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Abstract: Reset controllers have demonstrated their efficacy in enhancing transient responses,
such as the overshoot and response time in motion control systems. Designing these systems
to meet specific transient requirements requires a method for analyzing transient responses.
However, the inherent nonlinearity of reset control systems presents challenges in this regard,
limiting their widespread application. This study introduces a novel method for analyzing the
step responses of closed-loop reset control systems. By decomposing the step response of the
reset system into piece-wise functions, with each piece-wise function computed based on linear
systems, this analysis method offers new insights into understanding reset systems. Experimental
validation conducted on eleven reset Proportional-Integral-Derivative (PID) control systems
implemented on a precision motion stage confirms the effectiveness of the proposed method.
The experimental results also underscore the applicability of the method as a tool for selecting
optimized parameters and reset control structures to achieve enhanced transient responses.
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1. INTRODUCTION

In high-precision industries, the demand for superior tran-
sient response, such as shorter response times and re-
duced overshoot, is escalating. Linear controllers, notably
the Proportional-Integral-Derivative (PID), have been em-
ployed in industries for decades Safa et al. (2018). How-
ever, linear controllers face inherent limitations, such as
the Bode magnitude-phase relationship and the waterbed
effect (Saikumar et al. (2021)). This prompts the explo-
ration of nonlinear controllers capable of overcoming these
constraints to meet evolving industrial requirements.

The reset controller is a hybrid system that combines a lin-
ear controller with a resetting mechanism. The first reset
element termed as the Clegg Integrator (CI), incorporates
the “Zero-crossing law” into a linear integrator (Clegg
(1958)). The “Zero-crossing law” allows the CI’s output
to reset to zero when the input signal crosses zero. The
first-order harmonic in the CI exhibits a 52° phase lead
compared to that of the linear integrator without compro-
mising the gain benefits, thus breaking the conventional
Bode phase-gain relationship. Following the CI, various
reset elements have emerged, including the First-order re-
set element (FORE), Second-order reset element (SORE),
Constant in gain Lead in phase (CgLp), hybrid integrator-
gain systems (Higs) (see Horowitz and Rosenbaum (1975);
Krishnan and Horowitz (1974); Beker et al. (2004); Baños
and Vidal (2007); Deenen et al. (2017); Saikumar et al.
(2019).

Previous studies have explored the application of reset con-
trollers to improve transient responses. In Li et al. (2011),
reset controllers were designed to achieve shorter settling
times and lower overshoot compared to linear controllers in

⋆ This work was not supported by any research agency.

hard disk drives. Zhao et al. (2019) achieved non-overshoot
performance by applying the FORE structure, and Banos
and Vidal (2012) demonstrated that the Proportional-
Integral + Clegg Integrator (PI+CI) structure achieved
less overshoot and settling time while maintaining the
response velocity of a first-order plus dead-time system.
To apply reset control systems effectively for improved
transient response, precise analysis methods are required.
Various approaches have been explored, including rule-of-
thumb methods for enhancing settling (transient) perfor-
mance in Beerens et al. (2019) and numerical analysis for
tuning one specific reset element in mechanical motion
systems in Karbasizadeh and HosseinNia (2022).

However, explicit and precise methods for analyzing the
transient response of the reset control system remain un-
explored, primarily due to the nonlinearity inherent in
reset control system. This paper addresses this gap by
introducing a novel linear-based analytical method for
analyzing the step response of Single-Input Single-Output
(SISO) reset control systems with a single reset state. The
proposed method separates the step responses of SISO
reset control systems into piece-wise functions, with each
function analysed based on linear calculations. Experimen-
tal validation on a precision motion stage demonstrates the
efficacy of the proposed method. Moreover, the illustrative
examples demonstrate the applicability of the new method
in tuning parameters and selecting reset control structures
to achieve improved transient performance.

The paper is organized into five sections. Section 2 pro-
vides fundamental backgrounds on reset control systems.
Section 3 introduces the linear-based method for analyzing
the transient response of reset control systems. Section
4 presents experimental validations of the new methods
using eleven reset control systems on a precision motion
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stage. Finally, Section 5 concludes the paper, emphasizing
the novelty of the introduced method, its practical appli-
cability, and potential future research.

2. BACKGROUND

The block diagram of a closed-loop reset control system is
shown in Fig. 1, including a reset controller denoted by the
block C(s)(s = jÉ, j =

√
−1), a linear controller Cα(s),

and a plant represented by the block P(s).

