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Abstract: This paper presents a self-tuning PI controller to control the temperature of a
greenhouse using natural ventilation. The PI controller parameters are adapted according to the
changing dynamics of the process, identified with a simplified greenhouse temperature model
based on first principles. The time-varying model parameters are estimated online using the
random scaling-based bat algorithm. The model is linearized to obtain a first-order transfer
function which facilitates the design of the PI controller using well-known tuning methods.
Simulated results with real greenhouse data show that the proposed solution could be applied
to keep controllers tuned throughout different agri-seasons.
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1. INTRODUCTION

Temperature control in greenhouses is essential for optimal
crop growth as air temperature affects the physiological
processes of plants. In Mediterranean greenhouses, natural
ventilation is the main method to control the temperature
during the day, due to the climate of the region and the
fact that it is an inexpensive method (Rodriguez et al.,
2015). Natural ventilation allows warm air from inside the
greenhouse to be exchanged with cooler air from outside.
It can be an effective passive cooling system to control
temperature if proper regulation of the opening of the
greenhouse vents is performed.

In this context, different control techniques based on
proportional-integral-derivative (PID) control have been
widely used with good results to control the temperature
and other climate variables in greenhouses (Iddio et al.,
2020; Rodriguez et al., 2015). However, the climate inside
a greenhouse depends mainly on the external weather con-
ditions, the crop transpiration, the greenhouse structure,
and the soil material. These factors change over time, for
example, depending on the seasons, the crop variety, or the
plastic cover deterioration. Therefore, it is indispensable
to periodically tune the controllers according to the short-
term and long-term time-varying dynamics of the green-
house climate. In addition, it may be necessary to have
controllers tuned to operate at different setpoint values,
depending on the temperature range to be controlled,
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due to the nonlinear behavior of the dynamics relating
temperature and natural ventilation (and other effects).

Adaptive control is often used to address the above prob-
lems by continuously adjusting the parameters of a con-
troller to account for changes in process dynamics and dis-
turbances (Astrom and Wittenmark, 2008). Several adap-
tive control techniques have been applied to greenhouses,
including self-tuning PID control (Gouadria et al., 2017;
Su et al., 2020), adaptive feedback linearization (Berenguel
et al., 2003; Lijun et al., 2018), model reference adap-
tive control (Wang and Wang, 2020), multirate adaptive
control (Arvanitis et al., 2000), adaptive generalized pre-
dictive control (Ramezani et al., 2023), adaptive robust
control (Luan et al., 2011), and adaptive control using
neural networks (Zeng et al., 2012).

This paper presents a self-tuning PI controller whose pa-
rameters are adapted indirectly by online estimation of a
greenhouse temperature model based on first principles.
The main contribution of this work consists of the combi-
nation of the following elements:

e As explained in Section 3, a simplified model for
temperature is used to consider the effect of natural
ventilation through an exponential expression, which
reduces the complexity to linearize it and thus ob-
taining a first-order transfer function to relate the
temperature (controlled variable) to the vents open-
ing (manipulated variable). The parameters of the PI
controller can be calculated from the resulting linear
model using well-known design methods.

e As explained in Section 4, the time-varying param-
eters of the simplified temperature model are esti-
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mated using an online estimator based on the ran-
dom scaling-based bat algorithm (RSBA), success-
fully tested by Guesbaya et al. (2022) for a tempera-
ture model in a real greenhouse. This fact motivated
the selection of the RSBA for this work over other
estimation methods.

The aforementioned control methods exhibit common lim-
itations including sensitivity to modeling errors and un-
certainties, complex analytical calculations, and computa-
tional expense. In comparison, the control approach pro-
posed in this paper stands out for the design simplicity.
Also, by utilizing first principles-based model estimation,
the controller can better adapt to system dynamics, miti-
gating the effects of model mismatch and uncertainties.

Results are presented in Section 5 and confirm the good
performance of the adaptive PI controller in different
climatic conditions (summer and winter), and at different
operating points (with changing setpoints).

2. DESCRIPTION OF THE GREENHOUSE

A traditional Almeria-type greenhouse with an area of
877 m? was used in this work (see Fig. 1). It is located
at “Las Palmerillas” Experimental Station of the Cajamar
Foundation, in El Ejido, Almeria, Spain.

The greenhouse has five roof vents (8.36 m x 0.73 m) and
two side vents (32.75 m x 1.90 m) on the north and south
walls. As shown in Figure 1a, the roof vents have an angled
opening while the side vents are opened by rolling up the
plastic cover. The vents can be opened from 0% to 100% of
their ventilation area to control the temperature. All the
vents actuate simultaneously by receiving the same control
signal (i.e., percentage of open area of the vents).

