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Abstract: This paper describes the robust design of a multi-loop PID temperature control of
a PEMFC stack. A multi-objective optimization approach is used, considering uncertainties in
the dynamic model parameters. A new quality indicator in the optimization process, utopian
robust efficiency, is defined for tuning PID parameters. To compare this approach, the alternative
designs based on optimizing the worst case and the system performance in the nominal model
are aborded. The results show that the controllers tuned based on the utopian robust efficiency
exhibit a better trade-off between optimal performance in the nominal model and robustness in
the presence of uncertainty.
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1. INTRODUCTION

As a solution to environmental problems such as global
warming, air pollution, and depletion of fossil fuel reserves,
there is growing interest in using fuel cell-based systems.
One of the possible fields of application is the use of micro
combined heat and power system (micro-CHP). These
systems produce electricity and heat (cogeneration) for
energy supply in the residential sector (Ellamla et al.,
2015). Due to their high electrical efficiency, the Proton
Exchange Membrane Fuel Cell (PEMFC) stack can be
the prime mover of a micro-CHP. The main advantage
of these systems is the use of the thermal energy produced
as a result of electricity generation that increases the
overall performance of the system (Navarro Giménez et al.,
2019). The electrical efficiency, lifetime of the stack, and
overall efficiency of the micro-CHP system depend on
proper temperature control. For correct operation, the
stack temperature must be maintained within defined
limits. A cooling system is used to cool the stack and
keep its temperature at its optimum value. The stack’s
durability, cost, reliability, and energy efficiency largely
depend on the correct design of this cooling control system.

For nonlinear systems, it is useful to design controllers
using optimization techniques. The design of the tem-
perature control of a PEMFC stack involves more than
a single objective: the temperature gradient of the stack
and control efforts. Previous works (Pajares et al., 2020b;
Navarro et al., 2020; Navarro Giménez et al., 2019) address
this problem by formulating a multi-objective optimiza-
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tion problem using a nominal parameter model (without
considering uncertainties). However, in real applications,
system parameters are subject to variations and uncertain-
ties. It has been shown that even a slight modification of
parameters in an optimization problem can cause drastic
effects on the optimal solutions obtained, resulting in sub-
optimality or infeasibility (Shang et al., 2017).

To formulate a robust control optimization problem that
aims to achieve an appropriate system response despite
parameter variations, two key elements must be consid-
ered. These elements are the definition of a framework of
uncertainty scenarios and establishing robust indicators
that evaluate the sensitivity of the resulting solutions.
Defining a set of scenarios that adequately represents the
uncertainties of the analysis problem is a complex task.
Some of the most relevant criteria to be considered in
this process are discussed in (Shang et al., 2017). An
appropriate uncertainty modeling should exclude scenarios
of variations with a low probability of existence that lead
to determining over-conservative solutions in the decision-
making stage. Furthermore, the number of scenarios must
be sufficient to describe the possible space of variations
correctly but not too large for the computational cost of
the sensitivity analysis to be unaffordable. Traditionally,
formulating an optimization problem under uncertainties
involves the establishment of quality indicators that con-
dition the identification of solutions to specific robust-
ness criteria or design constraints. The Minmax robust
indicator is described in papers such as (Veyna et al.,
2023b). This index is often used to minimize the worst-case
assessment of each component of the objective vector when
evaluating a set of uncertainty scenarios. Other indicators
used are the mean and standard deviation. In papers like
(Paenke et al., 2006), these variance estimators are used
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to formulate the minimization function in different test
problems under a multi-objective approach.

In the context of a robust optimization problem, the op-
timality for the nominal process and robustness in the
presence of uncertainty are usually in conflict (Gaspar-
Cunha and Covas, 2008). If it is desired to address the
problem based on a nominal scenario, the solutions ob-
tained are usually less robust for the rest of the scenarios.
On the other hand, if it is desired to minimize the variance
concerning a set of uncertainty scenarios, the performance
of the solutions obtained under the nominal scenario may
be far from optimality. Based on this problem, a new
robustness indicator called utopian robust efficiency is
proposed in this paper. With this indicator, we seek to
define controllers with a trade-off between optimality and
robustness. In this work, we apply the methodology for
tuning a multi-loop PID control structure to control the
temperatures of a PEMFC system with model uncertain-
ties. Afterward, to compare and highlight the properties
and advantages obtained from the tuned controllers based
on this indicator, we also address the alternative optimiza-
tion problems associated with performance in the nominal
parameter model and the Minmax robust indicator.

