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Abstract: As high energy costs and water scarcity remain major problems in the context of
vertical farming, we present a hierarchical control system developed for the optimization of
irrigation processes in these farms. The main objective is to minimize the energy cost and water
consumption associated with the operation of a vertical farm, with special emphasis on irrigation
in a soil-based environment. At a higher level, an optimal control problem based on a dynamic
crop growth model and the FAO Penman-Monteith equations is solved offline to determine
the optimal daily inputs, considering temperature, radiation, and plant available water as
decision variables. At a lower level, strategically placed Proportional-Integral-Derivative (PID)
controllers are used to track these irrigation set-points online. These controllers are designed
using a dynamic drip irrigation and soil model that simulates the movement of water through
soil. In a simulation study, this integration of set-points and subordinate PID controllers shows
a robust control system that effectively stabilizes the irrigation process. The results also show
a uniform moisture distribution in the soil after a short time, which contributes to uniform
plant growth in the farm. The proposed hierarchical control system combines computationally
intensive offline open-loop optimization for daily input determination with fast and simple online
PID control for real-time stabilization.

Keywords: Greenhouse control, Modeling and control of agriculture, Applications of PID
control, Optimal control, Vertical farming

1. INTRODUCTION

With the increasing demand for food from the world’s
growing population and water scarcity due to climate
change, there is an urgent need to re-evaluate agricultural
practices. Relying solely on conventional farming methods
to ensure future food security is fraught with risk. This
is why scientists have been researching smart agriculture
for decades, and much important work has already been
published and implemented (Hassan et al., 2021). Smart
agriculture uses advances in weather forecasting and the
optimization of input parameters to increase the efficiency
of crop production. While the optimization potential is
also applicable in field cultivation, it increases significantly
in controlled environments such as greenhouses. An even
more sophisticated variant, known as vertical farming,
represents a paradigm shift in producing high-quality food
in completely enclosed spaces and minimizes dependence
on pesticides and harmful chemicals. This approach, char-
acterized by resource efficiency and fine-tuning through
mathematical models and algorithms, is a promising ap-
proach to sustainable agriculture. The biggest problem,
however, is the enormous energy consumption on these
farms (Graamans et al., 2018), which makes widespread
application in practice untenable to date. For this reason,
it is absolutely essential to minimize energy consumption
and use the available resources as efficiently as possible.

One of the components of a vertical farm (VF) is auto-
matic irrigation, the input of which is highly dependent
on other parameters such as temperature and radiation.
1 These authors contributed equally to this work.

Optimizing irrigation for crop growth therefore requires
both a model of plant growth and one of the medium that
carries the water. In classical agriculture, soil is used as a
medium. Thus, there are many models for water movement
in soil (Kirkham, 2023; Romashchenko et al., 2016). Even
though most VFs are designed as hydroponic systems,
recent studies emphasize the nuanced effects of soil-less
systems on plant health. For certain crops, soil-based
vertical farming remains an important consideration due
to its potential advantages over hydroponic or aquaponic
systems (Bender et al., 2016). Current knowledge high-
lights the complex interactions between plants and their
soil microbiome, contributing to improved nutrient uptake
and overall plant resilience (Trivedi et al., 2020). While
recognizing the benefits, it is important to acknowledge
the inherent challenge of soil-based systems, which is pri-
marily that the soil contains pathogens and therefore needs
to be disinfected. While this paper focuses on soil-based
systems, hydroponic systems can be considered with the
same approach after experimental parameterization of the
substrate parameters for the model.

Automated irrigation in the context of smart farming
has received considerable attention in recent years. For
example, Puig et al. (2022) have developed a platform
for outdoor drip irrigation systems that integrates an
open IoT application with a versatile architecture that
enables connectivity to various sensors and agronomic
models. In an effort to evaluate the uniformity of water
distribution in the soil for different types of drip irrigation,
Muñoz-Carpena and Dukes (2005) focused on the pipe
flow process within a drip irrigation unit in a real field.
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Another strategy involves using soil moisture sensors that
turn irrigation on or off based on readings that exceed or
fall below predefined thresholds (Cáceres et al., 2007).