3. GREENHOUSE AIR TEMPERATURE MODEL

The dynamics of the greenhouse air temperature zr, is
commonly modeled by the scientific community with a
nonlinear differential equation (Rodriguez et al., 2015)
which represents an energy balance as follows:

d%T
— = Qsol,a + anv,ss—a - anv—cnd,a—e (1)

dt
- Qven - Qloss - Qtrp

where Cthr = Csph,a Cden,a (Cvol,g/carea,ss)a being Csph,a the
specific heat of air, cgen,s the air density, cyol; the volume
of air inside the greenhouse, Carea,ss the soil surface of the
greenhouse, and ) denotes the different heat exchanges
occurring in the greenhouse: Q01,5 is the solar radiation
flux assumed to be absorbed by the air in the greenhouse,
Qecnv,ss-a is the convective flux between the soil surface
and the greenhouse air, Qcnv-cnd,a-c 1S the convective and
conductive flux through the cover, Qep is the heat lost by
natural ventilation, Qg5 is the heat lost due to infiltration
losses (e.g., holes in the cover), and Q,p is the latent heat
effect due to crop transpiration.

Note that natural ventilation is the only actuator consid-
ered in (1) by means of Qyen. The calculation of the heat
lost by natural ventilation depends on the volumetric flow
rate of ventilation. This ventilation rate is calculated using
highly nonlinear expressions that relate different factors
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(a) (b)
Fig. 1. Greenhouse: (a) Exterior view with the roof and
side vents, (b) Interior view

such as the vents opening percentage, the total ventilation
area of the greenhouse, the wind speed outside, the tem-
perature difference between inside and outside, and time-
varying coefficients that depend on the weather conditions
(Pérez-Parra et al., 2004). Therefore, it is complicated to
use the model in (1) for the design of control strategies.

The following subsections present the steps taken to obtain
a simplified temperature model (especially for Qyen) and
the corresponding linearized model for control purposes.

8.1 Simplified air temperature model

The model in (1) results in the following expression, taking
into account that Qyen + Qloss are both considered through
the ventilation rate term Vien flux:

de,a o
ar Casw,a Ctsw,g €

<_Cesw XLAI) d

Cthr sT,e

+ Cevs (mT,ss - mT,a)

(2)

— Cevd (mT,a - dT,e)

Cthr

Vven,ﬂux (zT,a - dT,e)
Cvyol,g

where Casw,n is the shortwave absorption coefficient of
the greenhouse air, cisw,g is the shortwave transmission
coefficient of the cover, d e is the solar radiation outside
the greenhouse, c.ys is a convection coefficient for the
difference between the soil surface temperature xr s and
the air temperature inside the greenhouse, and c.yq is a
coefficient of heat loss through the plastic cover due to
the difference between the temperature inside and the
temperature outside dr .

Regarding the simplifications made to the model in (1), on
the one hand, note in (2) that it was assumed that the crop
transpiration can be considered as a gain reduction factor
affecting the solar radiation flux by means of a canopy
shortwave extinction coefficient cqsy and depending on the
leaf area index of the crop Xt,a1, as presented by Berenguel
et al. (2003). The leaf area index is considered with a
constant value for each day because it varies slowly, on
a long-term time scale corresponding to crop growth. On
the other hand, the ventilation rate can be calculated with
the following exponential equation that was demonstrated
by Pérez-Parra et al. (2006); Berenguel et al. (2006) to be
accurate and valid for an Almeria-type greenhouse with
roof and side vents:

Vven,ﬂux = dws,e a (uven)b + Closs (3)

where dys e is the wind speed, uyen is the vents opening
percentage, a and b are empirical parameters that depend
on weather conditions and need to be estimated for each
particular greenhouse, and cjoss are the infiltration losses.
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Expression (3) is substituted in (2), and some parameters
are grouped and renamed so that a straightforward model
can be obtained for a linearization procedure, as follows:
de,a
dit

Cthr = Crad dsr,e + Cevs (xT,ss - xT,a)

— Cevd (xT,a - dT,e) (4)

- (Cvl dws,e (uven)b + Cv2) (iCT,a - dT,e)

where Crad = Casw,a Ctsw,g e(_cesw XLAI)7 Cy1 =a (Cthr/cvol,g)7
and cy2 = Clogs (Cthr/cvol,g)-

3.2 Model linearization

A linearization procedure was applied to (4), which can
be expressed as a function in (5) that depends on the
greenhouse air temperature, the soil surface temperature,
the external weather, and the vents opening percentage.
dJIT)a
dt

Cthr = f(xT,av TT ssy Uven, dsr,e7 dT,e7 dws,e) (5>
Note that the non-linearity of (4) remains in the ventila-
tion rate term. Nonetheless, thanks to the aforementioned
simplifications, it is easier to linearize the resulting func-
tion compared to the well-known complex ventilation rate
expressions in the literature (Pérez-Parra et al., 2004).

