𝑠) = 𝐺𝐶(𝑠)𝐺𝑃(𝑠) = 𝐺𝐶
∗(𝑠)𝐺𝑃

∗(𝑠) (7) 

remains the same when using modified controller and process 

transfer functions. 

The tuning procedure is then based on the following equation: 

𝑹𝒆{𝐺𝑂𝐿(𝑗𝜔)} = 𝑅𝑒{𝐺𝐶
∗(𝑗𝜔)𝐺𝑃

∗(𝑗𝜔)} ≈ −0.5 (8) 

Therefore, 

𝑹𝒆{(𝐾𝐼 − 𝐾𝐷𝜔2 + 𝑗𝐾𝑃𝜔)𝐺𝑃
∗(𝑗𝜔)} ≈ −0.5 (9) 

in lower frequency region. Expression (9) can be rewritten into 

𝑅𝑒{𝐺𝑂𝐿(𝑗𝜔)} = 𝑹𝒆{𝐺𝑃
∗(𝑗𝜔)} (𝐾𝐼 − 𝐾𝐷𝜔2)  −  

−𝑰𝒎{𝐺𝑃
∗(𝑗𝜔)} (𝐾𝑃𝜔) ≈ −0.5 (10)

 

In matrix form, expression (10) can be rewritten as: 

𝑀Θ = [

−0.5
−0.5
−0.5

⋮

] (11) 

where 

𝑀 =

[
 
 
 
𝑹𝒆{𝐺𝑃

∗(𝑗𝜔1)} −𝑰𝒎{𝐺𝑃
∗(𝑗𝜔1)}𝜔1 −𝑹𝒆{𝐺𝑃

∗(𝑗𝜔1)}𝜔1
2

𝑹𝒆{𝐺𝑃
∗(𝑗𝜔2)} −𝑰𝒎{𝐺𝑃

∗(𝑗𝜔2)}𝜔2 −𝑹𝒆{𝐺𝑃
∗(𝑗𝜔2)}𝜔2

2

𝑹𝒆{𝐺𝑃
∗(𝑗𝜔3)} −𝑰𝒎{𝐺𝑃

∗(𝑗𝜔3)}𝜔3 −𝑹𝒆{𝐺𝑃
∗(𝑗𝜔3)}𝜔3

2

⋮ ⋮ ⋮ ]
 
 
 

Θ = [
𝐾𝐼

𝐾𝑃

𝐾𝐷

] (12)

 

Therefore, the controller parameters (vector Ɵ) can be 

calculated from three or more Nyquist points of filtered 

process frequency response GP
*(jω) in lower frequency region. 

If only three frequency points are used, the calculation is a 

relatively simple: 

Θ = 𝑀−1 [
−0.5
−0.5
−0.5

] (13) 

In practice, more robust solution is obtained when using more 

frequency measurements. In this case the controller parameters 

can be calculated by the least-squares as follows: 

Θ = (𝑀𝑇𝑀)−1𝑀𝑇 [

−0.5
−0.5
−0.5

⋮

] (14) 

 

3. OBTAINING PROCESS FREQUENCY RESPONSE IN 

PRACTICE 

One of the most common technique for obtaining process 

frequency response is by applying sinusoidal signals to the 

process input or by using relay excitation approach (Åström 

and Hägglund, 1995; de Keyser et al., 2019; Pavković et al., 

2021). Such identification procedure can take longer time, 

especially when the method requires the measurements of the 

process lower-frequency points. Here we propose another 

approach which can quite reliably estimate the process 
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frequency response also from the noisy process time 

responses.  

First, we have to obtain the process open-loop step response, 

which, in Laplace form, is as follows: 

𝑌(𝑠) =
𝐺𝑃(𝑠)

𝑠
, (15) 

where Y(s) represents the Laplace transform of the process 

output signal. The measured process step-response is then 

filtered by the a-priori chosen controller filter with time 

constant TF. The filtered step-response, in Laplace domain, can 

then be represented as follows: 

𝑌∗(𝑠) =
𝐺𝑃(𝑠)

𝑠(1 + 𝑠𝑇𝐹)
. (16) 

As can be seen, the Laplace form of the filtered response (16) 

corresponds to expression (5). Since both expressions are the 

same, the integrated and filtered process responses in 

frequency domain may be calculated by applying Fourier 

transform on the time-domain signal (16). 