The implementation of a proportional-integral-derivative
(PID) controller for automatic irrigation, with no partic-
ular focus on optimal crop growth or on uniform distribu-
tion, has been investigated in several papers (Sheikh et al.,
2018; Romero, 2011; Romero et al., 2012). A more so-
phisticated approach is presented by Abioye et al. (2023),
who developed a Kalman filter PID (KF-PID) controller
for fibrous capillary irrigation using a data-driven state-
space model. However, this approach requires a significant
amount of high-quality data. In the context of optimal
irrigation strategies, a predictive controller aimed at max-
imizing agricultural yield and water conservation was pro-
posed, but without focusing on a uniform distribution of
moisture or considering plant growth as a dynamic system
(Ortega Álvarez et al., 2004; Cáceres et al., 2021). Ro-
dríguez et al. (2015) integrated water dynamics and plant
growth into a joint model in a greenhouse. However, the
model neglected any spatial component of water dynamics
in the substrate assuming a uniform moisture distribution.

In contrast to existing literature, our paper aims to demon-
strate that employing a straightforward PID controller
in a hierarchical control scheme can effectively achieve a
uniform moisture distribution in soil within a short time
and therefore contribute to optimal and uniform plant
growth in a VF. This capability allows the system to
seamlessly track the daily optimal set-points for plant-
available water, i.e., the amount of water that can be
extracted from the soil by the plant, which is generally
not equal to the total water content of the soil. The plant-
available water is obtained from a separate optimal control
problem (OCP). This approach of hierarchical irrigation
control, to the best of our knowledge, remains unexplored
in prior research, though it has been recommended as a
promising strategy by Romero et al. (2012).

Our key contributions can be summarized as follows:
• Adaptation of plant and soil models for indoor VFs.
• Offline identification of the optimal daily amount of

plant-available water, taking into account optimized
values for radiation and temperature within a VF
using a dynamic crop growth model.

• Implementation of a PID controller to track the
identified set-points, facilitating the determination of
a daily optimal drip irrigation scheme.

The remainder of the paper is structured as follows. Sec-
tion 2 presents the theoretical plant models used for the
optimization, as well as the drip irrigation and soil model.
In Section 3, hierarchical set-point irrigation control is
discussed, and in Section 4, it is evaluated using a simu-
lation example. Section 5 leads the reader through a brief
discussion of the results, and Section 6 concludes our work.

2. MODELS
2.1 Dynamic Crop Growth Model in a Vertical Farm

In order to simulate crop growth, the smooth discrete-
time state-space reformulation of the SIMPLE model
(Zhao et al., 2019) is used, details of which can be
found in our previous work (Daniels et al., 2023). The
parameters of the SIMPLE model were calibrated carefully
using a large arable farming experimental data set for

various crops (Zhao et al., 2019) which we adopted in
this work. This model is a generic dynamic crop growth
model, which means it can be used for several different
crops and cultivars if a set of crop-specific parameters
is known. The model was found to be very accurate in
comparison to other crop models in an optimal control
framework (Fink et al., 2023). The state vector for day
i is then given as xi = [mB,i τi I50B,i]

T
, where mB,i is

the biomass, τi the cumulative temperature and I50B,i

the leaf senescence on day i. In contrast to other models,
diurnal and nocturnal temperatures are not distinguished
and only enter as an average. Under the assumption of a
fully controllable environment such as a VF, the system
inputs are ui = [ϑi pPAW,i Ri]

T
,where ϑi is the mean

temperature in ◦C, pPAW,i is the plant-available water
in mm, and Ri is the artificial radiation in MJ

m2 d on day
i. The state-space model can then be written as

xi+1 = f(xi,ui), (1)
with xi the state and ui the input on day i. For a
specification of f , see (Zhao et al., 2019).

