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Abstract: The analysis of nonlinear systems can be greatly improved using computer software.
In this work the Sridhar nonlinearity is described, and a new parameterization is given that
allows to systematically obtain a large number of the classical piecewise nonlinearities as
particular cases. The calculation of limit cycles using the describing function (DF) approach
for the case of autonomous nonlinear control systems and an event-based simulation method
are presented and compared. Finally, a user-friendly, graphically oriented interactive tool based
on Sysquake is presented. In this way the students can easily assimilate some concepts of
introductory courses in nonlinear control such as the behavior of piecewise linear systems, stable
and unstable limit cycles, event-based simulation and the DF method.
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1. INTRODUCTION

Classical control theory has mainly emphasized the use
of linear analysis and design tools. This is because most
control loops aim to stabilize the system at an equilibrium
point; this is usually called a regulation problem. Since
the behavior of a system around an equilibrium point can
be described by a linear system, the controller can be
developed using linear tools.

Furthermore, the linear systems theory of dynamical sys-
tems is a body of mathematical knowledge that is very well
structured, and supplies useful operative tools, that are
simple to handle (for instance, the transfer function or the
linear description in the state space). Most of the students
of control engineering only know these linear methods,
and with them most of the practical problems in control
analysis and design can be dealt with.

The consideration of the nonlinear effects in control
systems deserves a special attention. Nonlinear systems
present behavior modes far richer than the ones displayed
by linear systems. A more detailed description of the
nature of limit cycles can be found in Atherton (1982)
and Khalil (2002).

When an unstable open-loop plant is to be stabilized linear
control gives misleading results. Even if the plant can
be stabilized at the operating point with a linear control
plant, this control will behave adequately only locally, due
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to the nonlinearity associated with the actuator saturation 
(Stein (1989)). Fortunately, for many interesting problems 
in control systems raised by the presence of nonlineari-
ties, a quite simple and powerful analysis can be worked 
out. For many nonlinear problems the control engineer 
has the Describing Function (DF) as a tool to deal with 
them (Gelb and Van der Velde (1968), Schwartz and Gran 
(2001)). This method has been used for decades by prac-
tical engineers. Even if the results are only approximate, 
they are very easy to reach and supply clues about the 
oscillatory and the global behavior at a very low cost.

The analysis of nonlinear systems can be greatly improved 
using computer software. In this paper a user-friendly, 
graphically oriented interactive tool based on Sysquake 
(Piguet (2000), Guzmán et al. (2023)) is also presented. 
Nonlinear systems whose nonlinearity is given by a general 
class of piecewise linear systems are considered. The tool 
can help the students to understand the behavior of 
piecewise linear systems, the DF method, and the basis 
of bifurcations theory in control systems.

The paper is organized as follows: In Section 2, Sridhar 
nonlinearity is described, and a new parameterization is 
given that allows to systematically obtain a large number 
of the classical piecewise nonlinearities as particular cases. 
In Section 3 the DF of the Sridhar nonlinearity is calcu-
lated by a procedure of parallel combination of simpler 
nonlinearities that can be obtained from more common
DF's tables. The calculation of limit cycles using the 
DF method is briefly reviewed in Section 4 for the case of 
autonomous nonlinear control systems. In Section 5,
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an event-based simulation and limit cycle determination
method is proposed that considers at each moment the
selected parameterization of the Sridhar nonlinearity. To
compare both methods, Section 6 briefly describes the
main features and functionality of an interactive software
tool developed for the general class of piecewise feedback
control systems presented in the paper. Finally, some con-
clusions and further lines of work are given in Section 7.

2. SRIDHAR NONLINEARITY

In 1960 Sridhar proposed and determined the DF of the
nonlinearity shown in Figure 1 (Sridhar (1960)). The
input-output characteristic of this piecewise linear type of
nonlinearity consists of straight-line segments. Probably
does not occur as the characteristic of a single nonlin-
earity in practice, although it is quite conceivable that
might represent the combined characteristic of multiple
nonlinearities in cascade. The main reason for choosing
this nonlinearity is that many other piecewise linear types
of nonlinearities to which the DF analysis is applicable are
modifications of this general nonlinearity. It is assumed
that the input-output characteristics of all the nonlineari-
ties considered here are odd functions with respect to the
input.
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Fig. 1. Sridhar nonlinearity

2.1 Parameterization

Let the input to the nonlinear element be e and the output
by u. Then u can be represented as a function of e and
ė ; i.e., u = f(e, ė) where f(e, ė) is the input-output
characteristic shown in Figure 1. Sridhar nonlinearity is
fully defined by the following parameters and constraints
between them: slopes m1 and m2 (0 ≤ m2 ≤ m1 ≤ ∞),
segment lengths r1, r2 and r3 (0 ≤ r1 ≤ r2 ≤ r3) and
coordinates of points 1 (a = e1, 0) and 2 (b = e2, 0) of the
nonlinearity (−e2 ≤ e1 ≤ e2).

