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Abstract: The tracking control design for nonlinear plants by model inversion, following the
Linear Algebra Based methodology, usually assumes a proportional to the error approaching
of the process variables to the references evolution as a design criterion for the control. In this
paper, by using the well-known properties of the integral action, a PI-like control is assumed,
countering constant disturbances and model parameters uncertainty. The application to a simple
mass-spring nonlinear system illustrates the procedure.
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1. INTRODUCTION

Control of nonlinear plants has been the subject of a lot
of research in the last years and there is a lot of literature
on this topic (see Jarzebowska (2012), and the well known
books like Isidori (1995), Khalil (2002) or Grimble and
Majecki (2020)).

In this setting, the problem of reference tracking for robots
and manipulators has been studied by using different tools
and many solutions have been proposed (see, for instance,
Matschek et al. (2019), Kuhne et al. (2005), Li et al.
(2015)) applying model predictive control, Chwa (2004),
by using sliding mode control or Panahandeh et al. (2019)
by using Lyapunov control theory. The application of
most of these techniques requires complex assumptions
and computations.

If the plant model is well known and the model is control
affine, model inversion could be an interesting option.
But model inversion is not always possible and some
constraints apply, for instance, if feedback linearization is
used. The idea is simple. Let us assume a plant model
defined by

ẋ = f(x) + g(x)u; y = h(x) (1)

where x ∈ Rn is the state vector, y ∈ Rp is the output
vector and u ∈ Rm is the control input. The signal to be
tracked is expressed as the reference for the output vector,
yr ∈ Rp. In the simplest scalar case of n = p = m = 1,
with y = x, the tracking control can be derived as

u =
1

g(x)
[−f(x) + v] −→ ẏ = v (2)

linearizing the closed loop system (and being easy to
control by any classical linear control system design ap-
proach) and allowing the reference tracking by appropriate
selection of the new input v. This is the main idea of
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the feedback linearization technique to control nonlinear
plants.

This model inversion is not always so easy in the general
case. For instance, if n = p = m, the input matrix g(x)
in (1) should be regular. If the feedback linearization
approach is used, to design the control for a nonlinear
plant, the model should be transformed to the Byrnes-
Isidori canonical form Isidori (1995), and this is not always
possible.

A new methodology, denoted as Linear Algebra Based
(LAB) control design (Scaglia et al. (2020a), Scaglia et al.
(2020b)), is also simple to apply but, again, is not always
applicable and their simplicity is lost if some algebraic
computations come out to be complicated. An interesting
feature of this mehodology relies on the fact that the
control is based on the tracking errors. Thus PID control
(Aström and Hägglund (2005)) may by an appropriate
control strategy to deal with disturbances.

In this paper, LAB control is applied to track the tra-
jectory of a mechanical system. The use of integral and
derivative control actions allows for an improvement in
the original control design, simply based on proportional
control. The paper is organized as follows: first, the LAB
methodology is introduced, being applied to control the
position of a mass-spring-damper (MSD) system with non-
linear damping coefficient (Slotine and Li (1991)). The
behavior under external disturbances and parameters un-
certainty is evaluated.

Then, a PID control strategy is proposed and the improve-
ments in the controlled system behavior are discussed. In
fact, for this system, only the integral action improves
the control. An approximated implementation of the PI-
LAB controller allows for an easy tuning of the parameters
as well as the analysis of process parameters variations.
Finally, some conclusions are drafted.
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2. LINEAR ALGEBRA BASED CONTROL (LAB)

This methodology (Scaglia et al. (2020a)) was proposed
to design the control to be applied to a nonlinear system
with model (1) for tracking a known reference signal.

2.1 LAB fundamentals

The main steps in applying LAB are:

(1) Split the state vector by considering the tracked
variables and the so-called sacrifized variables.

(2) Assign the required approaching of the tracked vari-
ables to the references. By this assignment, the con-
trol action will be computed. Thus, this is the control
design criterion.

(3) Compute the reference for the sacrifized variables to
get a unique solution of the controlled process.

(4) Compute the control action by model inversion.

The main difficulties in applying this procedure rely on the
computation of the reference for the sacrifized variables
and the possible internal stability problems.

Among the main advantages, other than the simplicity, it
can be considered that the control design criterion is based
on the trajectory errors.

