
Reference Implementation
of the PID Controller ⋆

E. Sundström ∗ T. Hägglund ∗ M. Bauer ∗ J. Eker ∗

K. Soltesz ∗

∗ Lund University, Dept. Automatic Control, Lund, Sweden (email:
{emil.sundstrom, tore.hagglund, margret.bauer, johan.eker,

kristian.soltesz}@control.lth.se)

Abstract: The PID controller is the by far most frequently employed type of controller. As
you read, billions of digitally implemented PID controllers are running, shaping the dynamic
behavior of anything from the fan speed in your laptop to safety-critical components in nuclear
power plants. Given the abundance of commissioned PID controllers, it is surprisingly hard to
find a single source that provides a well-documented, and motivated reference implementation of
the PID controller in text-based code. This work provides one. We use the incremental (velocity)
form, motivated by its intrinsic integrator anti-windup and bumpless transfer behavior. In
addition, we discuss our implementation in terms of measurement filtering, setpoint handling,
and runtime environment, among other implementation aspects. Our reference implementation
is a living “document”, and a link to a GitHub repository hosting the latest version is provided.

Keywords: PID control, Implementation, Programming code.

1 INTRODUCTION

The PID controller is found in a multitude of applications,
including most industries: automotive, building climate,
medicine, aviation, and consumer electronics. It is wildly
recognized and by far the dominating type of controller in
real-world applications. The textbook control law

u(t) = K

(
e(t) +

1

Ti

∫ t

0

e(τ) dτ + Td
de(t)

dt

)
(1)

is known to almost all engineers. However, (1) is only the
tip of the iceberg, and there are many subtleties to consider
when implementing the PID controller. While it can be
implemented in analog electronics, mechanics, pneumatics,
and even biological circuits, we will limit our scope to
digital implementations in programming code, purposed
to be interpreted or compiled to run on a computer.

There are numerous extensions to the standard controller,
including fractional-order controllers (Chen et al., 2009),
PID controllers that additionally consider the second
derivative of the error (Huba and Vrančič, 2018), etc.
These fall outside our scope. Neither do we consider
parameter tuning, a topic thoroughly covered in other
sources, e.g., O’Dwyer (2009).

But why do we write a paper about the implementation
of the PID controller? Although the PID controller has
received a fair share of research attentions, with Google
scholar providing well over 1.4 million hits for “PID con-
trol” (2023), a vast majority of digital implementations
are carried out by corporate entities, and are either pro-

⋆ This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation. All authors are members of
the ELLIIT Strategic Research Area.

prietary, undocumented or both. The implementation of
an ideal PID controller is simple. However, many modifi-
cations are necessary to ensure that the controller works
in practice. To our knowledge, there is currently no clean,
concise and freely available reference implementation in
code format that comes together with an exhaustive dis-
cussion of its features, and underlying considerations.
There are excellent university lecture slides and books,
e.g., Åström and Hägglund (2006) and Visioli (2006),
covering some aspects. The International Society of Au-
tomation (ISA) has published a standard (ISA, 2023),
but its focus lies on nomenclature and use, rather than
implementation.

These circumstances make it difficult for control engineers
to find a concise and thoroughly explained reference im-
plementation. As a result, many PID implementations in
commercial solutions do not include important features
required to deal with practical problems.

Here we present a reference implementation. One key
contribution is the discussions explaining why it looks the
way it does, which we motivate through discussing it in
the contexts of

• Generality of parameterization

• Enabling of common use-cases

• Measurement filtering

• Setpoint weighting

• Integrator anti-windup

• Bumpless transfer

• Runtime system considerations

The implementation provided here thus deals with the
most commonly found practical problems and goes beyond
the simple discretisation of the PID algorithm.

Preprints, 4th IFAC Conference on
Advances in Proportional-Integral-Derivative Control
Almería, Spain | June 12-14, 2024

© 2024 the authors. Accepted by IFAC for publication
under a Creative Commons License CC-BY-NC-ND

370



2 REFERENCE IMPLEMENTATION

The proposed PID controller implementation is schemat-
ically depicted in figure 1. All variables (parameters, sig-
nals, states) used in the code are listed alongside brief
explanations and references to the sections, in table 1 of
section 5 at the end of this article. Functions are listed in
table 2 of section 5.