The Taylor series first-order approximation was applied
to linearize the function in (5). The operating point is
expressed by the variables with notation such as v, and
the deviation variables are expressed such as v. Note that
f(®) = 0 when evaluated in the operating point (i.e.,
equilibrium point). Only the terms corresponding to the
greenhouse air temperature and the vents opening are
shown below in (6)-(8), but the linearization was applied
to the complete function. The omitted terms, for reasons of
limited space, consist of the effects of the external weather
and the soil surface temperature on the greenhouse air
temperature, considered as disturbances.

_ of | . of | -
f(xT,ay Uven) == f(U) + axT@ . Tra+ 8Tvcn ] Uvyen (6)
9 _
8xf,a s = —Ccvs — Cevd — Cv1 dws,e (aven)b — G2 =D1 (7)
9 ~ _
8uin o = —Cn dws,e b (aven)bil (jT@ - dT,e) =bp2 (8)

The resulting linear model for the relationship between
the greenhouse temperature and the effect of natural
ventilation is calculated by applying the Laplace transform
with null initial conditions to (6) to obtain a first-order
transfer function:
Gu(s) _ XT’a(S) k

Uyen($) T rs 1 ©)

D2 K) Cthr
k=-2 (2 7= S
P1 (% p1 ()

4. ADAPTIVE CONTROL APPROACH

(10)

Fig. 2 presents the adaptive control scheme that has
been implemented. The online adaptation of the model
described in (2) is performed with the RSBA, the algo-
rithm in charge of estimating the time-varying parameters.
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The model parameter estimation block is fed with the
current and past values of the process input (i.e., vents
opening), disturbances (i.e., outside weather), and outputs
(i.e., greenhouse temperature and other state variables).
The external wind speed and solar radiation are filtered
before being used in the estimation block, due to the noise
observed in the measurements.

From the estimated parameters of the model in (2), the
parameters of the linear model in (9)-(10) are finally
obtained, which are calculated depending on the operating
point defined by (Zr,a, Gven, dT e, dws,e), according to the
values measured in the greenhouse at each instant in which
the controller parameters are going to be updated.

The parameters estimated by the RSBA-based online esti-
mator are provided to the controller design block to subse-
quently calculate the PI controller parameters according to
the desired specifications for the closed loop and the chosen
tuning method. It is important to note that the controller
parameters should vary more slowly than the control loop
sampling time (Astrom and Wittenmark, 2008). There-
fore, the model and PI parameter adaptation is performed
every one minute and the control loop sampling time is
30 seconds, selected according to the dynamics commonly
exhibited by the greenhouse climate and external weather,
especially to account for fast variations of wind speed
(Rodriguez et al., 2015). As demonstrated by Guesbaya
et al. (2022), the computational cost of the RSBA is very
low and can be used for real-time model adaptation.

4.1 Model parameter estimation using the RSBA

The random scaled-based bat algorithm is a metaheuristic
optimization algorithm, inspired in nature as it imitates
the bats’ searching on prey (i.e., an optimal solution) using
their echolocation skill when they fly with a random walk
technique. The complete description of the RSBA-based
online estimator can be found in Guesbaya et al. (2022),
including its sensitivity and robustness analyses when used
with a model like (2).

In this work, every one minute, the RSBA changes the
temperature model parameters in a cost function that is
evaluated with each possible solution (i.e., set of parame-
ters) for a maximum of 100 iterations, tested to be suffi-
cient to ensure that the best solution is found in much less
than 1 min. The RSBA selects the solution that minimizes

Specifications Estimated time-varying parameters

Controller Model parameter
: : : : ] XTa
design estimation using RSBA "
XT,ss
1; Xrar
KP' Ti dsrer drer Aws,e
Setpoint N Uyen
Pl controller y Greenhouse
XT,a

Fig. 2. Adaptive control scheme
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the mean square error (MSE) between the temperature
given by the model and the temperature measured in the
greenhouse during the last three minutes (i.e., last three
samples in a recursive manner). According to Guesbaya
et al. (2022), undesirable fluctuations could appear in the
estimation when using more than the last three samples.

