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Abstract: This paper proposes a data-driven method using a Fractional-Order Proportional-
Integral-Derivative (FOPID) controller. The proposed method simultaneously obtains FOPID
controller and reference model parameters to achieve tracking performance and specified robust
stability from only one-shot closed-loop input-output data. The proposed control law is designed
by solving an optimization problem, subject to the constraint condition of using the maximum
value of the sensitivity function. Therefore, the proposed method provides trade-off design
between tracking performance for the reference input and robust stability by selecting robust
stability. By comparing numerical example results obtained for FOPID and integer-order
controllers, it is shown that the use of the FOPID controller is effective in improving tracking
performance for reference output.

Keywords: Data-driven control, Fractional-order PID controller, Trade-off, Robust stability,
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1. INTRODUCTION

Proportional-Integral-Derivative (PID) control is widely
used in industry (Alfaro and Vilanova (2016)) because
of its simple control structure and high control perfor-
mance depending on the design. The control performance
of PID control depends on the PID parameters, and
many tuning methods for PID parameters have been pro-
posed (Åström and Hägglund (2001)). Fractional-Order
Proportional-Integral-Derivative (FOPID) control has at-
tracted much attention in recent years (Padula and Visioli
(2011); Arrieta et al. (2015); Yamashita et al. (2023);
Tepljakov et al. (2018, 2021); Arrieta et al. (2023)). FOPID
controllers provide flexibility in controller design by in-
creasing the number of design parameters to five. Thereby,
It enables to obtain frequency characteristics that could
not be expressed when using an integer-order controller
(Yamashita et al. (2023)), and to design of controllers that
are resistant to nonlinear elements (Odai and Hori (2000)).

There are two main methods of controller design: model-
based method and data-driven method. The model-based
method requires a mathematical model of the plant model,
so if a mathematical model is not available, it must be
obtained. This requires repeated experiments, which are
costly and time-consuming. In addition, modeling errors
are caused. In the data-driven method, control perfor-
mance can be optimized directly from controlled data
without a mathematical model of the plant model (Sato

et al., 2021; Sakai et al., 2022, 2023). Therefore, modeling
errors have no effect. The control performance can be
optimized directly from controlled data such as iterative
feedback tuning (IFT) (Hjalmarsson et al. (1998)) and
correlation-based tuning (CbT) (Karimi et al. (2004)), but
these require iterative experimental data. Non-iterative
data-driven tuning methods such as Virtual Reference
Feedback Tuning (VRFT) (Campi et al. (2002); Pre-
vidi et al. (2004)), Fictitious Reference Iterative Tun-
ing (FRIT) (Soma et al. (2004); Kaneko (2013)), and
Non-iterative Correlation based Tuning (NCbT) (Karimi
et al. (2007); Yubai et al. (2009)) have been proposed.
In addition, extension method such as Extended Fic-
tious Reference Iterative Tuning (E-FRIT) (Tasaka et al.
(2009); Kano et al. (2011)), which simultaneously opti-
mizes the controller and reference model parameters, has
also been proposed. Furthermore, robust PID controller
design methods using sensitivity function has been pro-
posed for model-based methods (Kurokawa et al. (2017,
2018b)) and data-driven methods (Kurokawa et al. (2018a,
2022)), respectively.

In conventional FOPID controller design methods, model-
based methods that consider robust stability (Padula and
Visioli (2011); Arrieta et al. (2015)) have been proposed.
On the other hand, in data-driven method, although
the control performance optimization method (Yamashita
et al. (2023)) has been proposed, there is no method that
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takes robust stability into account. Therefore, the present
study proposes the method to obtain FOPID controller
and reference model parameters using data-driven method
under the constraint condition that satisfies the prescribed
stability margin. In the proposed method, the FOPID con-
troller parameters are determined to optimize the tracking
performance for reference output.

The structure of this paper is as follows. First, Formulate
the problem considered in this study in Section 2. Then, a
data-driven constrained optimization problem is designed
in Section 3. Finally, the effectiveness of the proposed
method is demonstrated through numerical example in
Section 4.