2.2 Proportional tracking control of a nonlinear system

Assume a nonlinear model for a mass-spring-damper sys-
tem such as

mÿ + r(y2 − 1)ẏ + γy = u+ d (3)

where m is the mass, r is the viscous damping coefficient
depending on the mass position and γ is the link stifness;
y is the mass position, u is the action force and d is a
generic disturbance. This model follows the well-known
Van der Pol forced equation (Slotine and Li (1991)) and
it also describes the behavior of an RLC electrical circuit
with a nonlinear resistor or the oscillations in vacuum tube
circuits (Khalil (2002)). The goal is to control the MSD
mass position to follow a given trajectory, yr.

1) Denoting by z = ẏ the second (sacrifized) state variable,
a possible internal representation of (3) will be[

ẏ
ż

]
=

[
z

− γ
m
y − r

m
(y2 − 1)z

]
+

[
0
1

m

]
(u+ d) (4)

Initially, the undisturbed model (d = 0) will be considered.

2) The required behavior of the controlled process is
defined by assigning the approaching of the controlled
variable derivative to that of the reference. A proportional
to the error criterion is usually assumed.

ẏ = ẏr + kyey = ∆y (5)

where ey = yr − y. The same is done for the sacrifized
variable derivative, even its reference, zr, is not yet defined

ż = żr + kzez = ∆z (6)

where ez = zr − z.

In this setting, the controlled system behavior can be
expressed by[

ẏr + kyey
żr + kzez

]
=

[
z

− γ
m
y − r(y2 − 1)

m
z

]
+

[
0
1

m

]
u (7)

where zr is, at this moment, undefined.

3) To have a unique solution of (7), the sacrifized variable
is required to be

zr = ∆y = ẏr + ky(yr − y) (8)

and (looking at (5)) this will be its reference. Thence, its
derivative will be

żr = ÿr + ky(ẏr − z) (9)

Thus, considering (6) and taking into account (8) and (9),

∆z = żr + kz(zr − z) (10)

= ÿr + (ky + kz)ẏr + kykzyr − kykzy − (ky + kz)z

4) Finally, from the second raw in (7), the control action
would be:

u = m∆z + γy + r(y2 − 1)z (11)

This control action can be arranged as

u= uf + ub (12)

uf =m[ÿr + (ky + kz)ẏr + kykzyr]

ub = (γ −mkykz)y + [r(y2 − 1)−m(ky + kz)]z

where uf is a feedforward control from the reference and
ub is a state feedback control. Other than the feedforward
path, if the feedback control ub is applied, the closed loop
will be [

ẏ
ż

]
=

[
0 1

−kykz −(ky + kz)

] [
y
z

]
(13)

That is, the closed loop is stable as far as ky > 0, kz > 0,
and these coefficients are precisely the closed loop poles,
with reversed sign.

It is worth to observe that, under process initial conditions
matching those of the reference, the output perfectly
follows the reference, y = yr.

2.3 Nominal behavior

The undisturbed (d = 0) plant (4) has been simulated with
parameters: γ = 0.1N/m, r = 0.02Ns2/m2 and m = 1Kg.
To avoid strong control actions, instead of a step change in
the input, the reference signal is assumed to be smoothed
as the response to a unitary step, delayed 1 sec, of a second
order system defined by, for example:

0.01ÿr + 0.2ẏr + yr = u (14)

If the MSD initial conditions (IC) are the same as those
of the reference, the mass position trajectory perfectly
matches the reference (dashed line in Fig. 1), where the
proportional control (5-6) has been assumed to be ky = 2;
kz = 1.

On the other hand, if the initial state of the MSD differs

from that of the reference (being assumed to be [ 0.2 0 ]
T

),
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Fig. 1. MSD tracking the reference: different IC (solid line),
same IC (dashed line).
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Fig. 2. Control action for different IC.

the trajectory is as represented in red solid line in Fig. 1.
Anyway, after a transient period of around 3 sec, the mass
position matches the reference.

The control action corresponding to different IC is plotted
in Fig. 2. The initial strong control action is due to the
sharp change in the reference. Of course, if larger control
coefficients are assumed, the system response better fits
the reference but the control action is increased.

3. DISTURBED PLANT

In the previous results, a perfect model of the undisturbed
plant has been assumed. If there are changes in the
parameters (or uncertainty) or if there is an external
disturbance, the behavior is distorted, even with matched
initial conditions.

In this process, if the string elasticity is changed (γ = 0.2)
and a constant disturbance (d = −0.2) is applied at time
t = 4 sec, the mass position response to the same reference
(14) is as depicted in Fig. 3. In both cases, there is a steady-
state error: e1 for the model mistmatch and e2 if both
disturbances are applied.
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Fig. 3. Mass position tracking the reference: undisturbed
model (dotted line); model mistmatch and step dis-
turbance at t = 4 s (solid line).