2. MULTI-OBJECTIVE OPTIMIZATION PROBLEMS
UNDER UNCERTAINTIES

The classical approach of a multi-objective optimization
problem aims to optimize a cost function composed of
objectives that are usually in conflict. When considering
an approach under uncertainties, the formulation of the
problem becomes more complex, and the definition of a
solution is less trivial. To properly adjust the level of ro-
bustness in a solution, two key elements are required: 1) a
set of scenarios that adequately represent the uncertainties
of the system and 2) indicators that evaluate the quality
of robustness in the defined solutions.

2.1 Formulation of uncertainty frameworks

Under an optimization problem, uncertainty can be mod-
eled as slight variations associated with the parame-
ters of the objective function (Paenke et al., 2006). A
multi-objective function f(x, p) ∈ W can be defined as
f(x, p) = [f1(x,p), f2(x,p), ..., fq(x,p)], where q ∈ N is
the number of objectives. A decision vector x ∈ Q can be
defined as x = [x1, x2, ..., xh], where h ∈ N is the number
of decision variables. An uncertainty parameter model p
is defined as p = [p1, p2, ..., pk], where k ∈ N is the number
of parameters where variations are considered. Properly
defining an uncertainty framework P = {p1,p2, ...,pm},
m ∈ N in real engineering applications must constitute a
set of highly representative scenarios p ∈ P that face the
system while representing a computationally feasible cost
for robustness analyses (Veyna et al., 2023b).

2.2 Robust Pareto dominance concepts

To perform a robustness analysis, it is necessary to define
appropriate qualitative indicators. These robust indicators
evaluate the performance of a solution under uncertainties
based on different concepts of Pareto dominance.

Definition 1. Pareto classical dominance (Miettinen,
2012): Given a scenario p, a decision vector x1 is dom-
inated by another decision vector x2 if, fi(x

2,p) ≤
fi(x

1,p) for all i ∈ [1, 2, ..., q] and fj(x
2,p) < fj(x

1,p)
for at least one j such that j ∈ [1, 2, . . . , q].

The Pareto dominance between vectors x ∈ Q in scenario
p is denoted as x2 ⪯p x1. Conversely, the non-dominance
between vectors is denoted as x2 ⪯̸p x1. The set of Pareto
solutions in scenario p is denoted as Xp = {x ∈ Q|∄x0 ∈
Q : x0 ⪯p x}. Then, the set of uncertainty scenarios
P = {p1,p2, ...,pm}, m ∈ N defines the family of Pareto

sets {Xp1

,Xp2

, ...,Xpm

}.
Definition 2. Robust dominance (Veyna et al., 2023a):
Given a set of scenarios P = {p1,p2, ...,pm}, a decision
vector x1 is robustly dominated by another decision vector
x2 if the classical dominance x2 ⪯ps

x1 is satisfied for all
s ∈ [1, 2, ...,m].

The robust dominance between vectors is denoted as
x2 ⪯P x1. On the other hand, the non-robust dominance
is indicated as x2 ⪯̸P x1.

Definition 3. Point-based Minmax robust efficiency (Ide
and Schöbel, 2016): given a set of uncertainty scenarios
P = {p1,p2, ...,pm}, the Point-based Minmax efficiency
of vector x ∈ Q is defined by the function fmax(x, P ) =
[fmax

1 (x,P ), fmax
2 (x,P ), ..., fmax

q (x,P )]. Where the com-
ponent fmax

i (x,P ) such that i ∈ [1, 2, ..., q] is defined as
fmax
i (x, P ) = max

p∈P
fi(x, p).

The function fmax(x, P ) determines the maximum value
reached by a solution x under P in each fi such that i ∈
[1, 2, ..., q]. Based on this indicator, Point-based Minmax
dominance between vectors x ∈ Q is stated as follows:

Definition 4. Point-based Minmax robust dominance.
Given a set of uncertainty scenarios P = {p1,p2, ...,pm},
a decision vector x ∈ Q is dominated by another vector
x0 ∈ Q under the Point-based Minmax robust concept
(denoted as x0 ⪯max x) if any of the following conditions
are satisfied:

Condition 1 :fmax(x, P ) = fmax(x0, P ):

x0 ⪯max x if x0 ⪯P x.

