
     

Coupled Continuous PID Controllers for the IFAC Benchmark on Vapor 

Compression Refrigeration on the Behavioural Setting 
 

Jesús-Antonio Hernández-Riveros*, Gerardo J. Amador Soto** 
 

Universidad Nacional de Colombia, Medellín. Facultad de Minas, Departamento de Energía Eléctrica y Automática. Colombia.  

* (jahernan@unal.edu.co) 

** (gjamadors@unal.edu.co) 

Abstract: This paper presents a behavioral-based controllers design, utilizing evolutionary learning of 

trajectories, applied to the IFAC PID18 benchmark model for a vapor compression refrigeration system. 

The challenge of tracing both the evaporator outlet temperature (Te,sec,out) and superheat temperature 

(Tsh) with disturbances and imposed restrictions is addressed. The challenge integrates a preset discrete 

MIMO control scheme, serving as a basis for comparison with alternative control schemes. The proposed 

method also allows for direct experimentation on the system, bypassing the need for reference models or 

mathematical representations. By developing behavioral paths and iteratively adjusting controller 

variables, satisfactory control objectives are achieved. The evolutionary behavioral approach is tested on 

the default discrete control scheme and then applied to newly designed coupled continuous PID controllers, 

which outperform the benchmark strategy. The method is versatile, adaptable to both model-based and 

data-driven approaches, and offers a direct relationship with the physical system, independent of both its 

representation and controller structure, thus emulating real-world conditions effectively. 
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1. Introduction 

The main purpose of a vapor compression refrigeration system 

(VCRS) is to extract and transfer heat from a cold 

compartment to its surroundings at a higher temperature using 

mechanical components (see Fig. 1).  

 
Fig. 1. VCRS depiction. Taken from (Bejarano et al., 2018). 

Traditionally, enhancing energy efficiency in VCRSsystems 

involves redesigns, new materials, new technologies, and best 

practices. In the industry, a practical approach is to operate the 

cycle with a specific superheating temperature (Tsh) for the 

refrigerant at the evaporator outlet. This indirectly boosts 

energy efficiency by raising the coefficient of performance 

(COP). Recent advancements like variable speed compressors 

and electronic expansion valves allow gradual intervention in 

the process, opening avenues for direct energy consumption 

reduction. Research is seeking intelligent control structures to 

manipulate these elements effectively. The challenge is to 

couple these technologies to improve temperature control 

precision and lower total energy usage. In the PID 18 

challenge, a VCRS model facilitates assessing controller 

designs' accuracy by tracking both operating evaporator 

temperature and superheat temperature, thus indirectly 

reducing energy consumption (Bejarano et al., 2018). 

This paper outlines the performance of a behavior-based 

control method, employing evolutionary learning of 

trajectories, applied to the IFAC18 benchmark model of a 

VCRS. The benchmark already includes a preset MIMO 

discrete control scheme. Similar proposals addressing the 

design and tuning of a coupled multivariable controller have 

been presented in (Hernández-Riveros et al., 2016; Zeng et al., 

2015). The evolutionary technique enables the discovery of 

practical solutions without significantly complicating the 

initial problem, regardless of the plant model and control 

scheme structure. Consequently, the original discrete control 

scheme will be substituted with two coupled continuous PID 

controllers. The method's applicability to the original problem 

and its independence and attributes are demonstrated. 

The structure of this paper is as follows: benchmark model and 

its control scheme are described in detail in section 2. The 

behavior-based control evolutionary technique proposal 

applied to the benchmark is introduced in section 3. In section 

4, a comparative evaluation and analysis of the multivariable 

controllers found is done. Section 5 summaries the concluding 

remarks of this work 

2. About the PID18 benchmark model and control scheme 

Modeling the dynamics of a VCRS presents significant 

challenges due to the complex interaction of various forms of 

energy. Key considerations include high thermal inertia, 

strong component coupling, nonlinearities, uncertainties, 

disturbances, and dead times. The benchmark plant model, 

based on the switched moving-boundary approach, 

encompasses one compression stage and a refrigeration load-
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demand system (Li et al., 2012). Simulations span 20 minutes 

of continuous operation, with the heat exchanger divided into 

zones representing different refrigerant states. The model, 

designed for control purposes, explicitly outlines manipulated 

variables and major disturbances. It serves as a tool to evaluate 

system energy efficiency relative to desired outputs given 

available inputs. 