In this methodology, the control design criterion is ex-
pressed in (5) by means of an action proportional to the
approaching error to the reference trajectory. But addi-
tional actions, such as integral or derivative actions, can
be assumed for the tracked variable. In a more general
setting, the approaching of the tracked variable can be
assumed as a function of the error, f(ey), and probably
other variables related to the error. If this is the case, the
desired controlled plant behavior will be expressed by[

ẏr + fy(ey)
żr + kzez

]
=

[
∆y
∆z

]
(15)

The same could be assumed for the sacrifized variables
approaching but it will not be considered here.

Let us consider the PID actions.

3.1 PI control

It is well known that under constant disturbances or
parameters uncertainty, integral control will cancel the
steady state error at the expense of possible transient
period degrading. Thus, let us assume that the desired
behavior for the output, ∆̄y in (15), is now given by

∆̄y = ẏr + kyey + kiIe = ∆y + kiIe (16)

where Ie =
∫ t

0
eydt and ∆y was defined in (5). This will

be the new reference for the sacrifized variable

z̄r = ∆y + kiIe (17)

Its derivative will be

˙̄zr = żr + ki(yr − y) (18)

Thus, the new required dynamics for the sacrifized variable
will be

∆̄z = ∆z + kiIy + kzki(yr − y) (19)

and the control action, with u given by (11), would be:
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ū= u+m[kiIy + kzki(yr − y)] (20)

= u+mki(kzey + Iy) = ūf + ūb
where the new feedback control, with ub given by (12) is

ūb = ub −mki[kzy + vy]; vy =

t∫
0

ydt (21)

The closed loop controlled plant is now a third order plant
and its dynamics can be represented (combining (4) and
(21)) by[

ẏ
ż
v̇y

]
=

[
0 1 0

−(ky + ki)kz −(ky + kz) −ki
1 0 0

][
y
z
vy

]
+

 0
1

m
0

 d (22)
The characteristic equation is

s3 + (ky + kz)s2 + (ky + ki)kzs+ ki = 0 (23)

whose roots, assuming ky, kz given, evolve with ki > 0.
The control coefficients can be determined by assigning
the closed-loop poles. Thus, the tuning of the control
parameters can be done first assigning the closed loop
poles of the P-control (ky, kz) and then tuning the integral
control parameter (ki) by using the root loci method
(Ogata (2009)).

This additional control input will cancel the steady-state
errors. In Fig. 4 the effect of the integral action (with ki =
1) can be realized (solid line) if the previous disturbances
are considered, that is, a model mismatch (γ = 0.2) and
an external disturbance (d = −0.2) applied at t = 4 sec.
It is worth to note that due to the feedforward control the
tracking error is promptly reduced.
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Fig. 4. Disturbed MSD tracking the reference: PI control
(solid line), P control (dashed line).

The relevance of the integral action depends on the co-
efficient ki. For lower values of this coefficient the error
recovery is slower. If the integral action is too high, some
oscillations will appear.

As already mentioned, PI control could be also adopted for
the sacrifized variable approaching. This is an option that,
in this simple example, does not improve the controlled
system tracking performance but it could be advantageous
in some other cases.

3.2 PD control

It is also well-known that the addition of derivative action
in the control law will not affect the steady-state behavior

of the controlled plant but it may contribute to a faster
transient error reduction.

Thus, let us assume in (5) that the desired behavior for
the output is given by

∆̃y = ẏr + kyey + kdėy = ∆y + kdėy = z̃r (24)

which is also the new reference, z̃r, for the sacrifized
variable. Its derivative will be

˙̃zr = żr + kdëy = żr + kd[ÿr +
γ

m
y +

r(y2 − 1)z

m
−

1

m
u] (25)

= (1 + kd)ÿr + ky ẏr −
kdγ

m
y − (kyz +

kdr(y
2 − 1)z

m
+
kd

m
u)

Thus, the new dynamics for the sacrifized variable will be

∆̃z = ∆z + kd(ëy + kzey) (26)

and the control action would be:

ũ= u+mkd(ëy + kzey) (27)

Other than the feedforward control, if the feedback control

ũb = ub −mkd(ÿ + kz ẏ) (28)

is applied to (4), the closed-loop model becomes nonlinear
and the relevance of the derivative action is not clearly
defined.