The plant-available water pPAW,i depends on the aridity
status of the soil, which directly affects plant growth. For a
conversion, the ARID method of Woli et al. (2012) is used,
which is based on the FAO Penman-Monteith equations
(Allen et al., 1998). The drought is defined as

Di =

{
1− 0.096 pPAW,i

ETo,i
, if pPAW,i <

ETo,i

0.096 ,

0, otherwise.
(2)

If the soil is too dry (Di > 0), the plant suffers from
drought stress. The reference crop evapotranspiration
ETo,i is given for a uniform grass reference surface. Evap-
otranspiration means the combination of the evaporation
of the soil and the transpiration through the plant itself.
It is defined as

ETo,i =
0.408 δi Rn,i + γ 900

ϑi+273.15 µ2 (es,i − ea,i)

δi + γ(1 + 0.34µ2)
, (3)

where Rn,i is the net radiation, γ the psychrometric
constant, µ2 the wind speed, es,i the saturation vapour
pressure, ea,i the actual vapour pressure, δi the slope of
vapour pressure for each day i. Details can be found in
(Allen et al., 1998). The required plant-available water
therefore depends on temperature and radiation.

2.2 Dynamic Soil-Moisture Model for Drip Irrigation

The two-dimensional soil-moisture model developed by
Romashchenko et al. (2016) describes the movement of
water through soil over time given drip irrigation. It can
therefore be used to design an irrigation controller and
to evaluate the uniformity of the moisture distribution.
This section will discuss the mathematical model for the
soil and a discrete formulation of the three-dimensional
extension of it. Additionally, the phenomenon of evapora-
tion is added. In the following equations, the constant µ
is an empirical parameter and therefore has to be found
experimentally (Romashchenko et al., 2016). In a simula-
tion study on the impact of µ, the simulations converged
and showed stable behavior for µ = −0.5. In future work,
further experiments will be performed to refine this value
for different soil types. The height of capillary rising hk,
describes the height that water can spontaneously wander
upwards through the soil. The maximum molecular mois-
ture capacity of the soil is represented by W ⋆, and the
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complete moisture capacity of the soil is represented by m.
These parameters are the boundaries of feasible moisture
values and vary with the type of soil used. The moisture
W is always contained in the range W ⋆ < W < m. These
parameters depend on the type of soil and need to be
calibrated experimentally.

The plant-available water of the crop model pPAW,i in ui

can be converted into W with
W =

pPAW,i

d
+Wwilting, (4)

where d is the depth of the soil in m and the wilting point
is Wwilting (Kirkham, 2023).

The model considers pressure differences, the water con-
ductivity of the soil, and external effects such as precipi-
tation or irrigation. The piezometric head

U(W ) = µhk

(
− ln

∣∣∣∣W −W ⋆

m−W ⋆

∣∣∣∣) 1
3.5

+ z (5)

considers the pressure differences and is expressed in m,
where z is the depth. The water conductivity of the soil

k(W ) = KΦ

(
W −W ⋆

m−W ⋆

)3.5

(6)

depends on the moisture level and the type of soil,
where KΦ is the filtration coefficient and assumed to be
0.000075m

s . Following this definition, its first derivative is
defined as

k′(W ) = 3.5KΦ

(
1

m−W ⋆

)3.5

(W −W ⋆)
2.5 (7)

leading to a complete description of the model.

Continuous-Time Formulation The change of moisture
over time

∂W

∂t
= k′(W )

(
∂U

∂x

∂W

∂x
+

∂U

∂y

∂W

∂y
+

∂U

∂z

∂W

∂z

)
(8)

+ k(W )

(
∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2

)
+ uw(x, y, z),

as introduced in (Romashchenko et al., 2016) for two
dimensions, incorporates all previously defined functions.
The input of the system is given as uw(x, y, z), and
represents the irrigation in this case. While this soil model
can be used for simulation purposes, it does not take into
account the water loss through evaporation in its original
form. Hence, the evaporation is subtracted from the top
layer, assuming it follows the definition of (3).