2.1 MIMO refrigeration control system 

As mentioned before, the benchmark model is control oriented 

integrating a preset discrete MIMO control scheme. Choosing 

the structure of the multivariable control is totally free in the 

challenge. The controllers could be discrete, continuous, or 

hybrid. This benchmark model and MIMO control scheme 

provides a suitable scenario to evaluate the effectiveness of a 

technique regardless of the selected control structures and the 

complexity of the model. 

2.2 Control scheme description 

The control scheme on the benchmark is conventional. Control 

objectives are stablished imposing a reference by the cooling 

demand (Te,sec,out), and also a set point (low but constant) on 

the degree of superheating (Tsh) (see Fig. 2). The controllers 

are designed to track the references of these two variables 

manipulating, in presence of disturbances, the aperture of the 

expansion valve and the compressor speed (see Table 1 and  

Table 2). Constraints ranges on the manipulated variables are 

also considered.  

Table 1. Input and output variables. 

Input variables Symbol Unit 

Expansion valve aperture Av % 

Compressor speed N Hz 

Output variables Symbol Unit 

Outlet temperature of the 

evaporator secondary fluid 
Te,sec,out ºC 

Super heat temperature Tsh ºC 

 

Table 2  

Disturbance variables 

Disturbances Symbol Unit 

Inlet temperature of the 

condenser secondary flux 
Tc,sec,in ºC 

Mass flow of the condenser 

secondary flux 
𝑚̇c,sec g s-1 

Inlet pressure of the condenser 

secondary flux 
Pc,sec,in bar 

Inlet temperature of the 

evaporator secondary flux 
Te,sec,in ºC 

Mass flow of the evaporator 

secondary flux 
𝑚̇e,sec g s-1 

Inlet pressure of the evaporator 

secondary flux 
Pe,sec,in bar 

Compressor surroundings 

temperature 
Tsurr ºC 

 

 
Fig. 2. Changes in the references for each output variable. 

Taken from (Bejarano et al., 2018). 

2.2 Other control techniques approaches 

According to (Zardini, 2017), in general, the control strategies 

can be divided into two viewpoints: 

1. Avoid the MIMO complexity by applying SISO controllers, 

e.g.: a) Decentralized control, b) Pairing problem, c) 

Decoupled control. 

2. Centralized multivariable control, optimizing some cost 

function, e.g.: a) Linear Quadratic Regulator, b) H-infinity 

control. 

Linear modelling of VCRS can face challenges, such as 

closed-loop instability due to high coupling between variables, 

dead times, thermal inertia, and nonlinearities (Bejarano et al., 

2018). Controllers must be robust to handle these conditions, 

even at operating points far from the desired behavior. 

Proposed methods need to address this complex scenario 

effectively. 

3. Coupled controllers design through behavior-based 

approach 

The behavior-based approach for dynamical systems is notable 

for its direct connection to the plant, allowing representation-

free solutions. It enables the generation of information for 

general or specific conditions. According to this approach, the 

behavior (𝓑) of a dynamical system is a set of trajectories 

(Willems, 2007). A dynamical system is defined as 
∑ = (𝑻,𝑾,𝓑), where, T is the time axis, W ∈ ℝq is the signal 

space, and 𝓑 ⊂ ℝqℤ is the associated space of trajectories. Each 

w(i) can be partitioned in a permutation matrix 𝑃 = [
𝑢(𝑖)
𝑦(𝑖)

] 

where u(i) ∈ ℝm and y(i) ∈ ℝq-m are free (inputs) and dependent 

(outputs) variables.  

The behavior of a real plant, 𝓑plant, encompasses constraints, 

bounds, variable saturation, and specific capabilities. In the 

behavioral approach, only trajectories meeting the plant's 

conditions are considered, ensuring feasible and safe solutions. 

Hence, a real plant trajectory has a fixed length, L, so that, 

𝓑𝑝𝑙𝑎𝑛𝑡  ⊂ ℝqL. A real plant is a dynamical system given by 

𝚺𝑝𝑙𝑎𝑛𝑡 = (𝑻,𝑾,𝓑𝑝𝑙𝑎𝑛𝑡). 

From the behavioral point of view, a controller, is another 

dynamical system, 𝚺𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 = (𝑻,𝑲, 𝓑𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟), in 
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interconnection with the plant. K is the signal space of control 

variables in the same time axis T. As a plant, a controller has 

its own conditions of behavior, 𝓑𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 , but imposes 

restrictions on the plant only through admissible plant 

trajectories, W ∈ ℝqL.  