+
-

r(t) e(t)

 y(t)u(t)α
v(t)

Fig. 1. The block diagram of the reset control system,
where r(t), e(t), v(t), u(t), and y(t) are the reference
input, error, reset output, control input, and system
output, respectively. The blue lines represent the reset
action.

The reset controller C(s) is a hybrid time-invariant system
that integrates the “zero-crossing law” (Banos and Bar-
reiro (2012); Guo and Chen (2019)), allowing the state of
the controller to reset to zero when the input signal of the
reset controller crosses zero. In practice, the zero-crossing
instants can be detected using algorithms such as those
presented in Copp and Sanfelice (2016). The set J of reset
instant ti is defined as J := {ti|e(ti) = 0, i ∈ N}. The
state-space representative for a SISO reset controller C is
described as follows:

C =





ẋr(t) = ARxr(t) +BRe(t), when t /∈ J,

xr(t
+) = Aρxr(t), when t ∈ J,

v(t) = CRxr(t) +DRe(t).

(1)

In this context, xr(t) ∈ R
nc represents the state of the

reset controller, where nc is the number of reset controller
states. The state-space matrices AR, BR, CR, and DR

constitute the base linear controller, denoted as Cbl. The
Fourier-domain transfer function of Cbl is given by

Cbl(É) = CR(jÉI −AR)
−1BR +DR. (2)

The base-linear system (BLS) of the reset control system in
Fig. 1 is defined as the system replacing the reset controller
C by its base-linear controller Cbl. The open-loop transfer
function of the base-linear system is defined as

Lbl(É) = Cbl(É)Cα(É)P(É). (3)

The second equation pertains to the dynamic of the reset
controller at the reset instant ti, where e(ti) = 0. Aρ is the
reset matrix:

Aρ =

[
Aργ

Inl

]
, Aργ = diag(µ1, µ2, · · · , µi, · · · , µnr

),

(4)
where µi (1 ≤ i ≤ nr ∈ N) characterises the reset ratio
within the range of (−1, 1). The subscript nl and nr

pertain to the number of linear states and reset states,
respectively, with the total number of states being nc =
nr + nl. In this study, our focus is on the reset controller
with a single reset state. Specifically, in Aρ as given in (4),
we have Aργ = µ and nr = 1. The reset controller with
a single reset state includes examples such as the CI, the
FORE, and the SORE with resetting the first state.

In Fig. 1, the linear controller Cα combined with the plant
P is defined as Pα = CαP. The state-space representation
of Pα is defined as:

Pα =

{
ẋα(t) = Aαxα(t) +Bαv(t),

yα(t) = Cαxα(t),
(5)

where xα ∈ R
nα×1 is the state of Pα with the number of

nα ∈ N.

Combining (1) and (5), the state-space representative of
the reset control system without inputs is given by

H =





ẋ(t) = Aclx(t), x /∈ J,

x(t+) = Aρclx(t), x ∈ J,

y(t) = Cclx(t),

(6)

where

Acl =

[
AR −BRCα

BαCR Aα

]
. (7)

In (6), xT = [xc
T xα

T ] ∈ R
ns×1 represents the state of the

reset control system H, with the number of ns = nc + nα.

The reset system (6) is quadratically stable if it satisfies
the Hβ condition as follows (Banos and Barreiro (2012)):
There exists a ´ ∈ R

nr×1 and a positive definite matrix
Pnr

∈ R
nr×nr such that the transfer function

Hβ(s)
∆
= [Pnr

0nr×nl
´Cα](sI −Acl)

−1×
[Inr×nr

0nl×nr
0nα×nr

]T
(8)

is strictly positive real.

According to findings from Dastjerdi et al. (2022), to
ensure uniformly exponentially convergent behavior in
reset control systems, the following assumption is made:

Assumption 1. The reset controller is under the zero ini-
tial condition, there is an infinite number of reset instants
ti with lim

ti→∞

= ∞, the reset system satisfies the Hβ

condition (8), and the reset input signal e(t) is a Bohl
function.

Note that this assumption can be achieved through design
considerations, such as in Saikumar et al. (2021); Banos
and Barreiro (2012); Samad et al. (2019).

