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Sacramento s/n, 04120, Almeŕıa, Spain (e-mail: juandiego.gil@ual.es.

ilp428@inlumine.ual.es, joseluis.guzman@ual.es, beren@ual.es).

Abstract:
This study performs a comparative analysis of three Model Reference Adaptive Control (MRAC)
schemes grounded in Lyapunov theory. Specifically, it compares a pure MRAC controller with
two hybrid MRAC-PID schemes, each integrating the PID component in a distinct manner
within the control structure. The aim is to address a significant gap in the existing literature
related to the lack of comparisons involving the different ways the MRAC and PID control
can be hybridized. The developed controllers undergo extensive testing in simulated scenarios
emphasizing model reference convergence and disturbance rejection. The results underscore
that hybridizing the MRAC mechanism with a PID controller offers notable advantages in both
performance and robustness, especially concerning disturbance rejection, a scenario in which
the hybrid controllers improved by around 70 and 75 % the mean square error obtained with a
pure MRAC controller. In general, these findings highlight the potential benefits of combining
MRAC and PID techniques, providing insight into the improved control system performance
that PID control can bring to conventional MRAC schemes.
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1. INTRODUCTION

Model Reference Adaptive Control (MRAC) employs a
closed-loop controller with adjustable parameters to op-
timize the system response and achieve a desired dynamic
behavior in closed-loop. Specifically, in MRAC controllers,
the adaptation mechanism dynamically modifies the con-
troller parameters to align the process output with the
output of the reference model. This model sets the ex-
pected (reference) output response that the system aims
to track (Åström and Wittenmark, 2013). Thus, the use of
MRAC controllers provides the advantage of accommodat-
ing system deviations from the reference response defined
by the reference model, whether these deviations arise
from uncertainties or disturbances (Shekhar and Sharma,
2018).

MRAC control finds prominent application in various do-
mains, particularly in the control of robotic manipulators
(Zhang and Wei, 2017), motor control (Humaidi et al.,
2017; Nguyen et al., 2018), and diverse applications such
as the stabilization of pendulum systems (Mendez et al.,
2020). It should be noted that, in most cases, the MRAC
mechanism is applied directly without including additional
auxiliary control schemes to address robustness issues.
⋆ This work is a result of the CyberGreen Project, PID2021-
122560OBI00, and the Agroconnect (www.agroconnect.es)
facilities, grant EQC2019-006658-P, both funded by
MCIN/AEI/10.13039/501100011033 and by ERDF A way to
make Europe. Igor M. L. Pataro acknowledges the financial support
of the National Council for Scientific and Technological Development
(CNPq, Brazil) under grant 201143/2019− 4.

However, an emerging trend involves hybridizing MRAC
controllers with Proportional, Integral, and Derivative
(PID) controllers, which provides potential advantages in
terms of convergence, as discussed in detail by Zhang
and Wei (2016). This hybridization strategy represents a
nuanced approach that can potentially improve the adapt-
ability and performance of MRAC controllers in various
applications.

In the existing literature, some examples of the combina-
tion of PID and MRAC control can be found. Amrane
and Chaiba (2015) proposed an MRAC-PID for a double-
feed induction generator. The study conducted by Pawar
and Parvat (2015) introduced an MRAC-PID controller
for an inverted pendulum system; the integration of both
control systems (i.e., MRAC and PID) was carried out to
mitigate the limitations associated with traditional MRAC
techniques. Zhou et al. (2016) designed an MRAC-PID
controller for an inertial-stabilized aircraft platform fo-
cused on disturbance rejection. By and large, these exam-
ples collectively underscore the diverse applications and
advantages sought through the combination of PID and
MRAC methodologies, showcasing the benefits of such
hybrid control systems in various domains. However, the
main gap identified in the literature is the lack of consensus
regarding the optimal approach to integrate the MRAC
mechanism with a PID controller. Moreover, there is a
dearth of comparisons involving the different ways in which
MRAC and PID control can be hybridized. To the authors’
knowledge, the only existing comparison is that proposed
by Zhang and Wei (2016), which compared a pure MRAC
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scheme with a hybrid MRAC-PID controller in terms of
convergence. However, in that work, only a hybrid scheme
is employed, in which the MRAC mechanism adjusts the
control signal of the PID controller.