Condition 2 :fmax(x, P ) ̸= fmax(x0, P ):

x0 ⪯max x if fmax
i (x0,P ) ≤ fmax

i (x,P ) for all i ∈
[1, 2, ..., q] and fmax

j (x0,P ) < fmax
j (x,P ) for at least one

j ∈ [1, 2, ..., q].

Under Point-based Minmax dominance concept, the non-
dominated solutions constitute the Point-based Minmax
robust set XWc = {x ∈ Q|∄x0 ∈ Q : x0 ⪯max x}.
In order to define solutions with a balanced performance
for the whole uncertainty framework, we highlight the
utopian robust efficiency indicator (Definition 5). This new
indicator is proposed to evaluate the global deviation of
a solution’s performance under uncertainties concerning
the utopian points defined from the classical optimization
problem for each scenario p ∈ P . With this indicator,
we seek to tune controllers with a good trade-off between
robustness and optimality.
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Definition 5. Utopian robust efficiency (Veyna et al.,
2023a): given a set of scenarios P = {p1,p2, ...,pm}, the
function fut(x, P ) = [fut

1 (x,P ), fut
2 (x,P ), ..., fut

q (x,P )]
defines the utopian robust efficiency of a vector x. Where
the element fut

i (x,P ) such that i ∈ [1, 2, ..., q] is defined
as given in equations (1)-(2).

fut
i (x,P ) =

m∑
s=1

∆fi(x,p
s) (1)

∆fi(x,p
s) =

fi(x,p
s)−min(fi(X

ps

,ps))

max(fi(X
ps

,ps))−min(fi(X
ps

,ps))
(2)

The function fut(x, P ) defines a normalized measure for
the global deviation of the objective function under uncer-
tainties fut

i (x,P ) = [fut
i (x,p1), fut

i (x,p2),...,fut
i (x,pm)]

concerning the utopian points min(fi(X
ps

, ps)), s ∈
[1, 2, ...,m] determined for each scenario. Figure 1 shows
a graphical example in 2 dimensions (i ∈ [1, 2]) where
the parameters of function ∆fi(x,p

s) for any scenario ps,
s ∈ [0, 1, ...,m] are indicated.

Fig. 1. Parameters of function ∆fi(x,p
s) in 2 dimensions

for any scenario ps, s ∈ [0, 1, ...,m].

Definition 6. Utopian robust dominance: given a set of
scenarios P = {p1,p2, ...,pm}, a decision vector x ∈ Q is
dominated under the utopian robust concept by another
decision vector x0 (denoted as x0 ⪯ut x) if fut

i (x0,P ) ≤
fut
i (x,P ) for all i ∈ [1, 2, ..., q] and fut

j (x0,P ) < fut
j (x,P )

for at least one j ∈ [1, 2, ..., q].

Under utopian robust dominance, the non-dominated so-
lutions constitute the Utopian robust set XUt = {x ∈
Q|∄x0 ∈ Q : x0 ⪯ut x} that stands out for representing
a balanced performance under all uncertainty scenarios
(Veyna et al., 2023a).

3. SYSTEM DESCRIPTION AND CONTROL
PROBLEM FORMULATION

3.1 PEM system description

The PEMFC stack that is located in our laboratory, is
supplied with hydrogen and air to generate electrical en-
ergy and heat. A programmable electronic load is used
to emulate a residential consumption of electricity (elec-
trical appliances). A radiator simulates the heat energy
consumption (hot water and heating) by extracting heat
when activated. Additionally, thermal energy can be stored
in a water tank. Details of the description of this system
can be found in (Navarro Giménez et al., 2019).

For the PEMFC stack temperature control design, a model
of the cooling circuit of the micro-CHP system is used.
Figure 2 shows a black box diagram of the model detailed
in (Navarro et al., 2020). The model has two outputs
related to the liquid coolant: the stack water outlet and
inlet temperatures Twout and Twin . The control actions
are uTwout , which represents the water flow rate in the
primary cooling circuit, and uTwin , which is the water flow
rate in the secondary cooling circuit. The only disturbance
considered is the electric current (I) demanded by the
stack. This nonlinear model is built from first principles
and was experimentally validated with a wide operating
range (from 140 to 200A).