3. THE STEP RESPONSE ANALYSIS OF RESET
CONTROL SYSTEMS

This section introduces a novel method for analyzing the
step response of a reset control system by decomposing
the step responses into piece-wise functions. First, the first
piece function is the same as that of the base-linear system.
Then, Lemma 2 provides the expression for the second
piece function. Subsequently, Theorem 3 introduces the
algorithm to compute the entire step responses.

Define a normalized step signal as

h(t) :=

{
1, t > 0,

0, t ≤ 0,
(9)

whose Fourier transform is H(É) = F [h(t)] = 1/(jÉ).

The step response of the reset control system depicted
in Fig. 1 is defined as the output y(t) under the input
signal r(t) = |R|h(t), |R| ∈ R

+. Specifically, for the base-
linear system (BLS), the step response is denoted as ybl(t).
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Additionally, the signals xbl(t), vbl(t), ubl(t), and ebl(t)
represent the base-linear state, reset output, control input,
and error signals of the BLS, respectively.

In a control system, the rise time is the duration it takes
for a signal to transition from a specified low value to a
specified high value. Let t0 = 0 denote the initial time.
The time instant ti (where i ∈ Z

+) denotes the i-th reset
instant, satisfying e(ti) = 0 in the reset control system. In
the step response of the reset control system illustrated in
Fig. 1 under the input signal r(t) = |R|h(t), we define the
rise time as tr = t1, which represents the time from t0 to
the time instant t1 when e(t) first reaches zero, determined
by

ebl(tr) = 0, (10)
where

Sbl(É) = 1/(1 + Lbl(É)),

ebl(t) = |R|F−1[Sbl(É)H(É)].
(11)

Note that since before tr, there is no reset action, tr
functions as the rise time for both the reset control system
and the BLS. During the time interval [ti−1, ti), the step
response y(t) is represented by its i-th piece yi(t). For
instance, during the time interval [0, tr), the step response
is expressed as y1(t) = ybl(t).

Lemma 2. The step response of the reset control system
depicted in Fig. 1 with the input r(t) = |R|h(t), under
Assumption 1, within the time interval [tr, t2) is given by:

y2(t) = ybl(t)+(Aρ−I)xbl(tr)hα(t− tr), t ∈ [tr, t2), (12)

where
xbl(t) = |R|F−1[Φbl(É)H(É)],

ybl(t) = |R|F−1[Tbl(É)H(É)],

hα(t) = F
−1[Rδ(É)Tα(É)H(É)],

Φbl(É) = (jÉI −AR)
−1BRSbl(É),

Rδ(nÉ) = CR(jnÉI −AR)
−1jnÉI,

Tα(É) = Cα(É)P(É)/(1 + Lbl(É)),

Tbl(É) = C(É)Cα(É)P(É)/(1 + Lbl(É)),

(13)

in which H(É) = F [h(t)] is given in (9).

Proof. Utilizing (1), the state of the BLC Cbl in the
closed-loop BLS in Fig. 1 under a unit step input |R|h(t),
is given by

xbl(t) = |R|F−1[Φbl(É)H(É)],

Φbl(É) = (jÉI −AR)
−1BRSbl(É).

(14)

The first reset instant of the reset system occurs at the
rise time tr = t1, determined by (10) and (11). According
to (1), at the reset instant tr, we have

xr(t
+
r ) = Aρxr(tr) = Aρxbl(tr). (15)

From (15), at the time instant tr, the reset action intro-
duces a pulse signal denoted as xδ(t), given by:

xδ(t) = xr(t
+
r )− xr(tr) = (Aρ − I)xbl(tr)¶(t− tr), (16)

where ¶(t) is a Dirac delta function.

From (16), during the time interval [tr, t2), the state xr(t)
of the reset controller is equal to the base-linear state
output xbl(t) plus a step signal xnl(t), as depicted in Fig.
2, expressed as:

xr(t) = xbl(t) + xnl(t),

xnl(t) = h(t− tr)[xr(t
+
r )− xr(tr)]

= h(t− tr)(Aρ − I)xbl(tr).

(17)

+

+

1
s

+

+

e(t)
B
R

A
R

D
R

C
R

x(t)
.

x(t)
+

-

r(t) u(t)  y(t)
+

+ a

x
nl
(t)



v(t)

Fig. 2. The state-space-based block diagram of the reset
control system in Fig. 1.