On the basis of the above literature review, this paper con-
ducts a comparative analysis of three MRAC schemes de-
veloped following the Lyapunov theory. It specifically com-
pares a pure MRAC controller with two hybrid MRAC-
PID schemes, each integrating the PID component in a
different manner within the control structure. Particularly,
in the first hybrid controller, the MRAC mechanism is
responsible for adjusting the reference of the PID control
loop. On the contrary, in the second hybrid controller, the
MRAC mechanism adjusts the PID control signal. The de-
sign of both approaches is developed following the princi-
ples outlined by Åström and Wittenmark (2013) regarding
the Lyapunov theory. Moreover, the corresponding block
diagrams are fully depicted, allowing for practical imple-
mentation. Finally, the controllers are compared through
simulations, utilizing two distinct scenarios focused on
model reference convergence and disturbance rejection.

The paper is structured as follows: Section 2 is dedicated
to the design of the different controllers. Section 3 presents
and analyzes the main results derived from the application
of the developed controllers in the proposed simulation
scenarios. Lastly, Section 4 outlines the key conclusions
drawn and offers recommendations for future research.

2. CONTROLLERS’ DESIGN

In this section, MRAC-based control solutions are devel-
oped for the simplest case: a first-order system without
time delay. First, the MRAC mechanism based on the Lya-
punov theory is depicted. Afterward, two hybrid MRAC-
PID control structures based on the same principles are
proposed.

2.1 MRAC based on the Lyapunov theory

Take into account the first-order system defined by the
equation:

dy(t)

dt
= −a1 · y(t) + a2 · u(t), (1)

where u(t) represents the input to the process, y(t) is the
observable output of the process, and a1 and a2 are the
unknown parameters of the process.

Now, consider the desired dynamics in closed-loop as
expressed by the equation:

dym(t)

dt
= −a1,m · ym(t) + a2,m · uc(t), (2)

where ym(t) signifies the desired closed-loop response, a1,m
and a2,m are predetermined gains, and uc(t) represents the
command signal intended as a reference.

Let now introduce an adaptive control law to integrate the
adaptation mechanism as follows:

u(t) = θ1(t) · uc(t)− θ2(t) · y(t). (3)

At this point, let define the error between the actual
process output and the desired behavior as:

em(t) = y(t)− ym(t), (4)

Given that the main objective of the proposed controller
is to minimize this error, it is logical to formulate a
corresponding differential equation. Using Eqs. (1), (2),
and (3) yields the following result:

dem(t)

dt
= −a1,m · em(t)− (a2 · θ2(t) + a1 − a1,m) · y(t)

+ (a2 · θ1(t)− a2,m) · uc(t). (5)

It should be noted that the error goes to zero if the adapt-
able parameters (that is, θ1 and θ2) reach the following
equilibrium values:

θ1 =
a2,m
a2

, θ2 =
a1,m − a1

a2
. (6)

To create a mechanism to adjust the parameters θ1 and
θ2 to the previous values, assume a constant term given
by a2γ such that a2γ > 0 and introduce the following
Lyapunov function (time dependence has been omitted
for the sake of clarity) according to the ideas presented
by Åström and Wittenmark (2013):

V (em, θ1, θ2) =
1

2
·
[
e2m +

1

a2γ
· (a2 · θ2 + a1 − a1,m)2

+
1

a2γ
· (a2 · θ1 − a2,m)2

]
. (7)

Note that Eq. (7) is differentiated with respect to time,
thus allowing one to determine its Lyapunov stability:

dV

dt
= em · dem

dt
+

1

γ
· (a2 · θ2 + a1 − a1,m) · dθ2

dt

+
1

bγ
· (a2 · θ1 − a2,m) · dθ1

dt
. (8)

Thus, by introducing Eq. (4), the previous equation be-
comes:

dV

dt
= −a1,m · e2m +

1

γ
· (a2 · θ2 + a1 − a1,m)

· (dθ2
dt

− γ · y · em) +
1

γ
· (a2 · θ1 − a2,m)