Fig. 2. Black box diagram of the model.

This dynamic model have 31 parameters p = [p1, p2, ..., p31].
In (Navarro Giménez et al., 2019), details of the parameter
identification and validation of a nominal model for the
cooling system can be found. In (Pajares et al., 2020a),
near-optimal models are analyzed, and an approximation
of the operating ranges for the parameter uncertainties
when the system operates around its set point is presented.

3.2 Uncertainty modelling

The methodology used to address the design problem
for modeling the parameter uncertainties of this system
has been presented in a previous work (Veyna et al.,
2023b). The result is a set of uncertainty models that
represent highly probable occurrence scenarios, limiting
the degree of conservatism and representing an adequate
computational cost to address the optimization process.
Before applying this methodology, the following initial
elements were considered:

(1) The nominal parameter model. From the identifi-
cation process (Navarro Giménez et al., 2019), the
nominal model of parameters p0 = [p01, p

0
2, ..., p

0
31] is

defined (Values are reported in (Veyna et al., 2023b)).
(2) Degradation limit for system response. From the

validation process, an average temperature error
Javg = 0.26◦C is associated with the identified
nominal model (see the model validation test in
(Navarro Giménez et al., 2019)). On the basis of this
data, the temperature degradation limit of 0.65◦C is
established as a degree of tolerance for the classifica-
tion of uncertainty models with acceptable reliability.

(3) Initial ranges of variation for each parameter. The
scanning ranges [ppi, ppi], i = [1, 2, ..., 31] on which
the domain of uncertainty is initially explored are
defined by the deviation of ±95% from the nominal
value of each parameter. From these ranges, as de-
scribed in (Veyna et al., 2023b), a series of sensitivity
analyses will lead to establishing more appropriate
limits for the parameter uncertainty domain based
on conservatism criteria.

After applying this uncertainty modeling methodology, the
set of models P α = {p1,p2, ...,p145} is defined. Figure 3
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shows an overview of this modeling process. Where given
a model p ∈ P α, the function fe(em) is an indicator that
evaluates the error between the model output and the
measured system response in an open-loop experiment.
γ(p) is an indicator that evaluates the global relative
deviation from the nominal model in the parameter space.
Both indicators are described in (Veyna et al., 2023b).

Fig. 3. Overview of the uncertainty modeling process for
the PEMFC system

At first, the uncertainty modeling process begins with the
set of models P ϕ1 = {p1,p2, ...,p1500}, which is defined
with 1500 models (green, black, and red dots) created by
random sampling within the operating range established
in the sensitivity analysis. Then, three filters are applied
to simplify the set of models. By applying the first filter,
improbable models concerning variations in parameter
space are excluded, and the subset P ϕ2 ⊂ P ϕ1 of 1202
models (black and red dots) is defined. By applying the

second filter, the subset P ϕ3 ⊂ P ϕ2 of 860 models (red
dots) is obtained by simplification concerning the model’s
performance and the constraint fixed fe(em) < 0.65◦C.
The last filter is used to uniformly simplify the modeling to
a computationally acceptable representation for evaluating
the sensitivity of a solution in a robustness analysis. We
defined the subset P α ⊂ P ϕ3 (blue circles) with 180
models. Finally, using the model selection strategy defined
in stage 3 of the methodology described in (Veyna et al.,
2023b), the worst-case model p∗ ∈ P α is identified.
This model selection strategy consists of using a set of
reference controllers to characterize the performance of the
uncertainty set Pα in the objective space. In figure 3, the
nominal model p0 is represented by a yellow diamond. A
blue diamond represents the worst-case model p∗.

3.3 Temperature control problem formulation

The control system aims to keep Twout
and Twin

at their
corresponding setpoints while changes in the electrical
current demand (I) produce undesirable transient fluctu-
ations in the stack temperature. The temperature control
must respond to disturbances to minimize the excursions
of Twout and Twin from their setpoints, rTwout = 65◦C
and rTin = 60◦C, respectively. In (Navarro et al., 2020) is
proposed a multi-loop control structure (see figure 4); this
structure consists of two PI controllers with anti-windup,
one for the control of Twout (by using uTwout) and the other
for the control of Twin(by using uTwin). Therefore, the
controller has four parameters to adjust (two for each PI),
[Kc1, Ti1,Kc2, Ti2], whereKc1 andKc2 are in ((l/min)/◦C)