Discretization To allow for a simulation of the model,
the equations are discretized, i.e., the soil is split into small
volumes, each of them measuring ∆x ·∆y ·∆z, and time
will be simulated in discrete time steps ∆t. The discretized
moisture is denoted as Wijk where i, j, and k represents
the partition in x, y, and z direction, respectively. The
dynamic soil model (8) requires a discrete description of
all derivatives included in the model. The first derivatives
were discretized using the central difference yielding

∂U

∂x
≈

U(W(i+1)jk)− U(W(i−1)jk)

2∆x
, (9)

the first order partial derivative for x of the function
U(W ). Following this definition, the first-order partial
derivative for y and z can be described in the same manner.
The first derivative of the moisture W in x-direction, also
expressed using the central difference quotient, is

∂W

∂x
≈

W(i+1)jk −W(i−1)jk

2∆x
, (10)

with the first-order discrete derivative for y and z being
structured in the exact same way. The second derivatives
can be approximated using the second-order difference
quotient stated in (Yoshikawa, 2017), resulting in the
discrete version of the second derivative of U(W ) for x

∂2U

∂x2
≈

U(W(i+1)jk)− 2U(Wijk) + U(W(i−1)jk)

(∆x)2
(11)

depending on the current value and the values of the
spatial predecessor and successor. The definitions for y-
and z-direction follow the same form.

3. HIERARCHICAL SET-POINT IRRIGATION
CONTROL

This section introduces the two-level hierarchical control
method for irrigation. At the higher level of the hierarchy,
set-points for an underlying PID controller are determined
by solving an offline open-loop OCP that finds the optimal
plant-available water for each day to maximize crop growth
and minimize cost. This is described in Section 3.1. The
lower-level online control is based on a PID controller that
tracks these set-points. The design of the PID controller is
presented in Section 3.2.
3.1 Optimal Control for Vertical Farming

The set-point optimization is based on a cost function

J(U ,x0) =

N−1∑
i=0

l(ui)− V (xN ) (12)

that is defined over a given growth period of N days. With
U =

[
uT
0 ,u

T
1 , ...,u

T
N−1

]T, the input sequence is denoted.
The stage cost l(ui) represents the energy cost used for the
growing process and is given as l(ui) = uT

i Rui + rTui,
where R and r are weights. The terminal cost V (xN )
gives the yield at harvest on day N . The price evolves
linearly, leading to a linear cost term, i.e., V (xN ) = qTxN ,
with the weight q. The cost function (12) represents the
negative economic yield. Thus, the terminal cost is used
with a negative sign. Temperature, plant-available water,
and radiation can be controlled in a VF, but their values
are bounded. Therefore, constraints ui ∈ U are added to
the OCP. These considerations yield the OCP

U∗ =arg min
U

J(U ,x0) (13a)

s.t. xi+1 = f(xi,ui) ∀i ∈ [0, N − 1] (13b)
ui ∈ U ∀i ∈ [0, N − 1] (13c)
τN > τmature (13d)
x0 = xinit, (13e)

where U∗ is the sequence of optimal inputs. The states on
day i = 0 are given as initial states xinit. The system model
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f refers to (1). Maturity of the crop is ensured through
τN > τmature, where τmature is a parameter depending on
the chosen crop. OCP (13) can be solved using standard
nonlinear optimization solvers.

3.2 PID Controller Design

The PID controller for moisture control is designed in z-
direction only. Moisture is measured in the layer zroot be-
low the irrigation points, and an individual PID controller
is used for each irrigation point. A number of independent
controllers and irrigation points are used to achieve a
uniform moisture distribution in the defined soil volume.

Linearization of the Soil Model in z-Direction The PID
controller uses the measurement of the moisture value at
the depth of the roots zroot under the irrigation point as
feedback information. The influences of changes in the x
and y direction are neglected, which simplifies (8) to

∂W

∂t
= k′(W )

∂U

∂z

∂W

∂z
+ k(W )

∂2U

∂z2
+ uw(z), (14)

where the input of the irrigation uw(z) is zero for all
z ̸= 1, meaning only the top layer z = 1 is irrigated.
A spatial discretization in z-direction results in a zroot
dimensional state space with the state vector W =

[W1 W2 . . . Wzroot ]
⊤. The linearization of (14) around the

desired moisture results in a linear system for the moisture
values, i.e.,

dW

dt
= AW +Bu , (15a)

Wzroot = CW , (15b)

where B = [1 0 0...]
⊤ and C = [0 .. 0 1]. The input in

(14) is only applied on the top layer as the change of
the relative moisture in that point, resulting in a one-
dimensional input u for each irrigation point.