Before listing the code of our reference implementation
in section 2.3, some comments about the pseudo code
programming language are given in section 2.1, and the
assumed runtime environment is given in section 2.2. The
code is then further explained and discussed in section 3.

2.1 Programming language

Our pseudo code format is intended to be accessible to
anyone with some programming background, while also
being easily portable to commonly used programming
languages. The few special constructs that we use are
explained below.

Functions (definitions and calls) are signaled with paren-
thesis enclosing a comma-separated list of one or several
arguments. Any arguments after a possible semicolon in
the argument list are optional. They default to the zero
of the corresponding type (e.g., 0.0, false, none), unless
another default is explicitly given on the right-hand-side
of an equal sign.

The keyword persistent signals that local variables, fol-
lowing in a comma-separated list, survive between con-
secutive calls of the function scope in which they are
defined. In the persistent declaration, equal signs after
variable names indicate initial values, assigned during the
first execution of the statement (but not in consecutive
executions). If an initial value is not explicitly declared,
the variable will be initialized to its zero type (cf. optional
argument).

A single layer of local scoping is assumed for functions,
but not for branching constructs such as if blocks.

Fig. 1. Schematic of our PID controller implementation.

Code comments are indicated by a leading hash mark #.
Keywords of our pseudo code format are typeset in blue.

2.2 Runtime environment

All functions are assumed to be non-reentrant, meaning
that once a function has been invoked, consecutive calls
to it (possibly from another runtime thread) are blocked
until the function has returned.

An abstraction consisting of user-defined set and get
functions are used to communicate with external system
components, such as hardware. For example get_y() will
retrieve the latest available measurement signal, while
set_u(u) will issue the control signal u.

While the discussed functionalities of our language and
runtime model are common to many languages, the actual
implementation might need slight modifications from the
reference that we are about to present, depending e.g.,
on the variable scoping model or how parameters can be
protected from other threads in critical sections.

2.3 Code listings

In this section, the code of our reference implementation is
listed, and very briefly commented. More in-depth analysis
of the code and discussions about choices, such as the use
of incremental form, are provided in section 3. All code
is made available at https://github.com/copybit/pid
(commit 9ac19a8).

The main component of our implementation is the function
PID of listing 1. It is invoked with setpoint (reference) r
and measurement 1 y values as its main arguments. The
optional Boolean argument auto sets the controller in
automatic (auto) mode when true, and in manual (man)
mode when false. When auto==false, the control signal is
given by the input uman. The optional flag windup encodes
its possible binary values none (00), upper (01), lower
(10), and both (11). This flag enables externally triggering
integrator anti-windup, as motivated in section 3.7. If the
Boolean argument track is true, the controller output
is forced to follow the external signal utrack 2 . This is
performed by adding the output increment Du to the
current value of utrack instead of to the previously
calculated value u_old. The optional argument uff is the
feed-forward control signal from an external feed-forward
controller. Finally, the optional argument Tx, with default
value 1.0, constitutes a scaling factor for controller and
filter gains, to compensate for variable execution cycle
duration.

The integrator anti-windup function anti_windup(), called
from line 32 of listing 1, is provided in listing 4. Filter
implementation are provided in listing 2. Zero-order-hold
(ZOH) discretization of the measurement filter is given in
listing 3. Finally, listing 5 illustrates how a run-method
for the PID controller could look in a threaded run-time
environment.

1 Note that the measurement input to the controller does not
necessarily have to be a (sensor) measurement—it could for example
be a control signal of another controller in a mid-ranging control
structure, and the output of the controller does not necessarily have
to be a control signal—it could for example be the setpoint to another
controller. Alternative names are provided in e.g., ISA (2023).
2 Tracking mode can only be enabled when auto==true.