The rest of the coordinates that define points 3 (e3, u3),
4 (e4, u4) and 5 (e5, u5) are easily determined from the
parameters previously indicated. To calculate the coor-
dinates of point 6 (e6, u6), the length r4 of the segment
joining point 5 and point 6 (e6, u6) is assumed to be 0.5.
This length does not affect the nature of the nonlinearity in
any way. The slope m3 of the segment joining points 3 and
4 of the nonlinearity satisfies by geometric construction of
the nonlinearity the constraint m3 < m1. It must also
be true in this nonlinearity that m2 ≤ m3. That is, the

slopes m1, m2 and m3 satisfy the following relationship:
0 ≤ m2 ≤ m3 < m1 ≤ ∞. In this way the parameter
vector p = (a, b, r1, r2, r3,m1,m2,m3) completely defines
the nonlinearity f .

2.2 Particular cases

A wide range of non-linearities types can be obtained by
varying the components of the vector p.

(type, ev, d) = NonLinearityType(p) (1)

where type is an integer that uniquely determines a par-
ticular nonlinearity, ev is a vector whose dimension and
components depend on the value that type takes, and d is
a vector that has the same dimension as the vector ev. The
dimension of the vector ev indicates the number of points
of the nonlinearity where the signal u or its derivative are
discontinuous. When the input signal e passes through
these points, a state event can occur depending on the
value of the derivative of e and the type of nonlinearity.

If a component of the vector d is 1(−1) it means that
the event associated in ev is activated when the threshold
is crossed in an increasing (decreasing) direction. On
the other hand, if a component of the vector d is 0
it means that the event associated in ev is activated
when the threshold is crossed in any direction. From the
given definition of the vector d it follows that if all its
components are 0 then the associated nonlinearity is single
valued. The existence of non-zero components means that
nonlinearity is multi valued and the effect of hysteresis is
taken into consideration since the existence of an event
depends on the derivative of the error signal e.

If 1 ≤ type ≤ 6 then a = b and the nonlinearity is
single valued (see Figure 2). For example, if type = 4,
a single-valued nonlinearity occurs with dead-zone and
saturation and ev = [e5, e1,−e1,−e5], which means that
state events occur when the error signal e reaches some of
the values given as components of ev. Section 5 explains
the treatment of events in detail. In the other cases, it is a
non-linearity with memory or double-valued. If 7 ≤ type ≤
12 then e1 = −e2 and the nonlinearity has hysteresis (see
Figure 3). If 13 ≤ type ≤ 21 then −e2 < e1 < e2 and the
nonlinearity has hysteresis plus dead-zone (see Figure 4).
Sridhar nonlinearity corresponds to type = 21.

3. DF CALCULATION OF THE SRIDHAR
NONLINEARITY

Consider the feedback system shown in Figure 5 con-
taining a single static nonlinearity delayed ND(e) =
N(e) exp(−Ls) and a linear dynamic system given by the
transfer function G(s) = G0(s)exp(−τs) (where G0(s) is
strictly proper). If a limit cycle exists in the autonomous
system, that is with r(t) = 0, with the output y(t) ap-
proximately sinusoidal, then the input e(t) to the non-
linearity might also be expected to be near sinusoidal.
This is the concept of harmonic balance, in this case
balancing the first harmonic only. Since the output of
the nonlinearity may not be in phase with the sinusoidal
input (multi-valued nonlinearity) the DF may be complex.
Since Goldfarb’s original work on DF (Goldfarb (1956)), a
considerable number of papers was published in which the
DF of nonlinearities was derived. It appears however that
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Fig. 2. Single valued nonlinearity as a particular case of the Sridhar nonlinearity (a = b)

Fig. 3. Nonlinearity with hysteresis as a particular case of the Sridhar nonlinearity (a = −b)

little effort had been made to classify the nonlinearities
until the Sridhar’s paper.

In Sridhar’s paper, the DF of its nonlinearity is determined
and as particular cases, those corresponding to specific
values of its parameters, with a different parameterization
than the one presented here are calculated (top-down
approach). However, it is not studied how the inclusion
of the nonlinearity in the control loop affects the stability
of the system, nor the temporal response of the system.
In Gelb and Van der Velde (1968) the DFs of a large
part of the cases of the Sridhar nonlinearity are collected
in a much more systematic and compact way in a table
and those that do not appear can be obtained as a
composition of other nonlinearities. An example of the
synthesis of a complex nonlinearity from simpler forms is

the construction of the non-linearity type 15 from non-
linearities types 14 and 6.