2. PROBLEM FORMULATION

2.1 Control System

Fig. 1. Block diagram of control system

Consider the block diagram shown in Fig. 1, where r(k)
is a reference input, y(k) is a plant output, u(k) is a
control input, e(k)(= r(k) − y(k)) is the control error,
and P (s) is a linear time-invariant controlled plant. The
discrete-time signal applied to P (s) is converted to a
continuous-time signal by the zeroth-order holder H, and
the output continuous-time is converted to a discrete signal
by the sampler S. Thus, Pd(z

−1) is a linear time-invariant
discrete-time controlled plant where the dynamics are
unknown. In the present study, the following discrete-time
control law:

u(k) = Ce(z
−1)e(k)− Cy(z−1)y(k) (1)

Ce(s) = Kp +Kis
−αi (2)

Cy(s) = Kds
αd (3)

C(z−1) = Ce(z
−1) + Cy(z−1) (4)

where Ce(s) and Cy(s) are continuous-time controllers
and discretize with sampling time Ts, which is discussed
later. In addition, αi is the fractional-order of the inte-
grator and αd is the fractional-order of the differentiator,
both positive, and αi = αd = 1 is identical to integer-
order PID controller. Moreover, Kp, Ki and Kd, are the
proportional gain, the integral gain, and the differential
gain, respectively. Furthermore, in the present study, the
FOPID controller is discretized with the sampling time
Ts using the method for approximation to discrete integer
order in Tepljakov et al. (2014). The method is given as
follows. First, we define the approximation frequency range
[ωb, ωh] rad/s, the order of approximation ν ∈ Z+ and the
fractional-order α ∈ [−1, 1] ⊂ R. Then, the (2ν + 1) zeros
and (2ν + 1) poles of the filter are computed as follows:

ω′k = ωbθ
k+ν+0.5−0.5α

2ν+1 , ωk = ωbθ
k+ν+0.5+0.5α

2ν+1 (5)

where, k = {−ν,−ν+1, . . . , 0, . . . , ν−1, ν} and θ = ωh/ωb.
So, the continuous recursive Oustaloup filter transfer func-
tion is obtained as follows

sα ≈ Ĝ(s) = ωαh
(s− ω′−ν)(s− ω′−ν+1) · · · (s− ω′ν)

(s− ω−ν)(s− ω−ν+1) · · · (s− ων)
(6)

Next, the pole-zero matching equivalents method is used to
obtain a discrete-time transfer function that is equivalent
to the continuous-time transfer function (Franklin et al.
(1997)). Note that assuming that the sampling time Ts ∈
R+, the higher frequency bound of approximation (5) may
be up to ωh = 2/Ts. The poles and zeros are mapping as
follows:

z = esTs (7)

where s denotes a particular zero or pole. Thus, for each
k in (5), we have

σ′k = e−Tsω
′
k , σk = e−Tsωk (8)

In this way, continuous zeros and poles are directly map-
ping to their discrete-time equivalents. Then, we need to
compute the gain Ku of the resulting discrete-time system
at the central frequency ωu =

√
ωbωh by taking

Ku =
∣∣H(ejωuTs)

∣∣ (9)

The correct gain at this frequency is as follows:

Ks = ωαu (10)

Hence, the gain of the system is obtained as follows:

Kc =
Ks

Ku
(11)

Consequently, the transfer function of the discrete-time
system is thus described as follows:

H(z, α) = Kc
(z − σ′−ν)(z − σ′−ν+1) · · · (z − σ′ν)

(z − σ−ν)(z − σ−ν+1) · · · (z − σν)
(12)

Using (12), (2) and (3) are discretized as follows:

Ce(z
−1) =

Kp +Ki

(
Ts

1 − z−1

)
H(z, 1 − αi) (0 < αi < 1)

Kp +Ki

(
Ts

1 − z−1

)
H−1(z, αi − 1) (1 ≤ αi)

Cy(z−1) =


Kd

(
1 − z−1

Ts

)
H−1(z, 1 − αd) (0 < αd < 1)

Kd

(
1 − z−1

Ts

)
H(z, αd − 1) (1 ≤ αd)

where, Ce(z
−1) for 0 < αi < 1 is the structure that

ensures the control effect at low frequencies. This ensures
the effect of an integer-order integrator at low frequencies
and is expected to eliminate steady-state error (Sasano
et al. (2010)).