Let
vnl(t) = v(t)− vbl(t). (18)

Figure 2 shows the state-space-based block diagram of
the reset control system in Fig. 1. Based on the block
diagram transformation principles Graybeal (1951), the
signal xnl(t) is transformed into the signal vnl(t) by
filtering it through the transfer function Rδ(É)Sbl(É),
where Rδ(É) and Sbl(É) are defined in (13) and (11),
respectively. This process is mathematically expressed as:

vnl(t) = F
−1[Rδ(É)Sbl(É)Xnl(É)], (19)

where Xnl(É) = F [xnl(t)].

Combining equations (17) and (19), vnl(t) during the time
interval [tr, t2) is expressed as:

hδ(t) = F
−1[Rδ(É)Sbl(É)H(É)],

vnl(t) = hδ(t− tr)(Aρ − I)xbl(tr).
(20)

Then, utilizing (18), (20), and the relationship between
v(t) and y(t) depicted in the block diagram of Fig. 2,
within the interval [tr, t2), the output y2(t) is given by:

y2(t) = ybl(t) + ynl(t), (21)

where
ybl(t) = |R|F−1[Tbl(É)H(É)],

ynl(t) = hα(t− tr)(Aρ − I)xbl(tr),
(22)

in which Tbl(É) and hα(t) are given in (13).

Here, the proof is concluded.

Theorem 3 extends the calculation for the step response
during [tr, t2) in Lemma 2 to the entire time domain.

Theorem 3. The step response y(t) of a SISO reset control
system with a single reset state to the input r(t) = |R|h(t)
and under Assumption 1, as illustrated in Fig. 1, manifests
as a piece-wise signal, segmented by its reset instants ti.
The computation of y(t) can be performed through the
Algorithm 3.1:

Algorithm 3.1 Step response y(t) of reset control systems.

1. t1 = tr where tr is the first solution of ybl(t) = |R|.
2. During (0, t1), y1(t) = ybl(t) and xr(t) = xbl(t).
3. i = 1.

4. xi+1

nl
(ti) = (Aρ − I)xr(ti).

5. xr(t) = xr(t) + hs(t− ti)x
i+1

nl
(ti)

a.

6. yi+1(t) = yi(t) + hα(t− ti)x
i+1

nl
(ti).

7. Solve yi+1(t)− |R| = 0, and obtain its first zero ti+1.
8. i = i+ 1.
9. Repeat from step 4, until max{|yi+1(t)− yi(t)|} ≤ ϵb.

a hs(t) = F−1[Sbl(É)H(É)].
b ϵ is the maximum absolute error set for the calculation.

If the system is unstable or not convergent, the step 9
in Algorithm 3.1 will be infinitely repeated. Stability and
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convergence are not the focus of this paper and can be
achieved through suitable design, so we won’t delve into
them extensively.

Proof. Similar to the process described from (15) to (17)
in the proof for Lemma 2, at any arbitrary reset instant
ti, the reset action introduces a new pulse signal with an
amplitude of (Aρ − I)xr(ti) to the state xr(t). This pulse

signal is represented as a step signal xi+1

nl (t) within the
interval [ti, ti+1), as expressed in Step 4 and given by:

xi+1

nl (t) = (Aρ − I)xr(ti)h(t− ti). (23)

As depicted in Fig. 2, during the time interval [ti, ti+1),
the signal xi+1

nl (t) contributes to the (i + 1)-th state
output xi+1(t) through the transfer function Sbl(É). It
also contributes to the (i + 1)-th output yi+1(t) through
the transfer function Rδ(É)Tα(É) based on Lemma 2.
Consequently, steps 5 and 6 are derived. The subsequent
steps involve iterative procedures to determine the next
reset instant and introduce a new pulse signal until the
step response reaches a steady-state. Here, the proof is
concluded.

Definition 4. The overshoot in the step response y(t) of
the reset control system under the input r(t) = |R|h(t) is
defined as:

Mp% = (max{y(t)} − |R|)/|R|%, max{y(t)} > |R|. (24)

The calculation outlined in Algorithm 3.1 is based on
linear systems. If the step response function of the linear
system is known, this algorithm can be applied to compute
the step response of the reset control system analytically.