The other component of the ND nonlinearity is the time
delay L. As this phenomenon is linear, its DF is exactly its
transfer function: exp(−jLω) = cos(ωL) – j sin(ωL). The
approximate DF of two series-connected nonlinearities can
be computed directly by multiplication of the DFs of the
individual nonlinearities.

4. DETERMINATION OF LIMIT CYCLES USING
THE DF APPROACH

DF provides an approximate method to determine the
stability of an autonomous nonlinear feedback system (see
Figure 5).
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Fig. 4. Nonlinearity with hysteresis plus dead-zone as a particular case of the Sridhar nonlinearity (−b < a < b)
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Fig. 5. Autonomous piecewise feedback control loop

To study the possibility of limit cycles, the nonlinearity
NLD is replaced by its DF, NLD(A). Thus, the open-loop
gain to a sinusoid is NLD(A)G(jω) and a limit cycle will
exist if

NLD(A)G(jω) = −1 (2)

This condition means that the first harmonic is bal-
anced around the closed-loop system assuming its pas-
sage through the nonlinearity is accurately described by
NLD(A). Since G(jω) is a complex function of ω and
ND(A) may be a complex function of A, a solution to
(2) will yield both the frequency ω0 and amplitude A0 of
an assumed sinusoidal limit cycle. Figure 7 illustrates the
procedure to solve (2) graphically on a Nyquist diagram,
where G(jω) and CD(A) = −1/NLD(A) loci are plotted
and shown intersecting for ω = ω0 and A = A0. When the
G(jω) and CD(A) loci do not intersect, the DF method
predicts that no limit cycle will exist if the Nyquist sta-

bility criterion is satisfied for G(jω) with respect to any
point on the CD(A) locus.

A further point of interest when a solution to (2) exists
is whether the predicted limit cycle is stable. This is
obviously important if the control system is designed to
have a limit cycle operation. Figure 7 also presents an
example of the counterclockwise rotation of the CD(A)
loci when a delay L > 0 in cascade with the non-linearity
is introduced. Such feature allows to estimate points in
the Nyquist map for any frequency going from 0 to the
oscillation frequency ω0 induced by the non-linearity when
L = 0. With all these data, obtained by modifying the
value of L, it is possible to depict the spectrum of the
process in the range of frequencies [0, ω0] which allows
estimating the parameters of a transfer function selected
by the user from a template (Sanchez et al. (2018), Sanchez
et al. (2021a), Sanchez et al. (2021b)).

5. DETERMINATION OF LIMIT CYCLES USING AN
EVENT-BASED CONTROL SIMULATION

The closed-loop system represented in Figure 5 can be
described by the following state equations:

ẋ(t) = Ax(t) +Bu(t− L− τ)

e(t) = −Cx(t)

u(t) = f(e(t), ė(t))

(3)
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where L is the delay associated with the DF and τ the
delay associated with G(s). ABC = [A,B,C] represents
the state space representation of the dynamical system.

A hybrid automaton corresponds to each type of nonlin-
earity f that has been presented in section 2. This allows
dynamic simulation of each type of nonlinearity to be
easily implemented. Although theoretically it is possible to
define a single hybrid automaton that implements the set
of nonlinearities that can be configured as particular cases
of Sridhar nonlinearity, it has been preferred to associate
a simpler hybrid automaton for each type of nonlinearity.
This makes its implementation and maintenance easier. As
an example, the hybrid automata associated with type 15
nonlinearity is presented (see Figure 6).
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Fig. 6. Hybrid automaton of the nonlinearity type 15

The initial condition of the error signal e is always ini-
tialized to state 1 which corresponds to the rightmost
linear segment of the nonlinearity (u(0) = f(e(0)) = u6).
The activation of the different events between states (edge
labels) as well as the update of the output signal u of the
nonlinearity and its derivative at the time of the transition
between states u̇ ≡ du

de are also defined.

The trajectory function calculates the dynamic evolution
of the system

parout = trajectory(parin) (4)

with
parout = (t, tv, e, u, xe, iv)

parin = (x0e, type, ev, p, ABC,L, τ, tmax, paux)
(5)

Output parameter of the trajectory function, parout: t is the
vector of time instants simulation, tv is the vector of time
instants in which the events are activated, e is the vector
of the error signal in the time instants simulation, u is
the vector of the nonlinearity output in the time instants
simulation, and xe is the extended state vector defined as
follows: xe = (x, xe(end − 1), xe(end)) being x the state
vector of the dynamic system. xe(end− 1) is the value of
the output of the nonlinear element u at the time of the
event activation, and xe(end) is an integer that indicates
the state of the automaton that is reached at the time of
the event activation. That is, the last two components of
xe are constant between events and are changed only when
an event occurs. The value of the iv variable is an integer
that indicates which event was triggered.