IFAC PID 2024
Almería, Spain | June 12-14, 2024

371



1 PID(r,y;uff,uman,utrack,Tx=1.0,
2 track,auto,windup)
3

4 #Initialize parameter states
5 persistent kp,ki,kd,umin,umax,u0,b=1
6

7 #Initialize signal states
8 persistent u_old,up_old,ud_old,uff_old
9

10 #Filter updates
11 yf,dyf=Fy(y,Tx)
12

13 if auto
14 if ki==0
15 u_old=u0 #Bias term if P or PD control
16 up_old=0
17 ud_old=0
18 uff_old=0
19 b=1
20 end
21

22 if track #Tracking mode
23 u_old=utrack
24 up_old=0
25 ud_old=0
26 uff_old=0
27 end
28

29 #Control signal increments
30 Dup=kp*(b*r-yf)-up_old
31 Dui=ki*(r-yf)*Tx
32 Dui=anti_windup(Dui,windup)
33 Dud=(-kd*dyf-ud_old)/Tx
34 Duff=uff-uff_old
35

36 #Add control signal increment
37 Du=Dup+Dui+Dud+Duff
38 u=u_old+Du
39 else
40 u=uman #Manual control signal
41 end
42

43 #Saturate and send control signal
44 u=max(min(u,umax),umin)
45 set_u(u)
46

47 #Update old signal states
48 u_old=u
49 up_old=kp*(b*r-yf)
50 ud_old=-kd*dyf
51 uff_old=uff
52 end

Listing 1. PID update, discussed in section 3.

1 yf,dyf=Fy(y;Tx=1.0)
2 persistent TfTs=10.0 #Tf per nominal Ts
3 persistent a11,a12,a21,a22,b1,b2 #Params
4 persistent yf,dyf,Tx_old #Filter state
5

6 #Rediscretize to match execution period
7 if not(Tx==Tx_old)
8 a11,a12,a21,a22,b1,b2=zoh_Fy(TfTs,Tx)
9 end

10

11 #State update
12 yf1=yf
13 Tx_old=Tx
14 yf=a11*yf1+a12*dyf+b1*y
15 dyf=a21*yf1+a22*dyf+b2*y
16 end

Listing 2. Measurement filtering, discussed in section 3.4.

1 a11,a12,a21,a22,b1,b2=zoh_Fy(TfTs;Tx=1.0)
2 #Help variables
3 h1=Tx/TfTs
4 h2=exp(-h1)
5 h3=h1*h2
6 h4=h3/TfTs
7

8 #Filter parameters
9 a11=h2+h3

10 a12=h2
11 a21=-h4
12 a22=h2-h3
13 b1=1-h2-h3
14 b2=h4
15 end

Listing 3. Filter discretization, discussed in section 3.4.

1 Dui=anti_windup(Dui,windup)
2 #Prevent increase, decrease, or both
3 if windup==both or windup==lower
4 Dui=max(Dui,0)
5 end
6 if windup==both or windup==upper
7 Dui=min(Dui,0)
8 end
9 end

Listing 4. External anti-windup, discussed in section 3.7.

IFAC PID 2024
Almería, Spain | June 12-14, 2024

372



1 run(Ts=1.0)
2 #Set true to stop execution
3 persistent stop
4

5 #Initialize internal state
6 persistent auto,track,windup,t_old=time(),
7 Ts=Ts
8

9 while not(stop)
10 #Time when loop starts
11 t0=time()
12

13 #Read signals from runtime or hardware
14 r=get_r()
15 y=get_y()
16 uff=get_uff()
17 utrack=get_utrack()
18 uman=get_uman()
19

20 #Compute time between two executions
21 t=time()
22 Tx=(t-t_old)/Ts
23

24 #Invoke the PID update
25 PID(r,y,uff,uman,utrack,Tx,
26 track,auto,windup)
27

28 t_old=t #State update
29 sleep(Ts-(t-t0)) #(Non-blocking) sleep
30 end
31 end

Listing 5. Example of run method for periodic execution
of the PID controller of listing 1 in a runtime thread.

3 DISCUSSION

The remainder of this paper discusses aspects of the
reference implementation provided in section 2.3.

