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∗Departamento de Ingenieŕıa de Sistemas Industriales y Diseño, UJI,
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Abstract: In this work we analyze the stability regions for PI controllers under a Symmetric-
Send-On-Delta sampling strategy. This event-based sampling provides a significant reduction
in the data needed for control and certain immunity against noisy signals without affecting
significantly the performance. Hitherto, most of the analysis of this kind of event-triggered
strategies to determine the apparition of limit cycles are based on the Describing Function
technique, which may provide misleading results. Instead, in this work the analysis is based on
the Tsypkin’s margin, which provides accurate results. Through this robustness measure, the
stability regions for PI controllers are obtained as a function of its parameters. Some well-known
tuning rules are also evaluated to determine its stability.

Keywords: Event-based PID control, PID tuning and automatic tuning methodologies,
Nonlinear PID control.

1. INTRODUCTION

Nowadays, Event Based Control (EBC) is becoming more
and more popular as an alternative to classical periodical
time driven control systems. A wide variety of this kind of
event-triggered control systems have been proposed in the
literature since they provide a reduction in the measure-
ment frequency of certain signals without degrading the
closed loop performance. In interconnected systems where
the usage time of shared resources is critical, for instance,
the communication channel in networked control systems
or in wireless communicated systems, being able to relieve
the charge on this resources is crucial. For example, in
(Feeney and Nilsson, 2001) a wireless networked system
was studied and it was proven that the reduction in the
data flow provided benefits in terms of power consumption,
which can lead to an increase of the lifetime of batteries.
Because of those benefits, EBC stands out as a promising
control approach for networked control systems, being its
importance recognized in (Dotoli et al., 2019). An updated
and extensive study about the main contributions to EBC
during the last twenty years can be found in (Aranda-
Escolástico et al., 2020) and references therein.

Several control techniques have been adapted to perform
a correct EBC, among them the PID algorithm stays as
one of the most relevant techniques. According to a study
conducted in (O’Dwyer, 2006), PID control is among the
most spread control techniques across the industry, being
implemented in more than 95% of the controllers. Similar
results were observed in a survey to the members of the
industrial committee of IFAC presented in (Samad, 2017).
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The data flow in the context of EBC not only depends on
the control technique used but also on the event genera-
tion mechanism, which should only transmit events when
significant changes in the state of the system are produced.
Among the different event generation methodologies, the
Send-On-Delta (SOD), presented in (Miskowicz, 2006),
has proven to reduce considerably the data flow through
the network (Dormido et al., 2008; Ploennigs et al., 2010).
A variation of the SOD called Symmetric-Send-On-Delta
(SSOD), was first proposed in (Beschi et al., 2012). The
SSOD sampling transmits new data whenever a change
greater than the threshold δ is detected, being the quan-
tized magnitude a multiple of δ. In (Pawlowski et al.,
2016), a control loop with a SSOD was used to regulate a
greenhouse production process.

Despite the advantages that this EBC provides, it also
presents a characteristic non-linear behavior which may
induce limit cycle oscillations in the closed loop response.
These sustained oscillations reduce the performance of the
control system and accelerate the wear out of actuators,
so they must be avoided. Some early works focused on
characterizing these limit cycles induced by the SSOD
and proposing PID controllers for different applications
(Beschi, 2014; Chacón et al., 2013; Ruiz et al., 2017).

In literature, some works address the induction of limit
cycle oscillations through the study of the Describing
Function (DF) technique (Romero et al., 2014; Miguel-
Escrig and Romero-Pérez, 2021). This approach allows
using the classical control theory concepts, like the Nyquist
plot for the analysis and design of these systems, as well
as proposing tuning methodologies based on robustness
criteria (Romero-Pérez and Llopis, 2016; Romero-Pérez
and Llopis, 2017; Miguel-Escrig and Romero-Pérez, 2021).
Thanks to the DF characterization, authors have devel-
oped and characterized some variants of the SSOD sam-
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Fig. 1. Networked control system with SSOD sampling
strategy in a SSOD-C(s) architecture.

pler, such as the presented in (Romero-Pérez and Llopis,
2017; Miguel-Escrig and Romero-Pérez, 2020; Miguel-
Escrig et al., 2022), assessing their effect of the closed loop
response.

However, the DF technique presents the limitation of being
applicable only to those cases where the linear part of
the system is capable of filtering the effect of high order
harmonics. This makes the DF analysis not suitable for
studying processes modeled by First Order Plus Time De-
lay (FOPTD) models, widely used in industry to describe
the dynamic behavior of actual plants and processes.

To overcome this limitation, in (Miguel-Escrig et al., 2018)
a measure called Tsypkin’s margin (MT ) was presented.
This robustness measure is based on the Tsypkin’s method
(Tsypkin, 1984), which takes into consideration the effect
of the harmonics. This measure was applied in (Miguel-
Escrig et al., 2020) to develop a tuning procedure for
obtaining robust PID controllers under a SSOD sampling
strategy.