· (dθ1
dt

+ γ · uc · em), (9)

so that if the adaptive parameters are updated as:

dθ1
dt

= −γ · uc · em,
dθ2
dt

= γ · y · em, (10)

Eq. (9) results in:

dV

dt
= −a1,m · e2m. (11)

Since it is negative semidefinite, it is Lyapunov stable
(notice that a1,m must be positive for the closed-loop
system to be stable). Furthermore, the boundedness and
convergence of Eq. (11) can be proven if it is locally
Lipschitz (Åström and Wittenmark, 2013). Therefore, by
differentiating the equation with respect to time, we get
the following:

d2V

dt2
= −2 · a1,m · em · dem

dt
. (12)

Now, if Eq. (4) is substituted, it is evident that d2V
dt2 is

a function of em, y, and uc, which are bounded signals.

This implies that d2V
dt2 is bounded and dV

dt is continuous,
so the system is Lyapunov stable and locally Lipschitz.
More details on this issue can be found in (Åström and
Wittenmark, 2013).
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The MRAC controller can now be displayed using the
previous development, as shown in Fig. 1. In this scheme,
Eq. (1) is included in the block System, whereas Eq. (2) is
reflected in the block Reference model.

Fig. 1. Schematic diagram of the pure MRAC controller.

2.2 Hydrid MRAC-PID: Solution 1

One of the primary limitations of an MRAC structure
is its relatively weak robustness capability compared to
other control structures (Vargas-Mart́ınez et al., 2015). To
address this limitation, a conventional PID controller can
be incorporated into the MRAC control loop, resulting
in a hybrid MRAC-PID control solution. This approach
enables us to exploit the power and robustness of PID
controllers within an MRAC mechanism.

In fact, one of the most straightforward methods of in-
tegrating the PID and MRAC strategies involves substi-
tuting the system block from the preceding section (see
Fig. 1), with a PID-based feedback control loop, as shown
in Fig. 2. Note that in this case, the development shown
in the previous section is the same, the only difference is
that Eq. (1) reflects closed-loop system dynamics instead
of the open-loop ones. Thus, in this case, the MRAC
mechanism is responsible for adjusting the setpoint of the
PID feedback control loop in order to obtain the desired
dynamics imposed by the reference model.

Fig. 2. Schematic diagram of the hybrid MRAC-PID
controller, solution 1.

2.3 Hydrid MRAC-PID: Solution 2

As mentioned in the scheme outlined in the preceding
section, the MRAC mechanism adjusts the reference of
the PID control loop. An alternative approach to hybridize
MRAC and PID involves the MRAC mechanism directly
modifying the control signal computed by the PID con-
troller, following the ideas presented by Khan and Swamy
(2016). For this case, consider Eqs. (1) and (2) and the
following adaptive control law:

u(t) = θ1(t) · uPID(t)− θ2(t) · y(t). (13)

where:

uPID(t) = Kp ·
[
1 +

1

Ti
· g + Td · p

]
· ePID(t), (14)

where p and g have been introduced as the operators d
dt

and
∫ t

ζ=0
dζ, respectively, Kp is the proportional gain, Ti

the integral time, and Td is the derivative time of the PID
controller. Moreover, the PID error equation is given by:

ePID(t) = uc(t)− y(t). (15)

Note that the model reference error is defined as in Eq. (4).

As pointed out in Section 2.1, the objective is to minimize
the error in Eq. (4) so that the differential equation in this
case can be formulated as:
dem(t)

dt
= −a1,m · em(t)− (a2 · θ2(t) + a1 − a1,m) · y(t)

+ a2 · θ1(t) · uPID(t)− a2,m · uc(t). (16)

By incorporating now Eq. (15) and adding and subtract-
ing uPID on the right-hand side, the previous equation
becomes (note that the dependence with time has been
omitted for the sake of clarity):

dem
dt

= −a1,m · em − a2,m · ePID − (a2 · θ2 + a2,m + a1

− a1,m) · y + (a2 · θ1 + 1) · uPID − uPID. (17)

As can be observed, in this case, the error will go to zero if
the adaptive parameters converge to the following values:

θ1 =
−1

a2
, θ2 =

a1,m − a1 − a2,m
a2

. (18)