State Space System for PID Tuning In this study, mois-
ture is measured in the 5-th layer of the discretization,
yielding the system matrix

A =

[−0.18 0.18 0. 0. 0.
0.21 −0.4 0.18 0. 0.
0. 0.21 −0.4 0.18 0.
0. 0. 0.21 −0.4 0.18
0. 0. 0. 0.21 −0.21

]
. (16)

From the state space model, a transfer function is deter-
mined that can then be used to tune the PID controller
using an arbitrary PID tuning technique. Here, the MAT-
LAB toolbox (Wang, 2020) is used to tune the controller
to a crossover frequency of 1

10min resulting in the PID gains
Kp = 0.00617, (17a)
Ki = 1.72 · 10−6, and (17b)
Kd = 0.302. (17c)

The PID controller uses the reference value Wzroot,des ,
which is derived from the result of (13) for the plant-
available water pPAW,i and is transformed with (4). To
achieve these reference values at the measuring points, it
determines the suitable values for u.

4. RESULTS
4.1 Results for Set-Point Trajectory

The results for the set-point optimization conducted with
CasADi (Andersson et al., 2019) are presented for a
wheat crop grown over 130 days, considering the cost
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Fig. 1. Optimal inputs trajectory that can be used as daily
set-points.

parameters of R =
[
1.86·10−6 0 0

0 0.2 0
0 0 0

]
, q =

[
3600
0
0

]
, and

r =
[
−3.73·10−5

0.04
0.04

]
. The following assumptions about the

environment are made to limit the complexity of the
optimal control approach discussed in Section 3.1. As
the CO2 concentration in the atmosphere has no direct
influence on the irrigation set-points, given this model, it is
set to a constant value of CCO2,i = 350 ppm. A reasonably
good temperature control is assumed such that there are
no temperature peaks during the day, i.e., the mean and
maximum temperatures are the same. Furthermore, a
constant humidity of 60% as well as a small wind speed of
µ2 = 0.2 m

s are assumed. The outside temperature is set
to a constant value of 10 ◦C, making active cooling in the
VF unnecessary. The common assumption of soil heat flux
density being negligible is adopted here. These variables
can easily be added to the optimization if needed.

One can observe the interdependence of the inputs in
Fig. 1, which influence the corresponding states shown
in Fig. 2. Initially, it is most cost-effective to start with
a low moisture level, indicating minimal plant-available
water (pPAW,i). This is due to the low evapotranspiration
given the low radiation levels. The optimization strategy
avoids scenarios where high radiation and temperature
produce exceptionally high evapotranspiration. Only when
the temperature decreases, and the radiation increases,
does the plant require more water, which corresponds to
a significant increase in transpiration. The required plant-
available water stabilizes at nearly 50 mm per day, im-
plying that plant and soil evaporation collectively amount
to approximately 0.096 · 50 mm = 4.8 mm per day. To-
wards the end, as wheat matures and dries, both tem-
perature and radiation increase, eliminating the need for
further irrigation. Ultimately, a biomass of 4.13 kg

m2 can be
achieved, with the potential for significant improvement
with a higher CCO2,i.
4.2 Soil Dynamics Simulation

The soil is simulated with 1500 spatially discretized ele-
ments (nx = ny = 10, nz=15), where the discretization
step is uniform, ∆x = ∆y = ∆z = 0.02 m. The moisture
is limited by W ⋆ = 0.15 and m = 0.35. The height
of the capillary rise is hk = 1.25 m, representing sandy
soil. The parameters were adopted from the calibrated
soil conditions from Zhao et al. (2019) and Romashchenko
et al. (2016).
4.3 Results for PID Control