A full behavior is defined by 𝓑full = {(𝑤, 𝑘): 𝑻 →

𝑾X𝑲|(𝑤, 𝑘) ∈ 𝓑𝑝𝑙𝑎𝑛𝑡  and 𝑘 ∈ 𝓑𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟  )}, a controlled 

system is 𝚺𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 = (𝑻,𝑾,𝓑𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑) with 𝓑𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑  = 

{ 𝑤: 𝑻 → 𝑾|𝑘: 𝑻 → 𝑲 such that (𝑤, 𝑘) ∈ 𝓑𝑝𝑙𝑎𝑛𝑡  and 𝑘 ∈

𝓑𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟  )}. Knowing the own operating conditions of the 

full system, the behavioral approach in control systems may be 

applied based on model or based on data. 

Evolutionary learning of trajectories facilitates the 

identification of potential behavioral paths that align with 

control objectives, irrespective of model complexity, domain, 

structure, or purpose. Traditionally, control engineering 

tackles this by employing a reference model of a VCRS to tune 

controllers using model information. However, in this paper, 

the IFAC18 benchmark model serves solely as a data generator 

for independent and dependent variables. The evolutionary 

approach mimics direct manipulation within the process, 

gathering knowledge/experience to enhance temperature 

control precision, as illustrated in Fig. 3.  

 

Fig. 3. Direct intervention on the VCRS using the behavior-

based approach, regardless of the controller type 

The behavior-based control structure employs sensors to 

gather system variables and assesses error margins using 

logical operators. This information is used to construct a cost 

function, guiding input actions based on control objectives and 

generating a performance index like ITAE. The intelligent 

control structure then utilizes three population dynamics 

within an evolutionary search process to propose optimal 

controller parameter combinations, aiming to minimize error. 

Facilitating this task is the auto-organized evolutionary 

algorithm MAGO, which effectively navigates the complex 

environment characterized by strong internal variable 

relationships and the intricate MIMO control problem. MAGO 

utilizes statistical operators instead of genetic ones. Use of 

statistical operators, along with the covariance matrix of the 

population, enables efficient management of variable 

interrelationships and dependencies. 

3.1 Multidynamics algorithm for global optimization – 

MAGO. 

MAGO, an auto-organized real-value evolutionary algorithm, 

operates with just two external parameters: population size 

(Pob) and number of generations (Ng). Each generation 

comprises two stages: one for competition and the other for 

adaptation. MAGO strategically evolves the population based 

on statistical insights drawn from its covariance matrix. Its 

efficacy in solving engineering problems has been 

demonstrated (Balarezo-Gallardo & Hernández-Riveros, 

2017; Soto et al., 2018). Unlike typical evolutionary 

algorithms, MAGO employs three distinct autonomous 

dynamics to balance exploration and exploitation, mitigating 

the risk of converging to local optima. It calculates statistics of 

the population to autonomously divides it into three 

subgroups: Emergent Dynamics, Crowd Dynamics, and 

Accidental Dynamics. Each subgroup undergoes its own 

evolutionary process. After evaluating fitness functions, the 

population is rearranged from best to worst individuals. This 

rearrangement is akin to a normal distribution, determining 

subgroup cardinalities based on each standard deviation. The 

cardinalities’ magnitude changes in each generation. The 

resulting groups are expressed in equations Eqs. (1)-(3), where 

the mean of the actual population is 𝑥𝑀
(𝑗)

, the sample 

covariance matrix of the population in generation j is 𝑆(𝑗) and 

the entire population is 𝑃𝑜𝑏(𝑗) = 𝐺1⋃𝐺2⋃𝐺3. 

𝐺1 = {𝒙 ∈
𝑃𝑜𝑏(𝑗)

𝑥𝑀
(𝑗)

− √𝑑𝑖𝑎𝑔(𝑆(𝑗)) ≤ 𝒙 ≥ 𝑥𝑀
(𝑗)
+√𝑑𝑖𝑎𝑔(𝑆(𝑗)) } (1) 

𝐺2 = {𝒙 ∈
𝑃𝑜𝑏(𝑗)

𝑥𝑀
(𝑗)

− 2√𝑑𝑖𝑎𝑔(𝑆(𝑗)) ≤ 𝒙 ≥ 𝑥𝑀
(𝑗)
+√diag(S(j)) } (2) 

𝐺3 =

{
 
 

 
 
𝒙 ∈

𝑃𝑜𝑏(𝑗)

𝑥
≤ 𝑥𝑀

(𝑗)
− 2√𝑑𝑖𝑎𝑔(𝑆(𝑗));       