Due to the predominance of PI over PID controllers in
the industry, in this work, the Tsypkin margin MT will
be used to determine the regions defined by the plane
Kp-Ki which conduce to a robust controller according
to MT . The regions will be obtained for FOPTD pro-
cesses. In addition, several well-known tuning rules will be
evaluated to determine their applicability in loops with a
SSOD, namely, Ziegler-Nichols (Ziegler and Nichols, 1942),
AMIGO (Åström and Hägglund, 2004), One-Third rule
(Hägglund, 2019) and SIMC (Skogestad, 2003).

The paper is distributed as follows. In Section 2 the prob-
lem to be addressed is deeply presented. In Section 3 the
approach followed to determine the regions Kp −Ki and
its robustness is explained. The obtained results and its
discussion is presented in Section 4. The performance in
terms of robustness of the evaluated classical methods is
presented in Section 5. Finally, in Section 6, the conclu-
sions about this work are drawn.

2. PROBLEM STATEMENT

Consider the networked control system shown in Figure 1.
This control loop presents a sensor unit modeled by the
reference tracking and the event generation block EG,
which for this work is a SSOD. The network effect is
modeled by a delay exp(−tds) representing the worst
case latency scenario, the controller and actuator unit
is modeled by a zero-order hold ZOH and the controller
C(s) and the process to control is modeled by its transfer
functionGp(s). The reference signal yr, the quantized error
ē, the control action u and the system output y are also
presented as well as the disturbance input signal p.

Fig. 2. Hammerstein-Wiener condensation for the analysis
of the schema presented in Figure 1.

To evaluate the effect of the elements in the loop on the
robustness, the schema presented in Figure 1 has been
rearranged since it admits a Hammerstein-Wiener repre-
sentation, resulting in the schema presented in Figure 2. In
this figure, Gol(s) = C(s)Gp(s)e−tds represents the open-
loop transfer function and gathers all the linear elements:
controller, process and network delay. On the other hand,
the block EG-ZOH contains the functionality of the SSOD
quantization and the ZOH. This representation splits the
system in a linear and a non-linear part, which allows ap-
plying some analysis techniques in the frequency domain.

As aforementioned, since the DF technique is valid only
for certain cases, in this study, the robustness measure
MT , called Tsypkin margin, will be used. The margin MT

represents the minimum distance in the Nyquist plane
between any point of the open-loop transfer function
and its respective Tsypkin Branch. A Tsypkin Branch
is a trajectory in the Nyquist plane defined for a given
frequency. If a Tsypkin Branch intercepts the open-loop
transfer function at the frequency that defines it, a limit
cycle oscillation can take place, and the oscillations will
have that frequency. In this case where the intersection
takes place, a measure MT = 0 is obtained.

In (Miguel-Escrig et al., 2020) it was concluded that the
MT margin for a FOPTD model that approximates a high
order process is lower than the value of MT for the high
order process model. That is to say that assuring a value of
MT for the FOPTD approximation of a high order system
will assure, at least, the same or a higher robustness for
the original model.

Other works like (Sánchez et al., 2020) suggested an
approach which consider a limited amount of harmonics as
initial point of departure for evaluating the robustness of
the controllers. Nevertheless, as the amount of harmonics
was not sufficient, simulations had to be run to validate
the obtained controllers.

Hence, in this work the feasibility regions in terms of
robustness for a PI controller, determined in the plane
Kp-Ki, for FOPTD models will be evaluated using the
robustness measure MT . Therefore, the obtained feasibil-
ity regions can be safely applied to evaluate high order
processes approximated by these FOPTD models, which
will offer at least the same amount of robustness.

3. ANALYSIS STUDY

As explained in the previous section, the study will be
focused on FOPTD models since the obtained results can
be extended to higher order processes. Thus, the models
that will be evaluated will present the following structure:

Gp(s) =
K e−Ls

1 + Ts
.
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Consider that the network delay e−tds is included within
the delay of the process model Gp and that the system is
regulated by a PI controller:

C(s) = Kp +
Ki

s
.

Note that by considering the parallel form, I controllers
are also included in the study.

The margin MT admits a dimensionless analysis (Miguel-
Escrig et al., 2020), i.e. the same value of MT will be ob-
tained for a given system and for its equivalent dimension-
less process. This simplifies the analysis by reducing the
number of cases to evaluate, defined by the combinations
of parameters of process and controller. The parameters
to evaluate following the dimensionless approach are KKp

and KKiL, and the obtained results will hold for different
processes as long as the same ratios KKp and KKiL are
maintained. For this study an unitary gain K and time
constant T have been considered.