Fig. 4. Multi-loop PI control structure for temperatures
Twout and Twin.

and Ti1 and Ti2 in (s). The formulation of the multi-
objective optimization problem under uncertainties aims
to minimize the objectives f1 and f2 stated in equations
(3) and (4).

f1(x,p) =
1

Tsim

∫ Tsim

0

|eTwout
|dt +

1

Tsim

∫ Tsim

0

|eTwin
|dt (3)

f2(x,p) =
1

Tsim

∫ Tsim

0

∣∣∣ duTwout
(t)

dt

∣∣∣ dt +
1

Tsim

∫ Tsim

0

∣∣∣ duTwin
(t)

dt

∣∣∣ dt
(4)

Where p = [p1, p2, ..., pk] is the vector of model parameters
and x = [Kc1, Ti1,Kc2, Ti2] is the decision vector (con-
taining the controller parameters). The lower and upper
bounds for controller tuning are x = [Kc1, Ti1,Kc2, Ti2]

and x = [Kc1, Ti1,Kc2, Ti2]. Objective f1(x,p) evaluates
the performance of the controllers by adding the mean
absolute errors of the stack output and input temperatures
(in ◦C) concerning their setpoints (equation (5)).

eTwout
= rTwout

− Twout
; eTwin

= rTwin
− Twin

(5)

Objective f2(x,p) evaluates the control effort by adding
the average absolute values of the rates of change of the
control actions (uTwout

and uTwin
) in (l/min)/s. Tsim is

the simulation time (3300s).

Fig. 5. Electric current demand signal used in the control
design. The first step applied is at t=100s, and the
span of each step is 800s. The total simulation time
is 3300s.

These functions aim to achieve optimal electrical efficiency
and minimal deterioration of the stack and actuators. In
(Navarro et al., 2020), the temperature control design
is addressed as a 4-objective optimization problem. To
reduce the computational cost of the optimization process,
this work simplifies the formulation and defines f1 and f2
as two aggregate objective functions that are combined
with the same relevance. Temperature control should re-
spond to changes in the current electricity demand. Fig-
ure 5 shows the electric current signal used for the con-
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trol design that presents steps and traverses through the
full validity range of the nonlinear model (from 140 to
200A). Given these conditions and the robustness indica-
tors shown in section 2, the multi-objective optimization
problem is stated under three formulations:

a) Under the function f(x,p0)

min
x

f(x,p0) (6)

f(x,p0) = [f1(x,p
0), f2(x,p

0)] (7)

b) Under the Minmax robust indicator fmax(x, P )

min
x

fmax(x, Pα) (8)

fmax(x, Pα) = [fmax
1 (x, Pα),fmax

2 (x, Pα)] (9)

c) Under the Utopian robust indicator fut(x, P )

min
x

fut(x, P β) (10)

fut(x, P β) = [fut
1 (x, P β),fut

2 (x, P β)] (11)

Where P α = {p1,p2, ...,p180} is the set of models de-
scribing the global uncertainty framework of the system
and P β = {p0,p∗} is the set formed by the nominal
model and the worst-case model defined from applying
stage 3 of the uncertainty modelling methodology. The
formulations a), b) and c) are subjet to x ≤ x ≤ x,
such that the controller parameters [Kc1, Ti1,Kc2, Ti2] are
discretized with a period of [0.001, 0.01, 0.001, 0.01] and
the limits [x,x] are established as x = [−8, 1,−8, 1] and
x = [−0.1, 120,−0.1, 120].

4. ANALYSIS OF RESULTS

To address the multi-objective optimization problems for-
mulated in equations (6)-(11), the evMOGA algorithm
is used (Herrero et al., 2009), although any other multi-
objective optimization algorithm could be used. After fin-
ishing the optimization process, 25800 evaluations of the
objective function f(x,p) were performed to determine
the set of controllers XNom, XWc and XUt. In this pro-
cess, the multi-objective optimization strategy presented
in (Veyna et al., 2023a) was used to obtain all these sets
simultaneously under a single run of the optimizer. The
amounts of controllers that compose each of these sets
are: #XNom = 31, #XWc = 47 and #XUt = 56.
To compare the optimal and robust performance of these
controller sets, figures 6 and 7 show the analysis under
the functions fut(x, P β), fmax(x, Pα) and f(x, p0).
Under function fut(x, P β), which evaluates the balance
of performance between the nominal scenario p0 and the
worst-case scenario p∗, figure 6 shows that controllers
XUt (green diamonds) belong to the optimization front
fut(XUt, P β) defined from the utopian robust concept.