𝒙 ≥ 𝑥𝑀
(𝑗)
+ 2√𝑑𝑖𝑎𝑔(𝑆(𝑗)) 

}
 
 

 
 

 (3) 

In each generation, MAGO produces new individuals. through 

those dynamics. A subset for the new population is produced 

by each dynamic. Emergent Dynamic manages an elite 

neighborhood seeking solutions closer to the very best 

individual, applying the Nelder-Mead method of numerical 

derivation, Eq. (4). Making a faster convergence of the 

algorithm and keeping an equilibrium between exploitation 

and exploration over the searching space, is part of the role of 

this dynamic. 

𝑥𝑇
(𝑗)
= 𝑥𝑖

(𝑗)
+ 𝐹(𝑗) × (𝑥𝐵

(𝑗)
− 𝑥𝑚

(𝑗)
) (4) 

The distance between the best individual of generation j, 𝑥𝐵
(𝑗)

, 

and a randomly chosen individual from the Emergent 

Dynamic, 𝑥𝑖
(𝑗)
= 𝑥𝑚

(𝑗)
, is weighted by a factor 𝐹(𝑗) that 

includes information about the problem variables from the 

covariance matrix of the actual population, Eq. (5). 

𝐹(𝑗) =
𝑆(𝑗)

‖𝑆(𝑗)‖
 (5) 

The upper and lower limits from the second dispersion, [LB(j), 

UB(j)], and the mean of the current population are used to 

sample a uniform distribution to determine the individuals 

produced by the Crowd Dynamic. This dynamic holds the 

memory of the evolution process. In contrast, sampling from a 

uniform distribution throughout the whole searching space 

produces the individuals of the Accidental Dynamic. The 

cardinality of this dynamic is smaller. This dynamic helps to 

maintain the diversity of the population and ensures numerical 

stability of the algorithm. MAGO pseudocode is below. 
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MAGO algorithm 

1: j:= 0; Initiate population from a uniform distribution over 

the search space. 

2: Repeat 

3: Fitness function evaluation of each individual. 

4: Calculation of the mean, covariance matrix, first, second 

and third dispersion of the actual population.  

5. Reorganization of the population from the best to the worst 

fitness function. 

6: Cardinalities calculation of the 3 dynamics (N1, N2, N3). 

7: Selection of N1 best individuals, moving toward the best 

of all upon equation 4. After competing with their parents, 

the best of both is chosen to next generation. 

8: Sample N2 individuals with a uniform distribution in the 

hyper volume [LB(j), UB(j)], pass them to next generation. 

9: With a uniform distribution over the entire search space, 

sampling N3 individuals and pass them to next generation. 

10: j = j + 1 

11: Until satisfy a stopping criterion. 

 

As in other evolutionary algorithms, due to its stochastic 

nature, calculating the computational complexity of MAGO is 

not an easy task. Also, the fitness function depends on each 

problem. The MAGO works with real numbers, so the size of 

each variable depends on the operating system, and the 

evolutionary operators are statistical, so both can be 

considered to have fixed behavior, in this way the 

computational complexity, big-O, of the MAGO depends only 

on the number of generations, Ng, and the population size, 

Pob, that is, the computational complexity of MAGO can be 

close to O(NgPob). Since Emerging Dynamics is an elite-type 

treatment of the best individuals, convergence to a feasible 

solution is guaranteed. A performance evaluation of MAGO is 

found in (Hernández-Riveros, 2012).  

3.2 Evolutionary coupled control tuning scenarios 

For control problems a reference behaviour is needed 

describing a L-length reference trajectory wr. The control is the 

finite-time optimization problem: minimize Kctrl (w, wr) 

subject to wr ∈ 𝓑plant. The most important part of wr is the 

sequence of the dependent variable, yr, and the control problem 

is rewrite as minimize Kctrl (y, yr). The minimizer is denoted as 

y*. Open-loop control is finding a ui such that (yi, yr) ≤ ԑ. 

Closed-loop control is finding the parameters of a controller 

structure such that exist a y*, and (y*, yr) ≤ ԑ, with a ui=f 

(controller structure) and y*= yi. 

Two scenarios are proposed to verify both the effectiveness in 

the design of controllers and the independence of the 

evolutionary learning of behaviours technique around the 

structure used for its implementation on the IFAC18 

benchmark model of a VCRS. The first scenario uses the 

default discrete transfer function controllers from the 

benchmark. The second scenario finds two new continuous 

coupled PID controllers (see Fig. 4). Given MAGO is a real-

valued evolutionary algorithm, a vector containing the 

parameters of the two controllers is enough to represent the 

evolutionary individual. 