3.1 Incremental control law

The controller must be discretized to be implementable in
a digital system. Equation (1) is straight-forward to ZOH-
discretize, since this corresponds to a Riemann (rectangle)
approximation of the integral. The discretized gains are
given as kp, ki, kd in listing 1.

After the PID control law in (1) has been discretized, it is
in the so-called direct form. In each iteration, the control
signal is computed from the most recent reference and
measurement signals, with the integral of the error as the
controller state.

In contrast, the incremental form computes the control sig-
nal increment since the last iteration (Du in listing 1), and
uses the control signal itself to encode the controller state.
The direct form is sometimes referred to as positional form,
and the incremental as velocity form. This is natural if we
regard the control signal as a position, in which case the
increments will be (scaled) ZOH approximations of the
associated speed.

The control law for the incremental form is

u(t) = u(t− Ts) + ∆up +∆ui +∆ud +∆uff , (2)

where ∆up represents the increment in applied control
signal from the proportional part (row 30 in listing 1), ∆ui

the increment from the integral part (row 32 in listing 1),
and ∆ud the increment from the derivative part (row 33
in listing 1). u(t − Ts) is the control signal from the last
iteration and ∆uff represents the increment in external
feed-forward control signal. Ts is the time since the last
iteration, discussed in section 3.5.

The parametrization of the controller can be done in
several ways. For example, the textbook PID controller
parametrization inK, Ti, and Td of (1) is known as parallel
parametrization (Åström and Hägglund, 2006), and the
linear parametrization form is

u(t) = kpe(t) + ki

∫ t

0

e(τ) dτ + kd
de(t)

dt
, (3)

in kp, ki, kd. Confusingly, this is sometimes also referred
to as parallel. We use (3) since it is more general than
the series and parallel forms. The transition between these
parametrizations is done by:[

kp ki kd

]
=

[
K

K

Ti
KTd

]
. (4)

Computing the increments between iterations relies on
storing previous proportional part up_old, derivative part
ud_old and feed-forward part uff_old of the control
signal. On the other hand, the incremental form has two
important advantages over the direct form, that we will
discuss in sections 3.6 and 3.7.

3.2 Setpoint-free derivative

With the control laws considered so far, a step in setpoint
r will result in a corresponding step in error e = r − y.
With derivative action, kd > 0 in (3), there will thus
be an impulse in the control signal u. Favoring a smooth
control signal, we will employ the common modification of
excluding the reference from the derivative part, replacing
ė(t) with −ẏ(t). This is of course not mandatory, since
there are some applications where the reference signal
preferably shall be used in the derivative part.

3.3 Setpoint weighting

Another measure to obtain a smoother control signal is to
introduce a setpoint weight b, and replace the error e(t)
in the proportional part with br(t) − y(t). If b = 1, the
nominal behavior of (3) is attained. With b = 0, a change
in setpoint is only introduced into the control signal u of
(3) through the integrator, that still needs to be computed
based on the actual error e = r− y (and not br− y). Note
that when no integral term is present, that is when the
controller is a P or PD controller, the setpoint weight must
be b = 1.

3.4 Measurement filtering

It is not only reference changes that can generate unde-
sirably high control signal activity, but also measurement
noise. To mitigate this, it is advisable to low-pass filter the
measurement signal. Note that the filtering is implemented
as external functions (listing 2 and listing 3), so the second-
order low-pass filter proposed in this paper can easily be
replaced by another filter if desired.

IFAC PID 2024
Almería, Spain | June 12-14, 2024

373



While a first-order low-pass filter makes derivative action
implementable, a second-order filter provides the con-
troller with high frequency roll off, that is, the controller
gain asymptotically goes to zero for high frequencies. Al-
though a first-order filter would suffice for controllers with-
out derivative action, there is no disadvantage of using a
second-order filter. Second-order filters have slightly larger
phase loss, but not to an extent that makes a practical
difference in the context of PID control.