Under this same indicator, some solutions x ∈ XNom (red

asterisks) and x ∈ XWc (black squares) represent sub-
optimal controllers and others belong to the optimization
front. This figure highlights three reference controllers:
x3 ∈ XUt (solid green circle), x2 ∈ XWc (solid black

circle), and x1 ∈ XNom (solid red circle). These con-
trollers are selected to represent a balanced performance
of objectives concerning each of the optimization fronts
fut(XUt,P β), fmax(XWc,Pα) and f(XNom,p0) re-
spectively. Figure 7 shows the performance of sets XUt,

Fig. 6. Performance of controllersXNom,XWc, andXUt

under the function fut(x,P α).

XWc and XNom in the objective space [f1(x,p), f2(x,p)]
under the functions f(x,p0) and fmax(x, Pα). Red

crosses and asterisks represent the controllers x ∈ XNom,
circles and squares in black indicate the controllers x ∈
XWc, and green triangles and diamonds represent the
controllers x ∈ XUt.

Fig. 7. Performance of controllersXNom,XWc, andXUt

under the functions f(x,p0) and fmax(x,P α).

This figure evidences the conflict between controllers
XNom, which seeks the optimal performance in the nom-
inal scenario p0, and controllers XWc, which aims to
minimize the Minmax robust indicator fmax(x,Pα) under
the uncertainty framework P α. In this context, the set of
controllers XUt tends to show a balance between both
performance indicators. There are solutions x ∈ XNom

and x ∈ XWc that also belong to the optimization front
fut(XUt, P β) (shown in figure 6) since they are multi-

modal. Solutions x ∈ XUt that do not belong to the
front fmax(XWc,Pα) or f(XNom,p0) present a better
trade-off between optimal and robust performance. In this
figure, the reference controllers x3 ∈ XUt, x2 ∈ XWc, and
x1 ∈ XNom are also highlighted.

To visualize another comparison between the performance
trend of the controllers XUt, XWc and XNom obtained
from different optimization approaches, figure 8 shows the
system response with the reference controllers highlighted
before x1 ∈ XNom (red), x2 ∈ XWc (black), and

x3 ∈ XUt (green) under the nominal model p0 for a
simulation time of 3300 seconds. This figure shows again
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that controller x3 ∈ XUt exhibits a system response
with a balanced performance concerning controllers x1 ∈
XNom and x2 ∈ XWc for the outputs [Twout , Twin ]
and inputs [uTwout uTwin ]. On the other hand, figure 9

Fig. 8. System response obtained with the controllers
x1 ∈ XNom (red), x2 ∈ XWc (black), and x3 ∈ XUt

(green) under the nominal model p0.

shows the response envelope of the system for the outputs
and inputs obtained by simulating the controllers x3 ∈
XUt (green), x2 ∈ XWc (black), and x1 ∈ XNom

(red) under the set of uncertainty models P α. The solid
and dashed lines represent the upper and lower bounds
of each envelope respectively. These bounds exhibit the
degradation for each controller under uncertainties. The
performance balance in the objective space under the
nominal and worst-case scenarios involved in the definition
of XUt causes the solution x3 ∈ XUt to show a tendency
to exhibit a degradation range (area bounded by the green
upper and lower limits) with lower amplitude.

Fig. 9. System response envelope obtained with the con-
trollers x1 ∈ XNom (red), x2 ∈ XWc (black), and

x3 ∈ XUt (green) under P α. Solid lines indicate
upper limits. Discontinuous lines indicate lower limits.

5. CONCLUSIONS

This paper shows the Utopian robust efficiency indicator
for tuning a multiloop PID control structure. The appli-

cation process is the control of several temperatures of a
PEMFC system. The design aimed to optimize the sys-
tem performance in the nominal scenario, the worst-case
scenario and the utopian robust efficiency. The analysis
of results highlights the utopian robust efficiency as an
effective indicator for tuning controllers with a balanced
trade-off between optimal and robust performance.
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