 
Fig. 4. Coupled evolutionary tuning for the benchmark using 

the behavior-based approach: (1) preset discrete MIMO 

control scheme and (2) continuous PID controllers. 

For the first scenario, the structure of the evolutionary 

individual corresponds to the terms of the numerator (ni) and 

denominator (di) of the controller for the aperture of the 

expansion valve besides the constants of the PI controller for 

the compressor speed. For the second scenario, the 

evolutionary individual is built by the constants of the PIDi 

controllers for both variables (see Table 3). Behavioral paths 

arise from direct experimentation on the benchmark model, 

subsequently the error of the control variables in relation to 

each reference change is calculated.  

Table 3. Individual structure for the first (default) and second 

(new) scenarios. 
1st Scenario 2nd Scenario 

(n1, n2, d1) Є ℝ 
(P1, I1, D1) & (P2, I2, D2) Є ℝ 

(n3, d2), (P, I) Є ℝ+ 

Errors 𝑒𝑇𝑒1 and 𝑒𝑇𝑒2 correspond to the two reference changes 

for the evaporator outlet temperature. See Eqs. (6)-(7). 𝑒𝑇𝑠ℎ1, 

𝑒𝑇𝑠ℎ2, 𝑒𝑇𝑠ℎ3, 𝑒𝑇𝑠ℎ4 correspond to the four reference changes 

for the super heat temperature, see Eqs. (8)-(11). The final 

performance index (ITAE) is Eq. (12). 

𝑒𝑇𝑒1 = ∫𝑡𝑒1 ∗ |𝑟𝑒1 − 𝑇𝑒1| (6) 

𝑒𝑇𝑒2 = ∫𝑡𝑒2 ∗ |𝑟𝑒2 − 𝑇𝑒2| (7) 

𝑒𝑇𝑠ℎ1 = ∫𝑡𝑠ℎ1 ∗ |𝑟𝑠ℎ1 − 𝑇𝑠ℎ1| (8) 

𝑒𝑇𝑠ℎ2 = ∫𝑡𝑠ℎ2 ∗ |𝑟𝑠ℎ2 − 𝑇𝑠ℎ2| (9) 

𝑒𝑇𝑠ℎ3 = ∫𝑡𝑠ℎ3 ∗ |𝑟𝑠ℎ3 − 𝑇𝑠ℎ3| (10) 

𝑒𝑇𝑠ℎ4 = ∫𝑡𝑠ℎ4 ∗ |𝑟𝑠ℎ4 − 𝑇𝑠ℎ4| (11) 

𝐽𝐼𝑇𝐴𝐸

= √𝑒𝑇𝑒1
2+𝑒𝑇𝑒2

2 + 𝑒𝑇𝑠ℎ1
2 + 𝑒𝑇𝑠ℎ2

2𝑒𝑇𝑠ℎ3
2 + 𝑒𝑇𝑠ℎ4

2 
(12) 

The challenge involves minimizing the ITAE cost function 

while determining the settings for both controllers. This 

objective requires finding optimal parameter magnitudes for 

each controller to quickly reach the desired reference values, 

r(t), for both the cooling demand and the degree of 

superheating, with minimal oscillations. The objective 

function in MAGO for each scenario is in Eqs. (13)-(14). 

J (n1, n2, n3, d1, d2, P, I) = min JITAE (13) 

J (P1, I1, D1, P2, I2, D2) = min JITAE (14) 
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Both controllers operate simultaneously on the plant, 

generating deviations from the reference values of the study 

variables. These deviations are calculated individually at each 

time instant and combined to form the total system error. By 

incorporating all reference errors into a single cost function, 

the inherent coupling of the problem variables is accounted 

for. MAGO minimizes the ITAE while considering the 

interdependence among variables when estimating controller 

parameters. A new set of controllers is iteratively adjusted to 

reduce deviations from the desired behavior until a stopping 

criterion is met. This iterative process remains consistent 

regardless of the controller or plant model structure or domain. 