In particular for exploitation, the RSBA generates a local
solution around the best selected solution. Each new i-th
set of parameters is generated with C’f“ = C! + olet At
where ¢ are the time instants when the model estimation
is executed, C' contains the sets of parameters, C, is the
current best solution, ¢ is a scaling factor to regulate
the step size of the local random walk, e € [—1,1] is a
random number, and A is the mean bats’ loudness. The
scaling factor increases the chance to reach optimality by
0" = Omint(Omax—0min) B¢, where ¢ € [0,1] has a random
value from a uniform distribution. A, omin, and omax can
be set by trial and error to adjust the RSBA behavior,
among other setting features (Guesbaya et al., 2019).

Table 1 lists the parameters of the model to be estimated
with their respective search limits, which are imposed to
ensure that the physical sense of the model is respected,
based on previous experience or values reported in the
literature (Rodriguez et al., 2015). Each parameter is
estimated by the RSBA-based online estimator only when
their related dynamics is changing or exciting the process.
For instance, Casw,a and cisw,e are estimated when solar
radiation is greater than 5 W/ m?, Cosw 1S estimated when
the leaf area index of the crop is greater that 0.1, and
the ventilation parameters a and b are estimated when
the vents are open. Otherwise, the parameters keep their
previous optimal values.

The RSBA-based online estimator uses adaptive search
ranges for each parameter. Instead of searching solutions
in the total space given by the physical limits shown in
Table 1, the computational burden is reduced by randomly
generating the population of possible solutions in the
neighborhood of the last best parameter value, depending
on the variation rate R; of each parameter (also shown
in Table 1). Thus, the adaptive search ranges for each c;
parameter are LB;"'1 = ci(1 - R;) and UB;Jrl =ci(1+
R;), where LB are the lower bounds and U B are the upper
bounds of the adaptive search ranges. In any case, the
algorithm is prepared to keep the values of the adaptive
search ranges inside the search space delimited by the
physical limits.

4.2 Calculation of the PI controller parameters

For setpoint changes and to compensate for weather and
non-measurable disturbances, the parameters K}, and 7; of
the PI controller can be calculated with the SIMC tuning
rules (Skogestad, 2003) applied to the transfer function
presented in (9)-(10) and imposing a closed-loop time con-
stant of 7., = 0.3 7. In addition, the PI controller includes
an anti-windup mechanism (Astréom and Higglund, 2006)
based on the back-calculation technique to deal with the
saturation of the vents opening and for bumpless transfers,
with a tracking constant of T; = T;.

The resulting values of K}, and 7T} are continuously super-
vised, and minimum and maximum limits are imposed to
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Table 1. The time-varying parameters of the
model to be estimated

Lower Upper Variation

Parameter o oo limit rate Units
Casw,a 0.1 0.9 1% -
Ctsw.g 0.1 0.9 3% -
Cosw 0.4 0.8 0.1%

Cevs 1 20 1% W/(m2 K
Cevd 2 30 1% W/(m? K)
a 0.01 1 1% -

b 1 2 1% -
Closs 0.1 0.9 1% m3 /s

avoid values that may cause overly aggressive controller
behavior or instability issues. Also, when the vents remain
closed at any instant, the PI parameters are not updated
and keep their last calculated value.

5. CONTROL RESULTS

The adaptive control was tested in simulation using a
complete model for the greenhouse climate, which consists
of a system of three nonlinear differential equations to sim-
ulate the greenhouse air temperature, relative humidity,
and soil surface temperature (Rodriguez et al., 2015). The
complete model plays the role of a real greenhouse in this
study. It was calibrated for the greenhouse described in
Section 2 and for different seasons of the year.

Fig. 3 presents the control results for a summer day in
September, when the crop is in its initial stage and a leaf
area index equal to zero is considered. As can be seen,
it is a hot day, without relevant changes in the external
weather variables since it is a sunny day with little wind.
However, the increasing effect of the solar radiation curve
makes it difficult to control the temperature at different
setpoints. Note that natural ventilation presents cooling
limitations because it depends to a large extent on climatic
conditions and the characteristics of each greenhouse.
For this reason, setpoint changes were simulated and the
adaptive PI controller was compared with a PI controller
whose parameters (K, = -20 %/K and T; = 1000 s) were
not tuned according to the dynamics of the system on that
particular day. This illustrates what can happen when a
controller originally tuned in autumn is used on a summer
day, for example. Although PI control could be considered
robust to changes, the aim of this work is to keep the PI
well-tuned for varying weather and operating points, so
that the temperature control is as desired according to
closed-loop specifications for a crop cycle.