We use a critically damped second-order filter to avoid
resonant modes

Yf (s) =
1

(sTf + 1)2
Y (s), (5)

that relates the measurement Y (s) to its filtered counter-
part Yf (s) in the Laplace domain. The time constant Tf

is a parameter that needs to be determined alongside kp,
ki, kd of (3).

Selecting the filtered measurement yf (t) and its time
derivative ẏf (t) as state variables, (5) can be expressed
as the (continuous) time-domain state-space form:[

ẏf

ÿf

]
=

 0 1

− 1

T 2
f

− 2

Tf


︸ ︷︷ ︸

Ac

[
yf

ẏf

]
+

 0

1

T 2
f


︸ ︷︷ ︸

Bc

y. (6)

The discretization of the filter is performed with zero-
order-hold (ZOH). For a sampling period Ts and the
continuous system 6, the discretized filter is

A =

[
h2 + h3 Tsh2

−h4 h2 − h3

]
, (7a)

B =

[
1− h2 − h3

h4

]
, (7b)

where the help variables[
h1 h2 h3 h4

]
=

[
Ts

Tf
exp(−h1) h1h2

h3

Tf

]
(8)

can be sequentially computed from Tf , Ts. This, and
subsequent computations of the filter coefficient (matrix
entries) of (7), are performed in listing 3. Update of the
measurement filter outputs is performed in listing 2.

3.5 Jitter compensation

If the controller can not run periodically, we have im-
plemented a compensation for possible ’jitter’. Internally,
time is re-scaled in each iteration so that Ts = 1 in scaled
time unit, and Tx is the scale factor to achieve this. This is
why there is no Ts explicitly in listing 3. The first argument
TfTs is not the filter time constant Tf expressed in the
internal time unit as TfTs=Tf/Ts when the controller is
setup, not wall-time. Wall-time is the time from start to
end of a program.

3.6 Bumpless transfer

In most applications, the control signal is not allowed to
jump when changing from manual to automatic mode,
from tracking to non-tracking mode, or when changing
parameters of the controller. In direct form implementa-
tions, this can be achieved by keeping track of when such

changes occur, and changing the integrator state to a value
that results in a bumpless transfer. The incremental form
controller state is encoded in the control signal, eliminating
the need for such checks.

3.7 Integrator anti-windup

There are two common ways to avoid integrator windup in
PID controllers: tracking and clamping. In practice they
both work satisfactory, but tracking requires tuning an
additional parameter. We have therefore chosen clamping
for our reference implementation. In the increnental form,
it is extremely simple to implement clamping by just
saturating the control signal, as done on line 44 of listing 1.

listing 4 implements the possibility to prevent windup
manually by setting the input windup to a desired value.
There are scenarios when the integration shall only be
allowed in one direction, which is why listing 4 allows
this behaviour. In other scenarios, there is no need for
external anti-windup functionality, and listing 4 can be
removed without further consequences to the rest of the
implementation.

3.8 Additional run-time considerations

There are other aspects beside algorithmic issues. For
example, we have not explained how to achieve thread-
protection of shared variables. This varies between runtime
enviroments, as does system-specific aspects of implement-
ing the various set_ and get_ functions. Further issues
concern numeric aspects, such as signal scaling, that are
particularly important if fixed point arithmetic is dictated
by hardware or timing requirements. Furthermore, (small)
performance gains can be made by removing functionality
that will not be used, such as e.g., the capability to handle
variable update intervals through Tx.

4 Conclusions

In this article, the pseudo-code of a practical PID imple-
mentation has been presented. The implementation con-
siders the most common practical issues such as integral
windup, bumpless transfer, filtering and jitter compensa-
tion. Both feedforward and tracking of external signals are
included in the code. We have used the incremental (veloc-
ity) form, motivated by its intrinsic integrator anti-windup
and bumpless behavior at mode switches and controller
parameter updates.

As mentioned before, this reference implementation is a
living “document”, and the link to the GitHub repository
hosting the latest version is
https://github.com/copybit/pid (commit 9ac19a8).

IFAC PID 2024
Almería, Spain | June 12-14, 2024

374



5 Nomenclature

Table 1. Variables of listings 1 to 5 in al-
phabetic order; reference to section they are

discussed in; brief explanations.