The problem statement for the two new continuous controllers 

for the benchmark is as follows: 𝚺𝑣𝑐𝑟𝑠 = (𝑻,𝑾𝑣𝑐𝑟𝑠, 𝓑𝑏𝑚𝑎𝑟𝑘), 
where T∈ℝ, 𝑾𝑣𝑐𝑟𝑠∈ℝ4, 𝓑𝑏𝑚𝑎𝑟𝑘= (𝐴𝑉,𝑁 , 𝑇𝑒,𝑠𝑒𝑐,𝑜𝑢𝑡 , 𝑇𝑠ℎ) and 

𝓑𝑏𝑚𝑎𝑟𝑘⊂ℝqT, with 𝓑𝑏𝑚𝑎𝑟𝑘  subject to the constraints from the 

IFAC PID18 benchmark. w(i)= [
𝑢(𝑖)
𝑦(𝑖)

] with u(i)=(AV, N), 

y(i)=(𝑇𝑒,𝑠𝑒𝑐,𝑜𝑢𝑡 , 𝑇𝑠ℎ) all ∈ ℝ. The controlled problem is then 

∑kvcrs = (𝓑kAV X 𝓑kN) Λ 𝓑kbmark.  

Each 𝓑ki = (Pi, Ii, Ki) ∈ ℝ, and 𝑒𝑖(𝑡) = (𝑤𝑖–wr). 
minimize

𝑤𝜖𝑊 
(𝐾𝑃(𝑖),𝐾𝐼(𝑖),𝐾𝐷(𝑖))𝜖 ℝ,   𝑖=𝐴𝑉,𝑁

𝑊𝑟 ϵ 𝓑𝑅𝑒𝑓

𝐶𝑐𝑜𝑛𝑡𝑟𝑜𝑙  (𝑤 − 𝑤𝑟) 

Subject to w = [
𝑢(𝑡)
𝑦(𝑡)

]= [
𝐴𝑉(𝑡)

𝑇𝑒, 𝑠𝑒𝑐, 𝑜𝑢𝑡(𝑡)

  𝑁(𝑡)
   𝑇𝑠ℎ(𝑡)

] ϵ 𝓑𝑏𝑚𝑎𝑟𝑘  

𝑢𝑖(𝑡)=F(𝑒𝑖(𝑡))=Kpi(𝑡).𝑒𝑖(𝑡)+Kii(𝑡). ∫ 𝑒𝑖(𝑡)+𝐾𝑝𝑖(𝑡).
𝑑

𝑑𝑡
𝑒𝑖(𝑡) 

(𝑇𝑒, 𝑠𝑒𝑐, 𝑜𝑢𝑡𝑅𝑒𝑓 − 𝑇𝑒, 𝑠𝑒𝑐, 𝑜𝑢𝑡(𝑡))→0, (𝑇𝑠ℎ𝑅𝑒𝑓  - 𝑇𝑠ℎ(𝑡)) →0 

4. Analysis of Results 

The results obtained through the behavior-based control by 

evolutionary learning of trajectories proposed in this work are 

highlighted below. MAGO input data are in Table 4. The 

simulation process involved an exhaustive search to find a 

specific solution for the VCRS controllers. Using an Intel 

Xeon CPU @ 2.30GHz with 7.20GB of RAM and 64-bit 

architecture, the average execution time was 9 hours. This long 

execution time is due to the fact that no preprocessing of the 

initial population was performed, reflecting the real 

complexity of the problem and the intensive exploration of the 

search space to find an optimal solution. The process was 

carried out autonomously and monolithically, without relying 

on parallelization or external resources for execution. 

Table 4. MAGO input data for the first and second scenarios. 

Data 1st Scenario 2nd Scenario 

Individuals 50 50 

Generations 25 25 

Upper bound [5   1   1  5  1  1   1] [20    10  1  20   10  1] 

Lower bound [-5 -1  0 -5  0  0   0] [-20 -10 -1 -20 -10 -1] 

Parameters derived from the behavior-based approach for both 

the discrete TF controller and the continuous coupled PID 

controllers are displayed in Table 5. For the first scenario 

(benchmark default), Figures 5 to 9 show the system behavior 

paths and their corresponding efficiency indices under both the 

benchmark strategy and the behavior-based control through 

evolutionary learning of trajectories. For the second scenario 

(new coupled continuous PID controllers), the paths and 

efficiency indices are illustrated in Figures 10 to 14. In these 

figures, the dashed line represents the reference, blue line 

depicts the default controller, and red line represents the 

behavior-based evolutionary controllers. 

Table 5. Parameters found through the behavior-based 

approach for the first and second scenarios. 