Considering the evolution of the greenhouse temperature
in Fig. 3, the adaptive controller clearly outperforms
the PI controller with fixed parameters, since the tem-
perature is successfully controlled with the adaptive PI
over the entire operating range. For quantitative assess-
ment, the integral absolute error (IAE) was calculated as
IAE = [|e(t)|dt, where e(t) is the control error given by
each controller, and the control effort (CE) was calculated
as CE = [ |uyen(t) — tven(t — At)|dt. Compared to the
non-adaptive controller, the adaptive PI controller scored
3.2 times less TAE with 2.7 more control effort. These
results were expected as the non-adaptive controller can
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Fig. 3. Simulated control results with real data from

September

not track the setpoints in all the operating points. The
greater control effort for the adaptive PI controller is due
to the peaks in the control signal to reach each new tem-
perature setpoint. Note that the greenhouse described in
Section 2 has a reduced ventilation area, so greater changes
in the vents opening are needed. Nonetheless, if the control
signals of the adaptive and non-adaptive controllers are
compared at midday (between 14:00 and 16:00), it can be
seen that they are similar (also the CE) but the adaptive
PI manages to keep the temperature closer to the setpoint.

Fig. 4 shows the model estimation results and the change
of the PI controller parameters for the results of Septem-
ber. Regarding the model estimation using the RSBA, it
can be seen that the greenhouse temperature simulated
by the model in (2) fits satisfactorily to the temperature
measured in the greenhouse (simulated with the complete
nonlinear model from Rodriguez et al. (2015)). The mean
absolute error (MAE) is 0.11°C and the maximum ab-
solute error (MaxAE) is 1.22°C in a range of [19.24,
42.39] °C, which are significantly accurate values for an
online estimation of a physical model. Note that the
model adaptation starts at 00:00 to keep the fitting error
minimized during the complete day, but only the time
interval for the daytime control is shown. The evolution
of the model parameters is presented in the right column
of Fig. 4. Conservative variation rates were used (recall
Table 1), but sufficient to ensure a good model estimation
and avoid large changes in the values of the PI controller
parameters. As for K, slightly elevated (negative) values
are obtained due to the imposed closed-loop specifications
(recall Section 4.2) and because of the reduced ventilation
capacity of this particular greenhouse.

Fig. 5 presents the control results for a winter day in
January, when the crop is at an advanced stage of growth
and a leaf area index equal to three is considered. In this
case, noticeable changes in the external climate variables
can be observed, being a cloudy and windy day. With
these climatic conditions, it is intended to confirm that
the adaptive PI controller works well in another season
with different dynamics and its behavior is evaluated
when the presence of disturbances is greater. Regarding
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the greenhouse temperature, the setpoints are correctly
tracked with the adaptive PI controller even in spite of
the deviation due to the remarkable solar radiation change
at 14:40. As for the results presented in Fig. 6 for the
model estimation with the RSBA, the MAE is 0.09°C
and the MaxAE is 0.95°C in a range of [13.77, 24.44] °C.
However, the fitness of the model could be better in some
moments, as in the change of solar radiation at 14:40. In
this sense, some tests should be performed by changing
the variation rate of the model parameters to evaluate if
the control performance could increase when great or fast
changes occur in the process dynamics. In any case, the
PI controller parameters are in a reasonable range, taking
into account the different values of the model parameters
compared to the values estimated for summer.
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6. CONCLUSION

It is concluded that the adaptive PI controller could be
used in a greenhouse to control the temperature with
natural ventilation throughout a crop cycle. The controller
adapts well to changing climatic conditions and differ-
ent operating points. This makes the proposed control
approach attractive for plug-and-play application in any
greenhouse at any time of the year, considering its practi-
cality due to its design simplicity.

Future work may be aimed at adjusting the features of
the RSBA-based online estimator, like the variation rate
for the model parameters, so that the model fits as well
as possible to the measured temperature at instants with
highly changing dynamics, which can result in better val-
ues for the controller parameters and increased control per-
formance. The proposed adaptive control will be tested in
a real greenhouse and adaptive feedforward compensators
will be added for measurable disturbances rejection. In
addition, the RSBA-based online estimator could be used
for other control solutions that depend on the greenhouse
temperature model, such as feedback linearization.
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