The existing literature suggests various methods for model
reduction to achieve a second-order system representation,
such as the Dominant Pole Approximation method Obi-
nata and Anderson (2012). By employing model reduction
methods, a Linear Time Invariant (LTI) system can be
approximated as a second-order system. For instance, the
reduced second-order system for the base-linear comple-
mentary sensitivity function Tbl(s) can be expressed as

T̃ ′

bl(s) =
as2 + bs+ c

ds2 + es+ f
. (25)

Remark 5. By following the outlined procedure in Algo-
rithm 3.1, essential transient response information for the
reset control system, including tr, tp, and Mp%, can be
directly determined based on the reduced second-order
system (25), using the following steps:

(1) First, for practical implementation, we utilize the
“Model Reducer App” within MATLAB to derive the
reduced second-order system T ′

bl and S ′

bl, correspond-
ing to Tbl in (13) and Sbl in (11) in the BLS. Then,
utilizing step response analysis techniques tailored
for second-order linear systems, as detailed in Nise

(2020), we compute the base-linear output ỹ′bl(tr) and
the state x′

bl(tr) of the reduced systems with the input
signal r(t) = |R|h(t), using the equations in (13).

(2) Next, calculate the rise time of the reduced system,

denoted as t̃′r, which is the time instant when ỹ′bl(tr)
first reaches the steady-state value of |R|, determined

by ỹ′bl(tr) = |R|.

(3) Represent the first-piece step response within the

interval (0, t̃′r) as ỹ
′

1(t) = ỹ′bl(t).

(4) Determine the second-piece step response as ỹ′2(t) =

ỹ′1(t) + (Aρ − I)x′

bl(tr)h̃
′

α(t− t̃′r), for t ∈ (t̃′r, t̃
′

2). The

time instant t̃′2 is determined by ỹ′2(t̃
′

2) = 0, following
the same process as the step 7 in Algorithm 3.1.

(5) Determine h̃′

α(t) based on the reduced second-order
system given by:

h̃′

α(t) = F
−1[Rδ(É)T̃ ′

bl(É)H(É)/Cbl(É)]. (26)

(6) The overshoot and peak time of the reduced system

within the interval [t̃′r, t̃′2) are denoted as M̃ ′

p% and

t̃′p, respectively. Determine t̃′p and M̃ ′

p% by calculating
˜̇y′2(t̃′p) = 0 and M̃ ′

p% = |ỹ′2(t̃′p)− |R||/|R| · 100%.

The reliability of Remark 5 will be illustrated by providing
a comparison between the parameters derived from the
reduced system and practical measurements in Table 1 in
Section 4.

4. ILLUSTRATIVE EXAMPLES

This section performs experimental validation for the pro-
posed methods on reset PID control systems implemented
on a precision motion stage.

4.1 Precision Positioning Setup

The “Spyder” precision positioning stage (in Fig. 3) is a
planar motion system with 3 degrees of freedom. Three
masses (M1, M2, M3) are driven by three voice coil
actuators (A1, A2, A3) and employ a linear current source
power amplifier. These masses utilize dual leaf flexures for
exclusive connection to the base (Mc). Control systems
are conducted on an NI compactRIO. The Mercury M2000
linear encoder (“Enc”) sampled at 10 kHz and with 100
nm resolution senses mass positions. For this SISO study,
only actuator A1 positions mass M1.

Fig. 3. The planar precision positioning system “Spyder”.

Figure 4 shows the Frequency Response Function (FRF)
of the setup, resembling a collocated double mass-spring-
damper system with additional high-frequency parasitic
dynamics. The “Spyder” system’s transfer function in
(27) is approximated as a single eigenmode mass-spring-
damper model using Matlab’s identification tool for con-
trol clarity.

P(s) =
6.615e5

83.57s2 + 279.4s+ 5.837e5
. (27)
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Fig. 4. FRF data from actuator A1 to attached mass M1.

4.2 Reset Control Systems

Figure 5(a) illustrates the block diagram of the Proportional-
Clegg Integrator-PID (PCI-PID) control system. Figure
5(b) presents the structure of the CgLp-PI2D controller,
integrating the CgLp into the PI2D systems. Here, the
CgLp controller is a reset element that can provide phase
lead without compromising gain advantages Saikumar
et al. (2019).

(a)

(b)

e(t) y(t)
-
+

u(t)
(s)PID

r(t)
s
i

1

+
+

LPF

e(t)
s/

c
+1

K
p

FORE Lead

s/
c
+

s/100
c
+- (s)

r(t) u(t)
PI2D

y(t)
+

gLp

LPF

Fig. 5. (a) The PCI-PID and (b) the CgLp-PI2D control
system structures.