Controller 

1st Scenario 

Discrete Transfer 

Function 

2nd Scenario 

Continuous 

coupled PID 

Te,sec,out 

– Av 
−1.1036 − 0.0626𝑧−1 + 0.9977𝑧−2

1 − 1.9853𝑧−1 + 0.9853𝑧−2
 

P1 = 13.1978 

I1   = -3.000 

D1 = 0.0481 

Tsh – N 

P=0.42 

I=0.9967 

P2 = 4.9996 

I2   = 4.7378 

D2 = 0.0209 

 

Fig. 5. Controlled variables for default discrete transfer 

function controller (blue line benchmark strategy | red line 

behavior-based control). 

 

Fig. 6. Manipulated variables for default discrete transfer 

function controller (blue line benchmark strategy | red line 

behavior-based control). 

 
Fig. 7. Evaporation and condensation pressures for default 

discrete transfer function controller (blue line benchmark 

strategy | red line behavior-based control). 
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Fig. 8. Thermal power at each component and refrigerant mass 

flows for default discrete transfer function controller (blue line 

benchmark strategy | red line behavior-based control). 

 

Fig. 9. Compressor efficiency and coefficient of performance 

for default discrete transfer function controller (blue line 

benchmark strategy | red line behavior base control). 

 

Fig. 10. Controlled variables for new continuous PID 

controller (blue line benchmark strategy | red line behavior-

based control). 

 

Fig. 11. Manipulated variables for new continuous PID 

controller (blue line benchmark strategy | red line behavior-

based control). 

 

Fig. 12. Evaporation and condensation pressures for new 

continuous PID controller (blue line benchmark strategy | red 

line behavior-based control). 

 

Fig. 13. Thermal power at each component and refrigerant 

mass flows for new continuous PID controller (blue line 

benchmark strategy | red line behavior-based control). 

 

Fig. 14. Compressor efficiency and coefficient of performance 

for new continuous PID controller (blue line benchmark 

strategy | red line behavior-based control). 

Relative and combined indices associated to the scenario’s 

comparison, default benchmark controllers vs. both behavior-

based approach, are in Table 6. A detailed description of those 

indices, comparing strategies, including MAGO, presented to 

the benchmark challenge, is in (Viola et al., 2018). 

The benchmark creators defined the indices in Table 6, and 

their weights are unknown for the benchmark users. Those 

indices assess the ratio of the integral absolute error (RIAE), 

the ratio of integral time absolute error (RIT AE), and the ratio 

of integral absolute variation of the control signal (RIAVUi) 

between the decentralized default controllers and the proposed 

controllers. To measure the global performance of the system 

the index J(c2, c1) was considered. 
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Table 6. Relative and combined indices to the comparison 

between default benchmark controllers vs. behavior-based 

approach. 

C1: benchmark default 1 (controllers of reference) 

C2: behavior-based proposal (controllers to evaluate)  

Index TF PID 

RIAE1(C2,C1) Te,sec,out 0.9371 0.1223 

RIAE2(C2,C1) TSH 0.8394 0.2273 

RITAE1(C2,C1,tc1,ts1) Te,sec,out 1.1835 0.3789 

RITAE2(C2,C1,tc2,ts2) TSH 0.7353 0.0274 

RITAE2(C2,C1,tc3,ts3) TSH 0.6540 0.1439 

RITAE2(C2,C1,tc4,ts4) TSH 1.3447 0.0126 

RIAVU1(C2,C1) Av 1.0601 2.6656 

RIAVU2(C2,C1) N 1.1556 1.4477 

J(C2,C1) 0.9894 0.3204 

For the first strategy (discrete transfer function controllers) it 

is observed through indices 1 and 2 a higher performance of 

the controller in reaching the reference for the output variables 

of the VCRS. Similarly, there is a substantial improvement in 

the handling of the reference changes for Tsh, highlighting its 

effectiveness for the first two. Finally, the global index 

numerical value shows a slight improvement in relation to the 

benchmark reference controller. For the second strategy 

(continuous coupled PID controllers), in general terms, it is 

possible to increase the precision of the controller for both 

reaching the reference of the output variables as well as 

showing great adaptability and precision in the presence of 

reference changes. The general indicator J establishes a 

significant increase in the performance of the controller for this 

exercise. Additionally, by reducing energy consumption in a 

system under identical operating conditions, as per Lyapunov's 

energy principle, implies increased stability, indicating higher 

efficiency and resilience to external disturbances. However, 

despite the good results, these controllers could be improved 

to achieve a smoother manipulation of actuators. 