However, the Fourier transform cannot be applied to signals 

that are not absolutely integrable. Unfortunately, the filtered 

process step-response (16) is such a signal. The usual approach 

in such a situation is to differentiate process output response 

and then apply the Fourier transform. However, by 

differentiating the noisy process response, the noise in the 

differentiated signal is significantly amplified, leading to 

unreliable Fourier transform results.  

In order to solve the mentioned problem, we propose a 

different approach. The filtered step-response should be 

subtracted from the final value of the step-response: 

𝑦∗∗(𝑡) = 𝑦(∞)ℎ(𝑡) − 𝑦∗(𝑡), (17) 

where h(t) denotes the unity-step signal which changes from 0 

to 1 at t=0 and y(∞) denotes the final value of the filtered step-

response. The signal y**(t) is absolutely integrable, so the 

Fourier transform can be applied on it. The Laplace transform 

of signal y**(t) is: 

𝑌∗∗(𝑠) = 𝐺𝑃
∗∗(𝑠) =

𝑦(∞)

𝑠
−

𝐺𝑃(𝑠)

𝑠(1 + 𝑠𝑇𝐹)
. (18) 

Therefore, when the Fourier transform of the signal y**(t) is 

already calculated, the following transformation should be 

applied to get the Fourier transform of the filtered step-

response of the process: 

𝑌∗(𝑗𝜔) = 𝐺𝑃
∗(𝑗𝜔) = −𝑗

𝑦(∞)

𝜔
− 𝑌∗∗(𝑗𝜔). (19) 

The calculation of Y*(jω) should be performed at three or more 

frequencies ω and then it can be applied to expression (12). 

Remark 1. The duration of the process step-response 

experiment should be chosen so that the process output settles 

down. This is usually achieved after the sum of the process 

time delay and several process time constants.  

Remark 2. The calculation of the final value of the process 

filtered step-response y(∞) can be estimated by averaging the 

last 5-10 % of the process step-response. 

Remark 3. The filtered process step-response should be 

divided by the amplitude of the process input step change. 

Remark 4. Selecting the highest frequency is not an easy task. 

In practice, it can be based on the duration of the experiment, 

as will be shown in the next section. 

 

4. EXAMPLES 

The tuning procedure will be illustrated on two different 

process models, although the authors tried it on several process 

models. The first example is the following first-order process 

model with time delay: 

𝐺𝑃(𝑠) =
𝑒−𝑠

1 + 2𝑠
. (20) 

In both experiments, the sampling time is TS=0.002 s and time 

of experiment is Texp=15 s. The normally distributed noise 

signal (e.g. with Matlab function randn) with amplitude 0.05 

and sampling time TS=0.002 s is added to the process output 

for both tested process models. The PID controller filter time 

constant was a-priori chosen as TF=0.02 s (holds for both 

tested processes). 

The process time response, when applying step signal at the 

process input, is shown in Figure 1. 

 

Fig. 1. The open-loop step response of the process (20) (blue line) 

and the filtered response (orange line). 

The filtering of the process output signal was performed by the 

first-order filter with the time constant equivalent to TF=0.02 

s. The Nyquist curve of the filtered process response is 

calculated by expression (19) and shown in Figure 2. It is clear 

that the calculated frequency response is very similar to the 

theoretical one in spite of a considerable process noise.   
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Fig. 2. Nyquist curve of the filtered process (20) step-response 

The 10 frequency points in the Nyquist plot were chosen to 

span logarithmically equidistantly over one frequency decade, 

where the lowest and the highest frequencies are 

𝑓𝑚𝑖𝑛 =
1

2𝑇𝑒𝑥𝑝

 [𝐻𝑧],   𝑓𝑚𝑎𝑥 =
10

2𝑇𝑒𝑥𝑝

[𝐻𝑧] (21) 

Naturally, the process Nyquist curve can be easily calculated 

by multiplying the Nyquist curve of the filtered process step-

response (Figure 2) by s∙(1+sTF) in Laplace space or by jω∙(1+ 

jωTF) in frequency-domain. Just for illustration purposes, the 

calculated Nyquist curve of the original process is shown in 

Figure 3. 

 

Fig. 3. Nyquist curve of the identified (calculated) process (20) 

(circles) and the actual Nyquist curve of the process (stars). 