2.2 Constrained Optimization Problem

In the present study, the optimal controller and reference
model parameters are obtained to minimize the objective
function subject to the stability margin constraint to
guarantee robust stability. The stability margin is given
a prescribed value by the designer and quantitatively
expressed using the maximum value of the sensitivity
function:

Sf (z−1) =
1

1 + C(z−1)Pd(z−1)
(13)

Ms = max
ω
|Sf (e−jω)| (14)

|Ms −Md
s | = 0 (15)
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where Md
s is the stability margin given by the designer,

and the recommended range is 1.4 to 2.0 (Åström and
Hägglund (2006)). And, the maximum value of the sensi-
tivity function Ms is related to the gain margin gm and
the phase margin φm as follows (Kurokawa et al. (2017)) :

gm ≥
Ms

Ms − 1
(16)

φm ≥ 2arcsin

(
1

2Ms

)
(17)

here gm and φm for the values of Ms are for Ms = 1.4,
gm ≥ 3.5 and φm ≥ 41◦, and for Ms = 2.0, gm ≥ 2.0 and
φ ≥ 28◦ (Kurokawa et al. (2017)). Additionally, there is
a trade-off relationship between tracking performance for
the reference input and stability margin (Kurokawa et al.
(2018a)): smaller values of Ms increase stability margin
while decreasing tracking performance for the reference
input, and larger values of Ms decrease stability margin
while increasing tracking performance for the reference
input.

In the present study, the objective function is defined as
follows:

J =
1

N

N∑
k=1

ε(k)2 (18)

ε(k) = (Gyr(z
−1)−Md(z

−1))r(k)

where N is the number of data, Gyr(z
−1) is the transfer

function from r(k) to y(k) of the closed-loop system, and
Md(z

−1) is a reference model from r(k) to y(k). In the
present study, Md(z

−1) is defined as follows:

Md(s) =
ω2
o

s2 + 2ωos+ ω2
o

e−Los (19)

Consequently, the constrained optimization problem is
defined as follows:

min
Kp,Ki,Kd,αi,αd

J (20)

subject to
∣∣Ms −Md

s

∣∣ = 0

The problem considered in the present study is to obtain
the controller parameters by solving (20).

3. DATA-DRIVEN DESIGN

3.1 Constraint Condition

Since unknown controlled plant Pd(z
−1) is required in

the constraint condition, the frequency characteristics of
Pd(z

−1) are estimated using the initial input-output data
u0(k) and y0(k) based on Matsui et al. (2010). In order to
Discrete Fourier Transform (DFT) the waveform is abso-
lutely integrable smooth and to eliminate the discontinuity
between the two ends of the data, the bandpass filter is
used as follows:

F (s) =
T1s

(T1s+ 1)(T2s+ 1)
(21)

T1 = 100Ts
T2 = 10Ts

The filtered data uf (k), yf (k) using the bandpass filter is
given as follows:

uf (k) = u0(k) ∗ f(k) (22)

yf (k) = y0(k) ∗ f(k) (23)

where f(k) is the impulse response of the bandpass filter
discretized at sampling time Ts. The filtered data uf (k)
and yf (k) are DFT to obtain Uf (ω) and Yf (ω), which are
used to estimate the frequency response of the controlled
plant, as follows:

P̂ (e−jw) =
Yf (ω)

Uf (ω)
(24)

(14) and (15) can be rewritten using the estimated fre-
quency response of the controlled plant as follows:

M̂s = max
ω
|Ŝf (e−jω)| (25)

|M̂s −Md
s | = 0 (26)

Ŝf (e−jω) =
1

1 + C(e−jω)P̂ (e−jω)
(27)

3.2 Optimal Tuning of tracking performance using E-FRIT

Obtain the optimal controller parameters from initial data
u0, y0 using E-FRIT. Using the initial data u0, y0, the
fictitious reference signal r̃(k) is defined as follows:

r̃(k) = Ce(z
−1)−1(u0(k) + C(z−1)y0(k)) (28)

E-FRIT obtains the parameters by minimizing the error
between the reference output Md(z

−1)r(k) for the ficti-
tious reference signal r̃(k) and the initial output data y0.
Thus, the new objective function is given by:

J∗ =
1

N

N∑
k=1

ε∗(k)2 (29)

ε∗(k) = y0(k)−Md(z
−1)r̃(k)

The parameters that minimizes (29) correspond to the
parameters that minimizes (18) (Soma et al. (2004)). In
addition, E-FRIT also obtains the reference model param-
eters ωo, Lo simultaneously with the controller parameters
by minimizing (29).