Table 7. ITAE and relative index proposal 

Index TF (default) 

TF 

(behaviour-

based) 

PID 

(behaviour-

based) 

J(ITAE) 1.7620e+05 1.4852e+05 4.0724e+04 

Relative Index 1.000 0.843 0.231 

An easy-of-use index, Eq. (14), to assess the performance of 

each control scheme throughout the whole simulation period 

is shown in Table 7. The behavior-based control clearly 

outperforms the classical method. 

5.  Conclusions 

The behavior-based approach through evolutionary learning of 

trajectories offers a significant advantage due to its direct 

connection with the actual system, regardless of its 

representation or controller structure, thus emulating real 

physical conditions for experimental purposes and 

accommodating any control scheme. By nature, this approach 

ensures only feasible solutions, guiding the controller towards 

desired conditions. It reduces the analyst's effort in handling 

complex coupled MIMO systems by transferring it to the 

machine learning process. Control by evolutionary learning of 

behaviors applies the same methodology whether a model or 

only data is available. Compared to the benchmark control 

strategy the coupled continuous controllers identified in this 

study significantly outperformed the same performance 

criteria. Future developments should address high variations in 

manipulated variables to mitigate potential component 

deterioration and optimize the performance of continuous PID 

controllers by issues like derivative and integral terms to 

ensure compatibility with implementable industrial systems. 

References 

Balarezo-Gallardo, S.-F., & Hernández-Riveros, J. A. (2017). 

Evolutionary Parameter Estimation of Coupled Non-

linear Oscillators. In A. Solano & H. Ordoñez (Eds.), 

Advances in Computing (pp. 457–471). Springer I. P. 

Bejarano, G., Alfaya, J. A., Rodríguez, D., Ortega, M. G., & 

Morilla, F. (2018). BENCHMARK PID 2018 Benchmark 

for PID control of refrigeration systems based on 

vapour compression (pp. 1–20). 

Hernández-Riveros, J. A. & Cano, D. V., 2012, Advances in 

Artificial Intelligence, IBERAMIA 2012 - 13th Ibero-

American Conference on AI, Proceedings. Springer 

Verlag, p. 271-280 10 p. (LNAI, vol. 7637). 

Hernández-Riveros, J.-A., Urrea-Quintero, J.-H., & 

Carmona-Cadavid, C.-V. (2016). Evolutionary Tuning 

of Optimal PID Controllers for Second Order Systems 

Plus Time Delay. In J. J. Merelo, A. Rosa, J. M. 

Cadenas, A. Dourado, K. Madani, & J. Filipe (Eds.), 

Computational Intelligence (pp. 3–20). Springer I. P. 

Li, B., Jain, N., Mohs, B., Munns, S., Patnaik, V., Berge, J., 

& Alleyne, A. G. (2012). Dynamic modeling of 

refrigerated transport systems with cooling-

mode/heating-mode switch operations. HVAC and R 

Research, 18, 974–996. 

https://doi.org/10.1080/10789669.2012.670685 

Schurt, L. C., Hermes, C. J. L., & Neto, A. T. (2009). A 

model-driven multivariable controller for vapor 

compression refrigeration systems. International 

Journal of Refrigeration, 32(7), 1672–1682. 

https://doi.org/10.1016/j.ijrefrig.2009.04.004 

Soto, G. J. A., López, J. M. G., & Hernández-Riveros, J. A. 

(2018). Coupled evolutionary tuning of PID Controllers 

for the Benchmark on Vapor Compression 

Refrigeration. IFAC-PapersOnLine, 51(4), 509–514. 

https://doi.org/10.1016/j.ifacol.2018.06.146 

Viola, J., Radici, A., & Chen, Y. (2018). Comparison of 

control strategies for the temperature control of a 

refrigeration system based on vapor compression. 

ArXiv:1810.06074 [Cs]. http://arxiv.org/abs/1810.06074 

Willems, J. C. (2007). The Behavioral Approach to Open and 

Interconnected Systems. IEEE Control Systems, 27(6), 

46–99. https://doi.org/10.1109/MCS.2007.906923 

Zardini, G. (2017). Control Systems II. Systems Engineering, 

January, 1–78. 

Zeng, G., Chen, J., Chen, M., Dai, Y., Li, L., Lu, K., & 

Zheng, C. (2015). Multivariable PID controllers using 

real-coded population-based extremal optimization. 

Neurocomputing, 151, 1343–1353. 

doi.org/https://doi.org/10.1016/j.neucom.2014.10.060 

IFAC PID 2024
Almería, Spain | June 12-14, 2024

496