Variable Section Explanation

a11,a12,a21,a22 3.4 Discrete-time measurement filter
system matrix elements.

auto 3.6 Boolean flag set to true in auto
mode; false in manual mode.

b 3.3 Setpoint weight.

b1,b2 3.4 Discrete-time measurement filter
input matrix elements.

Du 3.1 Control signal increment.

Duff 3.1 Feed-forward control signal incre-
ment.

Dup,Dui,Dud 3.1 Control signal term increments.

dyf 3.4 Filtered measurement derivative.

h1,h2,h3,h4 3.4 Help variables to encode measure-
ment filter discretization.

kp,ki,kd 3.1 Linear form controller gains.

r 3.3 Setpoint (reference).

stop - Boolean flag to stop execution.

t0,t,t_old 3.5 Wall time stamps at beginning of
run function of listing 5; just before
invoking the PID update; just before
invoking previous PID update.

TfTs 3.5 Number of filter time constants per
nominal sampling period: Tf/Ts.

track - Boolean flag indicating tracking
mode.

Ts 3.5 Nominal PID sampling time.

Tx 3.5 Scale factor that relates nominal
update period Tx to actual: Tx*Ts.

Tx_old 3.5 Previous value of Tx.

u 3.1 Control signal.

u0 3.3 Bias term in P and PD control.

uff 3.1 Feedforward control signal.

uff_old 3.1 Previous feed-forward control sig-
nal.

uman 3.6 Manual control signal.

umin,umax 3.7 Control signal saturation limits.

up_old,ud_old 3.1 P- and D-values from last iteration.

utrack - Tracking signal.

u_old 3.1 Previous control signal. State in the
controller.

windup 3.7 Externally generated windup flag.

y 3.4 Measurement signal.

yf 3.4 Filtered measurement signal.

yf1 3.4 Help variable in the filter update
function.

Table 2. Functions used in our reference imple-
mentation (listings 1 to 5) in alphabetic order;
reference to section they are discussed in; brief

explanations.

Function Section Explanation

PID listing 1: PID controller core code.

anti_windup 3.7 listing 4: External integrator anti-
windup.

zoh_Fy 3.4 listing 3: Zero-order-hold (ZOH) dis-
cretization of measurement filter.

exp - Returns the exponent of its argument.

Fy 3.4 listing 2: Measurement filter.

get_r 3.8 Reads the setpoint.

get_uff 3.8 Reads feed-forward control signal.

get_uman 3.8 Reads manual control signal.

get_utrack 3.8 Reads tracking signal.

get_y 3.8 Reads measurement signal.

min, max 3.7 Take two arguments of an ordered
type, and return the min (max) vale.

not - Logical not, negates it boolean argu-
ment.

set_u 3.8 Sets the control signal.

sleep - (Non-blocking) sleep, where the argu-
ment is time in units of the system wall
time.

time 3.5 Returns system wall time stamp.

References

Åström, K. and Hägglund, T. (2006). Advanced PID
Control. ISA - The Instrumentation, Systems and
Automation Society, Research Triangle Park, North
Carolina.

Chen, Y., Petras, I., and Xue, D. (2009). Fractional order
control - a tutorial. In 2009 American Control Confer-
ence, 1397–1411. doi:10.1109/ACC.2009.5160719.

Huba, M. and Vrančič, D. (2018). Comparing filtered PI,
PID and PIDD2 control for the FOTD plants. IFAC-
PapersOnLine, 51(4), 954–959. 3rd IFAC Conference on
Advances in Proportional-Integral-Derivative Control
PID 2018.

ISA (2023). ISA-TR5.9-2023, Proportional-Integral-
Derivative (PID) Algorithms and Performance. Tech-
nical report, International Society of Automation.

O’Dwyer, A. (2009). Handbook of PI and PID Controller
Tuning Rules. Imperial College Press, London, UK.

Visioli, A. (2006). Practical PID Control. Springer, Berlin.

IFAC PID 2024
Almería, Spain | June 12-14, 2024

375