The parameters for these two systems are set as follows:
Éc = 240Ã [rad/s]; the Low-pass-filter (LPF) is defined as
1/(s/Éf + 1), with Éf = 2400Ã [rad/s]. PI2D is designed
as Kp(Éi/s + 1)2(s/Éd + 1)/(s/Ét + 1), where Éi = 24Ã
[Hz]. In these two reset control systems, the Proportional-
Derivative (PD) elements are tailored to achieve the de-
sired crossover frequency (fc) and phase margin (PM) in
open-loop.

4.3 Transient Response Analysis Using The New Methods

Eleven reset control systems, applying PCI-PID and
CgLp-PI2D structures (in Fig. 5), are designed to achieve
specified fc and PM in Table 1. Systems C1 − C4 and
C8 − C11 maintain a consistent fc of 120 Hz and PM of
50°. Systems C3, C5, and C6 share the same base-linear
system with varying reset values (µ). System C7 features
a crossover frequency (fc) of 200 Hz and a PM of 50°.

Definition 6. The experimental, Algorithm 3.1-predicted,
and reduced second-order system predicted rise times are

denoted as tr, t̃r, and t̃′r, respectively. The difference

between tr and t̃′r is defined as ϵ̃′r = |tr − t̃′r|. The
corresponding groups of peak time and overshoot are

defined as (tp, t̃p, t̃′p, ϵ̃
′

p) and (Mp%, M̃p%, M̃ ′

p%, ϵ̃′M%),
respectively.

Figure 6 presents the predicted and experimental step
responses for C3, C5, C7, and C11. The prediction and
measurement data fit each other well. The quantitative
transient specifications derived from both prediction and
experiments, and the differences between experimental
and reduced-model predicted values are listed in Table
1. Across cases C1 − C11, the prediction error for rise
and peak time falls within the range of (0.0001, 0.0004)
and (0.0002, 0.0011), respectively, with the largest error
appearing in cases C6 and C3. The overshoot prediction
error is within the range of (0.5%, 3.3%), with the largest
error occurring in the linear case C8.

Results in Table 1 lead to the following conclusions:

(1) The proposed methods effectively predict reset con-
trol system step responses, offering a more efficient
alternative to Simulink, with superior time efficiency
and reduced configuration complexities compared to
Simulink. Minor discrepancies between predictions
and experiments may be attributed to external dis-
turbances, setup variations, and system identification
approximations. These variations are noticeable even
in linear cases such as C1 and C8.

(2) Though C1 − C4 and C8 − C11 share the same
bandwidth and phase margin in open-loop, their
transient responses differ due to varying µ values.
Case C4 in the PCI-PID group and Case C11 in the
CgLp-PI2D group, with negative µ values, exhibit low
overshoot with minimal compromise on peak time
compared to cases with positive µ values and linear
systems.

(3) Comparing the two control structures, PCI-PID and
CgLp-PI2D, both designed to have the same band-
width and phase margin in open-loop, the PCI-PID
structure displays lower overshoot and peak time.
These findings highlight how the new analysis method
can aid engineers in optimizing the selection of control
structures to meet transient response specifications.

5. CONCLUSIONS

In conclusion, this paper introduces a method for analyz-
ing the step responses of closed-loop reset control systems.
The approach offers a fresh perspective by decomposing
the step response of reset control systems into piece-wise
linear functions. Experimental validation involving eleven
reset PID control systems on a precision motion stage
confirms the accuracy of the method.

In the illustrative examples, a negative reset value µ yields
lower overshoot albeit with a minor compromise in peak
time. Moreover, under the same open-loop phase margin
and bandwidth, the PCI-PID configuration exhibits supe-
rior transient performance compared to the CgLp-PI2D
systems. These results underscore the abilities of the anal-
ysis method as a tool for control engineers to fine-tune and
select optimized parameters in reset systems for enhanced
transient responses. Future research endeavors will delve
into a more comprehensive analytical representation and
explore practical applications of this methodology.
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Zhao, G., Nešić, D., Tan, Y., and Hua, C. (2019). Over-
coming overshoot performance limitations of linear sys-
tems with reset control. Automatica, 101, 27–35.

IFAC PID 2024
Almería, Spain | June 12-14, 2024

435