As an example, the moisture dynamics are shown for
day 8 of the optimized trajectory, where pPAW,i = 24 mm
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Fig. 2. Optimal states corresponding to the optimal inputs
for every day.
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Fig. 3. Moisture trajectory for each measurement point,
in the zroot-th layer below the irrigation points. Each
measurement point (out of 10 measurement points) is
denoted with a different color.

is needed for optimal growth. With the wilting point of
Wwilting = 0.17, this results in the desired moisture of
Wzroot,des = 0.25 for each of the 10 irrigation points. For
the distribution of the ten irrigation points, the Centroidal
Voronoi Tessellation algorithm (Du et al., 1999) is chosen
for its superior performance compared to a regular grid
distribution. The distribution of the irrigation points can
be seen in Fig. 5 after 60 s, where the irrigation points are
the only points with W > 0.2. The initial state of the soil
moisture is set to 0.17 representing almost dry soil and
serving as a somewhat worst-case scenario. The moisture
sensors are assumed to be placed at zroot = 0.1 m.

Fig. 3 illustrates that it takes more than 450 s for the
added moisture to reach the sensors in the zroot-th layer,
even after the irrigation has started. The desired moisture
Wzroot,des is reached for all measuring points after approx-
imately 800 s (13 min), which corresponds to the PID
design. In Fig. 4, the inputs u for the irrigation points are
shown in l

h . After reaching the desired moisture Wzroot,des ,
the inputs remain at small values. The reason for this is
illustrated in Fig. 5, which shows the moisture content of
a soil block in different time steps. After 1200 seconds, the
soil in some parts has reached the desired moisture level,
but the lower part of the soil block remains dry. As a result,
additional water is required until the entire block, up to the
root depth zroot, is uniformly moist. This is accomplished
after one hour. After that, the controller will only replace
the water lost through evapotranspiration and drainage to
deeper layers.

5. DISCUSSION

In this paper, our focus has been on integrating an ir-
rigation control scheme into the overall optimal control

0 500 1,000 1,500
0

0.5

1

1.5

t [s]

u
[ l h

]

Fig. 4. Input trajectory for each irrigation point, given
in liters per hour. The input trajectories (for the 10
irrigation points) have the corresponding colors to the
measurement points in Fig. 3.

framework for a VF. The optimal trajectory is computed
offline, and subsequently, a PID controller is employed
to track this trajectory. The performance of this hierar-
chical approach has demonstrated remarkable results in
simulation. While this hierarchical structure already shows
very promising results, it could be extended to a closed-
loop approach in higher levels of plant dynamics control.
This ensures good performance also if the lower-level PID
controller struggles to achieve perfect trajectory tracking,
resulting in suboptimal overall trajectories. Moreover, the
growing time for the wheat crop in this study has been set
to 130 days. The entire approach can be embedded into
an OCP with free final time, as demonstrated in previous
work (Daniels et al., 2023). Additionally, it was observed
that a high number of irrigation points in a small area
can achieve a uniform moisture distribution in a short
time. While advantageous for uniform crop growth, the
high number of irrigation points may incur high costs and
maintenance efforts. Therefore, it would be beneficial to
investigate the optimal number and distribution of irri-
gation points when precise settings and costs are known.
An alternative approach to many sensors could be the use
of virtual sensors with more accurate evapotranspiration
models, as demonstrated by Sánchez et al. (2012), provid-
ing a potentially simpler measurement system and a better
estimate of the actual evapotranspiration ET depending
on the type of crop and its growth.

6. CONCLUSION

A hierarchical approach for irrigation in a vertical farm
has been presented. An OCP is first solved offline to
obtain a trajectory for the optimal amount of water in
soil for each day, considering plant growth and energy
consumption. A subordinate control loop, which consists
of several PID controllers, adjusts the water supply to
stabilize the given trajectory given a dynamic soil model
for drip irrigation. Our results provide a successful proof of
concept through a comprehensive simulation study. These
results not only confirm the feasibility of our approach, but
also demonstrate its potential for practical application in
vertical farming. Future work will include an experimental
validation of our findings and the extension to a closed-
loop crop control system for all inputs.
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