The different dynamics of FOPTD processes can be gath-
ered through a single normalized parameter:

τ =
L

L+ T
.

For small values of τ almost first order systems are found.
On the other hand, for values of τ close to 1 we find pure
delay systems. In this analysis study a range of τ ∈ [0.01, 1[
has been considered. A small delay has been kept to model
the network behavior.

Regarding to the evaluated controller’s parameters’ ranges
it has been consideredKp ∈ [0, 1/γcp[ where γcp is the gain
margin of Gp(s)e−tds and Ki ∈ [0, 1/γ′cp[ where γ′cp is the

gain margin of Gp(s)e−tds/s. These ranges for Kp and Ki,
which are different for each process model, conform a grid
that includes P, I and PI controllers.

4. RESULTS

Using the previously described set up, the boundaries of
the region which assures robustness against limit cycle
oscillations has been obtained, i.e. the boundaries of the
region that assures MT > 0. These boundaries are pre-
sented in Figure 3. In these figures the region is presented
from two points of view and with linear and logarithmic
KKp axis to increase the visibility for low values of τ .

From these figures it can be seen that for lower values of
τ , i.e. for processes with low influence of the delay with
regard to its dynamic, the regions of admissible values for
the controller parameters are more spread than for delay
dominant processes.

A detailed view of the feasibility region is given in Figures
in 4 for several values of τ . These figures are flattened
extracts from the regions presented in Figure 3a and can
be used to evaluate the robustness of a given controller.
In this figures it can be appreciated that the range of
the parameter KKp is reduced as τ increases but the
maximum KKiL is maintained.

In Figure 5 it has been presented the contour of the regions
that assure different degrees of robustness according toMT

for three processes defined by τ . Figure 5a presents the
robustness regions for a process whose delay is negligible

with regard to its dynamics. In Figure 5b a balanced
process, whose delay is comparable to its dynamics is
presented. And in Figure 5c a process where the delay
dominates the dynamic is presented.

In all those cases the resultant regions reduce their size
with the increase of MT and are subsets of the regions
with lower MT . The resultant areas tend to group towards
the origin of the presented axis, meaning that for a given
process, a reduction in Kp and/or Ki must be performed
to reach higher values of MT .

To provide a comparison between Tsypkin and DF based
analysis methods, in Figure 6, the inverse negative of
the DF traces for a SSOD sampler, in red, have been
presented in the Nyquist diagram together with the open-
loop transfer function of the processes and controllers
placed at the limit of stability, i.e. the closest stable cases
to the MT = 0 borderline. In this figure it can be seen
that some processes intersect the traces of the inverse
negative of the DF and others are placed far from these
traces. However, according to the robustness measure MT ,
they are all close to present limit cycle oscillations, which
remarks the limited applicability of DF’s theory for this
kind of systems.

The presented regions can be used to asses the robustness
against limit cycle oscillations induced by the SSOD of a
given controller, specially using Figures in 4. This usage
of the regions is detailed in the following example.

Example 1. Consider a FOPTD model with τ = 0.1 whose
transfer function is defined by:

G(s) =
e−0.1s

1 + 0.9s
,

and two PI controllers whose transfer function is given by:

C1(s) = 9.2 +
5

s
, C2(s) = 10 +

5

s
.

The feasibility region for FOPTD models with τ = 0.1 is
presented in Figure 7, in which the controllers C1 and C2

have been marked with a red dot.

As it can be seen, controller C1 is placed inside the
stable region (MT ≥ 0), but controller C2 is placed
outside, therefore, the apparition of limit cycle oscillations
is expected only for the controller C2 case.

To visualize both cases, the analysis using Tsypkin’s
method has been performed. In Figure 8 it has been
presented each of the open-loop transfer functions together
with their critical Tsypkin branch, i.e. the trajectory that
defines MT .

Despite the similar shape of both open-loop transfer func-
tions, which present similar gain, phase and sensitivity
margins, the usage of the measure MT reveals that for GC1

we have MT = 0.01 > 0, avoiding limit cycle oscillations,
and for GC2 we obtain MT = 0, presenting oscillations.

Both controllers have been tested in simulation. In Figure
9 the closed-loop temporal response for both cases to a
unitary step change at the reference input and a 2δ step
change at the disturbance input at t = 10s is presented.
As it can be seen, both systems manage to stabilize the
response when the reference change is produced, however,
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(a) Linear KKp axis. (b) Logarithmic KKp axis.

Fig. 3. Robust regions (MT > 0) for PI controllers with the normalized axis.

(a) τ ∈ [0.045, 0.01] (b) τ ∈ [0.05, 0.202] (c) τ ∈ [0.246, 1]

Fig. 4. Feasibility regions, (MT > 0) for different values of τ .