As a result, the constrained optimization problem is refor-
mulated as follows:

min
Kp,Ki,Kd,αi,αd,ωo,Lo

J∗ (30)

subject to
∣∣∣M̂s −Md

s

∣∣∣ = 0

By solving the constrained optimization problem, FOPID
controller and reference model parameters are obtained
that satisfy the prescribed stability margin and optimize
tracking performance for reference output.

4. NUMERICAL EXAMPLE

In the present study, to demonstrate the effectiveness of
the proposed method, we compare the FOPID controller
with the integer-order PID controller through a numerical
example. In this section, we present the tracking perfor-
mance for the reference output in Subsection 4.1, and the
tracking performance for the reference input and robust-
ness of the trade-off design in Subsections 4.2 and 4.3,
respectively.

4.1 Tracking Performance for the reference output

The following transfer function as the controlled plant is
given:
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P (s) =
1

1.1s+ 1
e−0.6s (31)

where the dynamics is assumed to be unknown. The
sampling time is Ts = 0.01 [sec] and the reference input is
r(k) = 1. The discrete-time Oustaloup filter sets order of
approximation ν = 3 and approximation frequency range
ω = [10−4, 102] rad/s. The initial controller parameters
are determined by trial and error so that the output of the
system is stabilized. In order to obtain the initial data u0
and y0, set K0

p = 0.05, K0
i = 0.10, K0

d = 0.01, α0
i = 1.00,

and α0
d = 1.00. The obtained initial data is plotted as

dotted lines and the filtered data as solid lines in Fig. 2(a).
The frequency response of the controlled plant estimated
using the bandpass filter is plotted with the solid lines
and the true values with the dotted lines in Fig. 2(b). Fig.
2(b) shows that the gain and phase characteristics of the
controlled plant are well estimated. In the present study,
optimization calculations are performed using fmincon
function (MathWorks MATLAB R2023a), and controller
parameters are obtained for Md

s = 1.4, 1.6, 1.8, and 2.0.
The initial values used in the optimization calculations are
shown in Table 1(a), and the search range of parameters
are shown in Table 1(b). The optimization calculations
for the integer-order PID are performed using the same
initial values as for the FOPID by fixing αi = αd = 1.
The optimized controller, reference model parameters for
FOPID and integer-order PID controls, respectively, are
shown in Table 2. The control results using the optimized
controller and reference model parameters for Md

s = 1.4,
1.6, 1.8, and 2.0, respectively, along with the initial data,
are shown in Figs. 3(a) and 3(b). The obtained objective
function J in (18) and Ms are shown in Table 3(a). It
can be seen from Table 3(a) that for all Md

s , the values
of J are smaller with FOPID than with integer-order
PID. Therefore, the tracking performance for the reference
output is improved by using FOPID controller compared
to integer-order PID controller. In addition, Ms is within
±0.2% of the error with respect to Md

s , so it can be said
that each controller has sufficient stability margin desired
by the designer.

Table 1. Conditions of Constraint optimization
calculation

(a) Initial values used in the optimization calculation

Md
s Kp Ki Kd ωo Lo αi αd

1.4 1.000 0.8000 0.2000 2.600 0.6000 1.000 1.100

1.6 1.300 0.9000 0.2500 3.700 0.6000 1.000 1.100

1.8 1.500 1.000 0.3000 4.900 0.6000 1.000 1.100

2.0 1.700 1.100 0.3500 5.800 0.6000 1.000 1.100

(b) Parameter search range

Kp Ki Kd ωo Lo αi αd

Upper limit 10 10 10 10 10 2.0 2.0

Lower limit 0.0001 0.0001 0.0001 0.0001 0.0001 0.1 0.1

4.2 Tracking Performance for the reference input

The tracking performance for the reference input is evalu-
ated by the following equation:

JT =
1

N

N∑
k=1

(r(k)− y(k))2 (32)