Input parameter of the trajectory function, parin: the state
of the dynamical system ABC is integrated from 0 to tmax

with options to treat the state event when the trajectory
detects the limits of the nonlinearity type defined in the ev
vector, paux is an auxiliary parameter vector that defines
certain values that configure the integration in the numer-
ical solver such as the maximum absolute error (AbsTol),
the maximum time step (MaxStep), the minimum time
step (MinStep), the maximum relative error (RelTol), and
the refinement factor (Refine). x0e is the initial value of
xe, where x0e(end − 1) = u6 and x0e(end) = 1. The
rest of the input arguments have already been previously
defined. The output arguments of the trajectory function
are calculated with an ode45 solver with options for the
treatment of delays and state events.

(t, tv, e, u, xe, iv) = ode45(fun, [0, tmax], x0e, options) (6)

6. INTERACTIVE TOOL FOR THE SIMULATION OF
THE SRIDHAR NONLINEARITY

Sridhar Non-Linearity Delayed is a free of charge stand-
alone executable for Windows and Mac OS computers
(SridharNLD (2024)). This means that it is available to
any user (student or instructor) who may want to use
it. The tool has been developed using Sysquake (Piguet
(2000)), an integrated development environment with a
programing language like the one used in MATLAB. It
provides the interactive calculation of limit cycles for an
autonomous nonlinear control system that incorporates
Sridhar nonlinearity or some of its simplifications. It also
calculates the limit cycle using an event-based dynamic
simulation, which allows comparisons between both tech-
niques.

This section provides a brief presentation of the inter-
active elements that the tool incorporates as well as a
description of its functionality. The main characteristics
of SridharNLD is its interactivity and simplicity. Users
can interact with the tool by menus, text fields, sliders,
buttons and different items in the figures displayed on
the main window of the tool (see Figure 7). Any action
carried out on these elements is immediately reflected on
all elements shown on the screen. This interactivity allows
users to immediately perceive the effects of their actions.

The SridharNLD main window is organized in the follow-
ing zones: Parameters setting, Non-Linear element, Limit
cycle parameters (frequency and amplitude oscillation)
obtained by the DF approach and using an event-based
control simulation, Symbolic transfer function (TF) cho-
sen, Pole-zero map of the TF, State events sequence, Time
response (output plus control signal) and Nyquist diagram
with the critical locus of the non-linearity. The menus that
the interactive tool incorporates are the following:

IntParameters, allows modifying the parameters of the
ode45 solver. In general, it will not be necessary to use
it, but in some cases it will be. Particularly when events
are very close. It has a “reset” that returns the values to
its initial conditions.

Tfs, allows selecting up to 17 types of TFs. The fields that
allow modifying the parameters of the chosen TF are also
displayed. The type of TF can be also modified in the pole-
zero diagram by adding or deleting integrators, poles and
zeros.
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Fig. 7. Graphical user interface of the SridharNLD interactive tool.

NL Type, allows selecting the different types of nonlineari-
ties that can be configured. It is always possible to modify
the nonlinearity with the associated parameters that define
it in the corresponding fields or by interacting directly on
the nonlinearity graph.

SimulParameters, allows changing some parameters that
affect the simulation, such as the tolerance value for de-
termining the self-oscillation frequency ω0 and the number
of points that are calculated from G(jω)

Examples, allows having examples packaged to show spe-
cific issues.

7. CONCLUSIONS

In this paper, a new educational tool for the study of
a general class of autonomous piecewise feedback con-
trol systems (Sridhar nonlinearity) is presented. Two ap-
proaches for the prediction of limit cycles are described
and compared: the FD method and an event-based sim-
ulation. The main characteristic of the SridharNLD tool,
developed in Sysquake, is its interactivity. The following
extensions of the software capabilities are planned: 1) Srid-
har asymmetric nonlinearity. 2) How does the introduction
in the error channel of a controller C(s) affect to the
closed loop response? A case of particular interest is when
the controller is a PID controller, and the interest is to
study its behavior against changes in the set point or load
disturbances. In both cases it will be necessary to use the
dual input describing function (DIDF) and calculate, in
addition to the amplitude and the oscillation frequency,
the bias B that is introduced because of the asymmetry of
the nonlinearity or the incorporation of a controller C(s).
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