(a) τ = 0.017 (b) τ = 0.498 (c) τ = 0.89

Fig. 5. Robustness within the feasible regions for different values of τ .

a limit cycle is induced by the SSOD sampler when
controller C2 is used after the disturbance change.

5. EVALUATION OF CONTINUOUS TUNING RULES

A common practice in this type of control structures is to
tune the controller according to continuous tuning rules,
usually those that are well settled and provide a rea-
sonable amount of robustness regarding to classical mar-
gins. In this section several tuning rules will be evaluated
using the previously presented regions, namely, Ziegler-
Nichols (Ziegler and Nichols, 1942), AMIGO (Åström and
Hägglund, 2004), One-Third rule (Hägglund, 2019) and
SIMC (Skogestad, 2003). These design methods are well-
known and its applicability has been proven to control
numerous linear processes.

The parameters Kp and Ki have been calculated for the
previous tuning rules for the studied range of τ . Each of
them is presented as a line in Figure 10, Ziegler-Nichols
in blue, AMIGO in green, One-Third in red and SIMC in
orange. As the influence of the delay is lower on the studied
process, i.e. the parameter τ becomes lower, some tuning
rules provide values of Kp and Ki outside the feasible
region, being One-Third tuning rule the unique method
that provides robust controllers in all the evaluated range.
For the other methods the application range has been
found. Ziegler-Nichols can be applied safely for processes
with τ ≥ 0.25, AMIGO for τ ≥ 0.098 and SIMC for
τ ≥ 0.087.

Despite the ranges of application for the different tuning
rules, it is worth remarking that none of them has been
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Fig. 6. Representation in the Nyquist diagram of Gol(jω)
for all the limiting cases.

Fig. 7. Feasibility region for τ = 0.1 and placement of
controllers C1 and C2 within it.

Fig. 8. Nyquist diagram of GC1 (solid black line) and GC2

(solid red line) with its respective critical Tsypkin
branches (dashed lines) to which MT is calculated.

conceived to be applied in this kind of control loop,
and therefore, their robustness in terms of MT varies
in all the evaluated range. Hence, to contribute with
more information about the robustness that these methods
provide, MT has been calculated. The results have been
presented in Figure 11, where it can be seen the variation
in MT when applying the studied methods. As it can be
seen One-Third tuning rule provide robust controllers in

0 5 10 15 20
0

0.5

1

1.5

t [s]

y(
t)

Fig. 9. Closed loop temporal response of GC1 (black) and
GC2 (red) to step change at the reference input (blue)
and a 2δ step disturbance at t = 10s.

Fig. 10. Feasible region with Ziegler-Nichols (blue),
AMIGO (green), One-Third (red) and SIMC (orange)
tuning rules.

10−1 100
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Fig. 11. MT for the studied tuning rules: Ziegler-Nichols
(blue), AMIGO (green), One-Third (red) and SIMC
(orange).

terms of MT for all the studied range of τ , providing the
higher level of robustness among the methods for most of
the range. The other methods present a critical value of
τ until which MT = 0, from that critical value of τ the
methods provide robust controllers in terms of MT . SIMC
tuning rule presents a very peculiar behavior, which is the
stabilization in a given level of robustness MT = 0.4, which
is due to the characteristics of the tuning method and the
dimensionless properties of MT .

6. CONCLUSIONS

In this work the feasible regions for PI controllers applied
to loops under SSOD sampling have been presented. The
regions have been evaluated for First Order Plus Time
Delay models using the robustness margin MT , derived
from the Tsypkin method, which takes into account the
contribution of high order harmonics in the apparition of
limit cycle oscillations unlike other methods based on the
Describing Function approach.
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It has been observed that the regions, defined by the
dimensionless parameters KKp and KKiL, are more ex-
tensive for processes with low influence of the delay, and
narrower for delay dominated processes. This difference in
the extension is provided mostly by the variability that
KKp can admit, as KKiL remains unaltered in all the
evaluated range.

In addition, several tuning rules have been tested, namely
Ziegler-Nichols, AMIGO, One-Third and SIMC. The study
reveals that only One-Third tuning rule can be applied
safely through all the evaluated range, providing different
levels of robustness. The other tuning rules present a
critical value of τ , which defines the dynamic of a FOPTD
process, from which they can be applied safely. Below that
critical value, their temporal responses can present limit
cycle oscillations.
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Aranda-Escolástico, E., Guinaldo, M., Heradio, R.,
Chacón, J., Vargas, H., Sánchez, J., and Dormido, S.
(2020). Event-based control: A bibliometric analysis
of twenty years of research. IEEE Access, 8(March),
47188–47208. doi:10.1109/ACCESS.2020.2978174.
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Llopis, R. (2018). New robustness measure for a kind of
event-based PID. IFAC-PapersOnLine, 51(4), 781–786.

Miguel-Escrig, O., Romero-Pérez, J.A., and Sanchis-
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