It is also important to mention that the error in this case
does not depend only on the em-term, but the error of
the feedback control loop (i.e., ePID) is also involved,
as it appears directly in Eq. (17) and through the term
uPID as defined in Eq. (14). Thus, it becomes evident that
achieving convergence between the model and the desired
behavior requires a zero PID error signal (ePID). Since
ePID(t) = uc(t) − y(t) and em(t) = y(t) − ym(t), at the
convergence point, the system output (y) must be equal
to both the command signal (uc) and the desired output
(ym). This condition is achievable only if, considering first-
order reference models, they maintain unity gain, that is,
a1,m = a2,m in Eq. (2), which is typically imposed in
process control for tracking control problems. Note that,
by doing this, at the convergence point, uc(t) = ym(t) =
y(t). This is an important remark that must be taken into
account for the application of this hybrid controller.

At this point, let define a Lyapunov function following the
principles outlined in Section 2.1 as follows:

V (em, θ1, θ2) =
1

2
·
[
e2m +

1

a2γ
· (a2 · θ2 + a2,m + a1

− a1,m)2 +
1

a2γ
· (a2 · θ1 + 1)2

]
. (19)

By differentiating the previous equation with respect to
time and incorporating Eq. (17) we obtain:

dV

dt
= −a1,m · e2m − a2,m · em · ePID +

1

γ
· (a2 · θ2 + a2,m

+ a1 − a1,m) · (dθ2
dt

− γ · y · em) +
1

γ
· (a2 · θ1 + 1)

· (dθ1
dt

+ γ · uPID · em)− uPID · em, (20)
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so that if the adaptive parameters are updated as:

dθ1
dt

= −γ · uPID · em,
dθ2
dt

= γ · y · em, (21)

the following equation is derived:

dV

dt
= −a1,m · e2m − a2,m · em · ePID − uPID · em, (22)

which, again, is a negative semi-definite and, therefore,
Lyapunov stable. Note that the previous equation is neg-
ative semi-definite since i) it contains the term e2m in the
first term, ii) in the second, it has the multiplication of
em·ePID, which are errors with the same sign, since Eq. (2)
must have a unity gain, and iii) it contains the term uPID ·
em in the third term. In this case, please take into account
the definition in Eq. (14), so that the third term in Eq. (22)

can be written asKp ·
[
1 + 1

Ti
· g + Td · p

]
·ePID ·em, which,

again, is a multiplication between the error signals.

Now, as in Section 2.1, the boundedness and convergence
can be proven if it is locally Lipschit. Consequently, by
differentiating the equation with respect to time, we obtain
the following

d2V

dt2
= −2 · a1,m · em · dem

dt
− (uPID · dem

dt
+ em · duPID

dt
)

− a2,m · (em · dePID

dt
+ ePID · dem

dt
). (23)

Again, d2V
dt2 is bounded, and dV

dt is continuous, so the
system is Lyapunov stable and locally Lipschitz.

The schematic diagram of the MRAC controller can now
be depicted in accordance with the previous development,
as illustrated in Fig. 3. As in Section 2.1, in this scheme,
Eq. (1) is included in the block System, whereas Eq. (2) is
reflected in the block Reference model.

Fig. 3. Schematic diagram of the hybrid MRAC-PID
controller, solution 2.

3. RESULTS

This section shows the results obtained with the differ-
ent control configurations, that is, i) MRAC, ii) Hybrid
MRAC-PID, solution 1, iii) Hybrid MRAC-PID, solution
2. The controllers were tested in two distinct scenarios,
focusing on model reference convergence and disturbance
rejection. For the different tests, the system in Eq. (1)
was considered as a1 = 0.5 and a2 = 1, while the de-
sired behavior in Eq. (2) as a1,m = 2 and a2,m = 2.
Furthermore, the PID controller was configured only with
proportional and integral terms following the pole-zero
cancelation method (Åström and Hägglund, 2006). The
closed-loop time constant was set to be 0.6 times faster

than the open-loop dynamics, resulting in Kp = 0.833 [-]
and Ti = 1 s. It is important to note that the configuration
employed for the PID equation adhered to the ideal form.
With respect to the tuning of the γ-parameter, this will
be discussed in the following section.