It is worth to note that, in this system, the sacrifized
variable z is the derivative of the output. Thus, the positive
effect of the derivative action can be achieved by means
of the z-feedback. In some applications, the use of the
derivative control may be appropriate if the proportional
control is too slow or it results in an oscillatory response,
and the output derivative is not directly a state variable.

4. PID CONTROL IMPLEMENTATION

In this application, and due to the relative simplicity of
the process model, the reference for the sacrifized variable
as well as its derivative (10)-(8), can be easily calculated
and then implemented in the control system. Also, the
reference derivatives have been assumed to be available.

This is what has been done in the Simulink diagram
illustrated in Fig. 5 to get the MSD responses in the
previous figures, when a proportional control is applied.
In this diagram, the block MSD implements (4) and
the feedforward and Feedback blocks implement the two
components in (12). The block Ref generator implements
(14). A saturation block has been implemented at the
control action to limit its value, due to the possible strong
actions required under sharp changes in the inputs, as
shown in Fig. 2.

But in other applications, the tracking error and the
reference, as well as the plant state, are the only variables
assumed to be accesible. In this setting, the control action
will be computed directly as follows:

∆y = ẏr + ky(ey) (29)

where ky(ey) is a function of the y-error. In particular, for
a PID control, (15), it would be

∆y = ẏr + kyey + kiIy + kdėy = zr (30)
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Fig. 5. Basic control diagram for the MSD system.

Thus, the PID control would be implemented as depicted
in the diagram shown in Fig. 6, if applied to the MSD
system.

Fig. 6. MSD diagram with PID control.

By using the approximated derivative, as available in the
Simulink package, żr is obtained and then the tracking
error for the sacrifized variable is computed, leading to

∆z = żr + kzez (31)

Note that here, again, a more complex approaching can
be foreseen (∆z = żr + fz(ez)) but, in general, the im-
provement will be minor. Thence, the control action will
be implemented as (11). The block Feedback1 implements
γy + r(y2 − 1)z, according to the nominal model parame-
ters.

The diagram in Fig. 6 presents some advantages with
respect to that in Fig. 5: the control parameters are only

located in the controllers, the plant model parameters
are isolated and easy to modify to introduce internal
disturbances and only the reference and its derivative are
required.

The effect of the integral action can be observed in the
Fig. 7 were the system response to the reference (14),
with final value 0.1, is illustrated in different scenarios: in
the nominal case without disturbances and with matched
initial conditions, it matches the reference (solid line);
with proportional control (dashed line) and disturbances
in both, the parameters (γ = 0.2) and an external distur-
bance (d = −0.2) applied at t = 10 sec; same as before but
with integral control with ki = 1, (dotted line); and same
as before but higher integral action, ki = 10, (dash-dot
line), showing that the error is quickly reduced but some
oscillations appear. The tuning of the integral action, ki,
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Fig. 7. PID tracking control response of the MSD system.

is a matter of balancing the error reduction and transient
degrading, and the usual tuning rules of PI control in linear
plants can be followed.

5. CONCLUSIONS

LAB control design methodology to track a given reference
is based on reducing the tracking errors of the state
variables with respect to their references. Initially, the
criterion used has been a control action proportional to the
approaching error but the possibility to use any function
of the error in the approaching formula has been explored.

In this paper, the properties of the PID control when
applied to linear systems have been used to cancel the
stationary errors in the LAB control of a nonlinear process.
A PI-like control has been proposed to track the position
of the mass-spring damped system.

It is worth to note the similarities between the control
obtained by the LAB control design approach with respect
to the control designed if a feedback linearization (FL) is
first applied. But the main difference is that the search
of the normal representation (the Byrnes-Isidori form) is
not required and the process is not previously linearized.
A detailed comparison of these two approaches can be
found in Albertos et al. (2023). In both cases, as there is
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a model inversion, the zero dynamics should be carefully
considered.

In simple cases, the tuning of the control parameters can
be done by pole assignment but, in general, trial and error
or optimization approaches (Scaglia et al. (2020a)) should
be used.

The direct implementation of the PID control shown in
Fig. 6 allows for an empiric tuning procedure for the
controller parameters. In this simple example, with PI
control, the controlled plant behavior is linear (22) and the
PI controller parameters can be determined by applying
linear control design techniques. But, in general, (and
it also happened here with PD control) the closed loop
controlled plant is nonlinear and, even the controlled plant
stability can be proven (Scaglia et al. (2020a)), the control
parameters tuning is not straightforward.

Some simulations illustrate the benefits of the integral
control.
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