The lowest 7 Nyquist frequency points in Figure 2 were fed to 

expressions (12) and (14) to calculate the controller 

parameters. The resulting PID controller parameters were: 

𝐾𝐼 = 0.789,  𝐾𝑃 = 1.87,  𝐾𝐷 = 0.64 (22) 

The open-loop Nyquist curve of GCGP is then shown in Figure 

4. It can be seen that the open-loop frequency response tightly 

follows vertical line with real value of -0.5 at low frequencies, 

that corresponds to the MO optimum criterion.  

 

Fig. 4. The identified (circles) and the actual (stars) open-loop 

Nyquist curve GC(jω)GP(jω). 

The obtained controller was then tested in the closed-loop 

configuration with the process. The closed-loop response is 

shown in Fig. 5. As expected, the closed-loop response is 

relatively fast with small overshoot, all according to the MO 

tuning method. 

 

Fig. 5. The closed-loop time response of the process (20) output. 

The second example is the third-order process:  

𝐺𝑃(𝑠) =
1

(1 + 𝑠)3
. (23) 

The process time response, when applying step signal at the 

process input, is shown in Figure 6. 
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Fig. 6. The open-loop step response of the process (23) (blue line) 

and the filtered response (orange line). 

All the filtering and calculation steps were the same as in the 

first example. The Nyquist curve of the filtered process 

response is calculated by expression (19) and shown in Figure 

7. Again, the calculated frequency response is very similar to 

the theoretical one.   

Like in the previous example, the lowest 7 Nyquist frequency 

points in Figure 11 were fed to expressions (12) and (14) to 

calculate the controller parameters. The resulting PID 

controller parameters were: 

 
𝐾𝐼 = 1.11,  𝐾𝑃 = 2.84,  𝐾𝐷 = 2.07 (24) 

 

The open-loop Nyquist curve of GCGP is then shown in Figure 

8. It can be seen that the open-loop frequency response again 

tightly follows vertical line with real value of -0.5.  

The obtained controller was then tested in the closed-loop 

configuration with the process. The closed-loop response is 

shown in Fig. 9. As expected, the closed-loop response is 

relatively fast with small overshoot, all according to the MO 

tuning method. 

 

Fig. 7. Nyquist curve of the filtered process (23) step-response 

 

Fig. 8. The identified (circles) and the actual (stars) open-loop 

Nyquist curve GC(jω)GP(jω). 

 

 

Fig. 9. The closed-loop time response of the process (23) output. 

 

Due to the lack of space, only two examples were shown. 

However, the proposed method was also tested on other types 

of processes, including the non-minimum phase processes. 

The results were similar to the ones presented above. The 

identified process frequency responses were very close to the 

actual ones and the closed-loop responses were fast and non-

oscillatory, all according to the MO tuning method.  

 

5.  CONCLUSIONS 

The proposed PID tuning method is based on the open-loop 

process step responses. The open-loop time-response is first 

transferred into the frequency-domain by Fourier transform of 

the shifted process open-loop response. Then the process 

frequency response is obtained by simple algebraic 

manipulation in the frequency domain. The obtained 

frequency responses were very similar to the ideal ones in spite 
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of a relatively high levels of the process noise. The PID 

controller parameters were also determined analytically and 

without any optimisation. The closed-loop time responses 

were relatively fast with small or no overshoot, all according 

to the Magnitude Optimum (MO) method. 

The proposed method can be therefore considered as an 

extension of the MOMI method into the frequency domain and 

can also be used when the process output signal contains a 

higher level of noise. Moreover, frequency-domain data opens 

up new possibilities for additional optimisation of the closed-

loop response. It is also worth mentioning that the proposed 

method is not limited to the process step-response 

measurement and to the PID controller structure. 

In future research, the sensitivity of the method to process 

noise and the duration of the experiment will be investigated 

in more detail. Since the proposed method is not limited to PID 

controllers, the tuning of higher-order controllers and the 

series realisation of the control algorithm will be investigated 

as well. The time-varying systems identification is also 

investigated. Modification of the proposed tuning method for 

finer, user-defined, adjustment of the closed-loop response is 

also foreseen. Future research will also include the 

optimisation of disturbance rejection performance, since 1 

degree of freedom (1-DOF) controller structure can lead to 

sub-optimal disturbance rejection responses.  
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