3.1 Model reference adjustment and convergence

The initial simulation experiment assessed the convergence
of the different control structures to the reference model.
To achieve this, the reference signal uc was set as a square
wave with an amplitude of 2 and a frequency of 0.001 Hz.
Furthermore, three different γ-values (0.001, 0.01, and 0.1)
were examined for each controller to analyze the impact of
this parameter on the controller performance. The results
obtained are presented in Fig. 4.

-2

0

2

MRAC y
m y( =0.1) y( =0.01) y( =0.001)

-2

0

2
Hybrid MRAC-PID, solution 1

0 100 200 300 400 500 600

Simulation time [-]

-2

0

2
Hybrid MRAC-PID, solution 2

Convergence
Convergence

Convergence

Fig. 4. Outputs of the controller with the different γ-
values. Note that ym is the output of the reference
model, while the rest of the signals are the output
with the different γ values for each configuration.

It is worth noting that Fig. 4 exclusively displays the sys-
tem output, a choice made to enhance the clarity of result
visualization with varying γ-values. The examination of
the control signal behavior and a detailed analysis of adap-
tive parameters (θ1 and θ2) will be thoroughly discussed
in the subsequent section. However, the moment in which
the adaptive parameters (θ1 and θ2) reached convergence
for the best γ-value configuration for each case is marked
in the figure.

As can be seen, in general, low γ-values led to slow con-
vergence in all cases, with special relevance in the MRAC
and Hybrid MRAC-PID, solution 1. This is because in
these configurations, the adjustment mechanism has an
important weight in the controller performance since, in
the first, it directly computes the control signal, and in
the second, it is responsible for modifying the reference
of the PID control loop. In the case of Hybrid MRAC-
PID solution 2, the configuration of the control scheme
gives certain advantages since, as can be seen in Eq. (16),
the PID controller is also involved in the adjustment to
the reference model, so the convergence was faster for all
the γ-values. It should also be noted that although higher
values of γ provided a faster adjustment, overshoots were
observed in MRAC and hybrid MRAC-PID, solution 1,
which must be considered in practical implementations.
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To quantitatively observe the advantages of each controller
in terms of adjustment, Tab. 1 presents the Mean Square
Error (MSE) of each controller with different γ-values with
respect to the reference model. As can be seen, in all cases,
the smallest MSE value was obtained with γ = 0.1, and,
in particular, the lowest value was provided by the Hybrid
MRAC-PID configuration, solution 2, with an MSE of
0.0043. Another aspect to highlight is that the MRAC
scheme provided a smaller MSE value than Hybrid MRAC-
PID, solution 1, so the inclusion of the PID following that
scheme did not provide advantages in terms of adjustment,
although it does provide other types of advantages as will
be shown in the next section.

Table 1. MSE of the different control configu-
rations with the different γ-values with respect

to the reference model.

γ =0.1 γ =0.01 γ =0.001

MRAC 0.0050 0.0407 0.3104

Hybrid MRAC-PID, solution 1 0.0055 0.0527 0.5033

Hybrid MRAC-PID, solution 2 0.0043 0.0401 0.2799

3.2 Disturbance rejection

In the second test, the aim was to assess the performance
and robustness of the controllers in the presence of distur-
bances. Thus, the reference signal (i.e., uc) was maintained
as in the previous section. However, a disturbance was
introduced into the process output at simulation time
575, as illustrated in Fig. 5. Note that this disturbance
consisted of a step of 1 plus band-limited white noise, with
a noise power of 5 and a sample time of 60. The results
obtained in this test are presented in Figs. 6, 7, and 8
for the MRAC, hybrid MRAC-PID solution 1, and hybrid
MRAC-PID solution 2, respectively.

0 750 1500

Simulation time [-]

0

0.5

1

1.5

2
Disturbance

Fig. 5. Disturbance signal used as a reference in the
simulation test.