(a) Closed-loop experimental data and filtered data

(b) Estimated frequency response

Fig. 2. Estimated frequency response of controlled plant

Table 2. Obtained controller and reference
model parameters

(a) Fractional-order PID

Md
s Kp Ki Kd ωo Lo αi αd

1.4 1.000 0.7912 0.1998 2.605 0.5967 0.9722 1.096

1.6 1.355 0.9118 0.2559 3.773 0.5814 0.9953 1.102

1.8 1.497 0.9957 0.3017 4.918 0.6251 0.9851 1.103

2.0 1.707 1.136 0.3491 5.746 0.6000 0.9719 1.097

(b) Integer-order PID

Md
s Kp Ki Kd ωo Lo

1.4 1.019 0.6969 0.1966 2.492 0.6034
1.6 1.346 1.014 0.2538 3.610 0.4435
1.8 1.525 0.9583 0.3746 4.455 0.6462
2.0 1.809 1.052 0.3439 5.853 0.6164

The obtained tracking performance for the reference input
results are shown in Table 3(b). Table 3(b) shows that the
larger the value of Md

s , the smaller the value of JT , which
indicates that the tracking performance for the reference
input is higher.

4.3 Verification of robust stability

To verify robust stability, consider the situation where the
plant dynamics changes to P ′(s) after 75 [sec].

P ′(s) =
1.5

0.72s+ 1
e−0.7s (33)

The simulation results using the optimized FOPID con-
troller parameters shown in Table 2(a) are shown in Fig.
4(a). It can be seen from Fig. 4(a) that the output diverges
with Md

s = 2.0. Fig. 4(b) shows an enlarged view of Fig.
4(a) excluding the output with Md

s = 2.0 and the initial
data for better visibility. Fig. 4(b) shows that the smaller
the value of Md

s , the smaller the effect of the plant dynam-
ics change, i.e., the higher the robust stability. Therefore,
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(a) Fractional-order PID control

(b) Integer-order PID control

Fig. 3. Obtained plant outputs and reference outputs

Table 3. Obtained control results

(a) Objective function J and Ms

Fractional-order PID Integer-order PID

Md
s J Ms J Ms

1.4 3.043 × 10−5 1.401 5.800 × 10−5 1.400
1.6 5.063 × 10−6 1.602 7.119 × 10−5 1.600
1.8 1.180 × 10−5 1.803 4.092 × 10−5 1.800
2.0 3.865 × 10−5 2.004 5.514 × 10−5 2.000

(b) Tracking performance for the reference input JT

Md
s Fractional-order PID Integer-order PID

1.4 6.709 × 10−3 6.825 × 10−3

1.6 5.962 × 10−3 5.931 × 10−3

1.8 5.749 × 10−3 5.741 × 10−3

2.0 5.527 × 10−3 5.477 × 10−3

the trade-off design between tracking performance for the
reference input and robust stability is confirmed.

4.4 Discussion

The values of J in Table 3(a) show that for Md
s = 1.6,

the FOPID control well improves the tracking performance
for the reference output, but it is less pronounced for the
other Md

s . Additionally, the method solves a nonlinear
optimization problem, so the obtained solution is a local
optimal solution, which is affected by the initial values.
Therefore, it is necessary to consider a control law that
reduces these effects as a future study.

5. CONCLUSIONS

In this paper, a data-driven tracking performance for ref-
erence output optimization method is proposed using a
FOPID controller. In the proposed method, the param-
eters of the FOPID controller and reference model are
obtained by minimizing the objective function of E-FRIT

(a) Outputs for plant dynamics changes after 75 [sec]

(b) Enlarged view of Fig. 4(a) excluding Md
s = 2.0 and initial data

Fig. 4. Verification result of robust stability

using a set of input-output data, subject to the constraint
condition on the stability margin. In the proposed method,
a trade-off design of tracking performance for the reference
input and robust stability is accomplished by selecting
robust stability. Finally, the numerical example results
show that the tracking performance for reference output
is improved by using the FOPID controller.

The proposed method focuses on servo performance, and
we will investigate regulator performance in the future
study.
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Åström, K.J. and Hägglund, T. (2001). The future of PID
control. Control Engineering Practice, 9(11), 1163–1175.
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