As can be seen, until the moment when the disturbance
was introduced (see the mark in Figs. 6-(1), 7-(1), and
8-(1)), all controllers almost reached convergence in the
adaptation parameters (θ1 and θ2), see Figs. 6-(3), 7-(3),
and 8-(3), observing the same results and trends as those
discussed in the previous section. The main differences
between the controllers can be seen in the rejection of the
disturbance. In general, the two solutions that incorporate
a PID controller (Figs. 7 and 8) exhibited faster rejection
of disturbances. This was attributed to the PID controller
operating on a faster time scale compared to the MRAC
mechanism, allowing for a quicker response to reject distur-
bances. This fact also produced an extra advantage, which
was that the convergence of the adaptation parameters was
hardly altered in both cases, see Figs. 7-(3) and 8-(3).
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Fig. 6. MRAC control system performance during simu-
lation. All the signals are according to the scheme
depicted in Fig. 1.
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Fig. 7. Hybrid MRAC-PID controller, solution 1. All the
signals are according to the scheme depicted in Fig. 2.
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Fig. 8. Hybrid MRAC-PID controller, solution 2. All the
signals are according to the scheme depicted in Fig. 3.

In the case of the MRAC controller (see Fig. 6), it can
be seen how it also managed to reject the disturbance,
even though it did not include a PID mechanism and
its control action lies purely in the integrators of the
adaptation law. However, it can be seen that the con-
vergence of the adaptation parameters was completely
altered (see Fig. 6)-(3)). This was quite significant since
the parameters’ values showed an upward and oscillating
trend, which translated into increasingly aggressive control
actions (see Fig. 6)-(2)). It should be noted that the test
was stopped at instant 1500 for improved visualization.
However, this trend persisted over time, leading to pro-
gressively more aggressive control actions. Consequently,
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in practical implementations, particularly for systems with
input constraints, applying such aggressive controls could
be impossible or pose significant challenges. In addition,
this behavior indicated instability, which is one of the
problems stated by Åström and Wittenmark (2013) when
a pure MRAC controller is subjected to large amplitude
changes either in the reference or caused by disturbances,
as in this case.

Finally, Tab. 2 shows the MSE of each of the controllers
with respect to the reference model, as well as the Control
Effort Total Variation (CETV), which respresents the sum
of the absolute values of the increments of the control
signal. As observed, the magnitude of MSE obtained by
the schemes that incorporate PID is significantly lower,
improving by around 70 and 75 % the performance of the
MRAC controller for hybrid MRAC-PID solution 1 and
solution 2, respectively.

Table 2. MSE of the different control configu-
rations with respect to the reference model.

MSE CETV

MRAC 0.0188 228.13

Hybrid MRAC-PID, solution 1 0.0058 171.02

Hybrid MRAC-PID, solution 2 0.0044 153.35

4. CONCLUSION

This paper provides a comparative analysis of three
MRAC schemes grounded in the Lyapunov theory. Specifi-
cally, it contrasts a pure MRAC controller with two hybrid
MRAC-PID schemes, each incorporating the PID compo-
nent in a distinct manner within the control structure. The
controllers were tested in two different scenarios focused
on model reference convergence and disturbance rejection.
The results obtained allow us to draw the following con-
clusions:

• All controllers demonstrated satisfactory adjustment
to the reference model. In particular, the proposed
hybrid MRAC-PID solution 2 (with the MRAC mech-
anism adjusting the control signal of the PID con-
troller) exhibited improved MSE values, underscoring
the advantages of incorporating a PID into the adap-
tation mechanism according to this specific scheme
for the adjustment of the reference model.

• Regarding disturbance rejection, the schemes incor-
porating PID exhibited markedly superior perfor-
mance. This can be attributed to the PID mechanism
operating on a faster time scale compared to the
MRAC one. Thus, the hybrid MRAC-PID solution
1 and solution 2 improved by around 70 and 75 %
the MSE performance of the MRAC controller, re-
spectively. Moreover, the inclusion of the PID played
a fundamental role in the robustness of the MRAC
controller facing large amplitude changes caused by
disturbances.

In general, the findings of this work underscore the poten-
tial advantages of integrating MRAC and PID techniques,
providing insights on the improved performance of the
control system that PID control can bring to traditional
MRAC schemes.

Future work will be aimed at analyzing the performance of
the different control schemes for systems of higher orders

and/or time delay with input constraints and obtaining
practical rules for tuning the γ-parameter.
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