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Abstract: This paper proposes the use of the gain-changing non-linearity to improve the
estimation of the ultimate point, which is used in many auto-tuning algorithm of PID controllers.
The experiments for identification are similar to the relay feedback, therefore some well known
advantages of this kind of experiments are maintained while the estimation error is significantly
reduced. The identification method is evaluated with a batch of system dynamics, providing
suitable results in all cases, which proves the validity of the approach.
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1. INTRODUCTION

PID controllers are used in most of the industrial control
applications due to its simplicity and robustness. One of
the main features that boosts the application of PID in
industry is the availability of auto-tuning algorithms which
facilitate the use of the control devices by automatically
calculating the controller parameters after a simple exper-
iment on the control loop.

Many tuning and auto-tuning methods use the ultimate
gain and frequency to obtain the controller parameters.
The ultimate gain is the value of gain for which a closed-
loop system start to oscillate with constant amplitude,
and the frequency of these oscillations is the ultimate
frequency. This information can be easily obtained through
a feedback relay experiment, where an oscillatory response
is induced in the loop when substituting the PID by a
relay. The amplitude of the oscillations can be controlled
by the relay configuration parameters (amplitude and
hysteresis), which is the main advantage of this approach
respect to the original method proposed by Ziegler and
Nichols, consisting on replacing the controller by a gain
and increase it until the oscillatory behavior is obtained,
Ziegler and Nichols (1942).

Since the relay feedback experiment was proposed in
Åström and Hägglund (1984), a lot of work have been
carried out to obtain more accurate results from it. In this
sense, it is worth noting that the equation to calculate
the ultimate gain is obtained by applying the describing
function (DF) technique to the control loop with relay
feedback. It is well known, that the DF methodology
assumes the non-linearity input to be a pure sinusoidal
signal, neglecting the effect of the higher order harmonics
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in the oscillatory response of the system due to the limit
cycle induced by the relay feedback. This assumption is
valid if the process to identify is filtering enough, but fails
if this condition is not fulfilled.

The existence of higher-order harmonics in the input to the
non-linearity significantly impacts the accuracy of estima-
tions based on the DF (Describing Function) approach.
Therefore, the estimation error could be reduced by con-
sidering the effect of these harmonics in the calculations,
as proposed in Miguel-Escrig and Romero-Pérez (2022).
Alternatively, the effect of higher order harmonics in the
system response can be reduced in order to decrease the
estimation error when applying the DF technique. This
is the rationale behind the use of the gain-changing non-
linearity for identification proposed in this paper.

The use of the gain-changing non-linearity is inspired
by the results presented in Tan et al. (2006) and Yu
(2006), where the preload-relay and the saturation-relay
are proved to improve the ultimate gain and frequency
identification respect to the relay feedback experiments.
These methods attempt to reduce the effect of neglecting
the higher order harmonics by introducing slight modi-
fications to the original relay test and calculations. The
preload-relay consists of a relay in parallel with a gain,
and the saturation-relay input/output characteristic cor-
responds to the saturation non-linearity. These two relay
configurations are particular cases of the gain-changing
non-linearity. Here we prove that intermediate configura-
tions, defined by the slopes of the lines conforming the non-
linearity, can significantly reduce the identification error.

The rest of the paper is organized as follows. The next
section describes the gain-changing non-linearity and in-
troduces the parameters that define its input/output char-
acteristic. Section 3 analyzes the effect of introducing this
non-linearity in a control loop, concretely, the generation
of higher order harmonic is studied, since these harmonics
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Fig. 1. Closed loop system with gain-changing non-
linearity.
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Fig. 2. Intput-output characteristic of the gain-changing
non-linearity.

strongly affect the accuracy of ultimate gain and frequency
estimation. The identification procedure is proposed in
Section 4, after which, some clarifying simulation examples
are introduced in Section 5. Finally, Section 6 summarizes
the conclusions of the paper.

2. GAIN-CHANGING NON-LINEARITY

The closed loop systems including a gain-changing non-
linearity is depicted in Figure 1. Figure 2 shows the input-
output characteristic of the gain-changing non-linearity,
which is fully defined by the slopes m1 and m2 and the
points (−δ,−D) and (δ,D). A wide range of non-linearities
can be obtained by varying m1 and m2, for instance, a
relay is obtained for m1 = ∞ and m2 = 0, a saturation
relay results from 0 < m1 < ∞ andm2 = 0, and a preload-
relay is shaped with m1 = ∞ and 0 < m2 < ∞.

The classical method of relay feedback identification relies
on the DF technique. The oscillation induced by the relay
is predicted to take place in the intersection point between
the open loop transfer function (Gol(jω)) and the negative
inverse of the relay’s describing function, given by the
equation −1/N(A) = πA

4D , where N(A) is the describing
function and A andD are the amplitudes of oscillation and
relay, respectively. In the intersection point, the following
equation is fulfilled, |Gol(jωo)| = πAo

4D . Using this equation,
|Gol(jωo)| can be estimated by measuring the amplitude
Ao of the oscillation, whose frequency corresponds to ωo.

The DF of the gain-changing non-linearity is given by
equation (1), Gelb and VanderVelde (1968). In the real-
imaginary plane, the negative inverse of N(A) corresponds
to a line segment over the real axis between the values
−1/m2 and−1/m1. This is an important difference respect
to the relay DF, whose negative inverse extends over the
negative part of the real axis, which is a particular case
of the gain-changing non-linearity when m1 = ∞ ⇒
−1/m1 = 0 and m2 = 0 ⇒ −1/m2 = ∞.

N(A) =
2(m1 −m2)

π

asin( δ

A

)
+

δ

A

√
1−

(
δ

A

)2
+m2

(1)

Depending on the relation between m1 and m2, two
situations are possible which are shown in Figure 3. The
arrows over the −1/N(A) locus indicate the direction of
increasing A. If m1 > m2, the increment of A moves
the system to a stable configuration (region to the left
of Gol) in which the amplitude decays to its original value
Ao; whereas the decrement of A moves the system to an
unstable configuration (region encircled by Gol) where the
amplitude grows to its original value Ao. Therefore, the
limit cycle obtained when m1 > m2 is stable. Following
a similar analysis, it can be settled that the limit cycle
induced by the gain-changing non-linearity whenm1 < m2

is unstable since variations on the oscillation amplitude are
not canceled, but amplified by the system response.
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Fig. 3. Stable and unstable limit cycles induced by the
gain-changing non-linearity.

From the previous discussion, it is clear that for identi-
fication of the ultimate gain and frequency, the gains of
the non-linearity must fulfill the condition m1 > m2, in
order to obtain an oscillatory behavior. The question that
rises immediately is what values of m1 and m2 are the best
choice to reduce the estimation error as much as possible?
In the next section the answer to this question is addressed.

3. HARMONICS GENERATION

One of the main source of error when estimating the
ultimate gain and frequency using the classical relay feed-
back method is the presence of higher order harmonics in
the oscillatory response of the actual system, which are
neglected in the DF approach. Therefore, the estimation
error can be reduced by decreasing the amplitude of these
harmonics respect to the fundamental one. In cases when
the plant to identify does not fulfill the filtering condition
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that allows to oversight the higher harmonics, the proper
design of the non-linearity, instead of using a single relay,
might contribute to this end.

For the gain-changing non-linearity, the ratio between the
amplitude of harmonics with order k = 3, 5, 7, · · · and the
fundamental harmonic in the output, when considering a
sinusoidal input A sin(ωt), is given by equation (2), where
β = m2/m1. The even harmonics cancel in the Fourier
series representation of a signal processed through the
gain-changing due to the symmetric nature of this non-
linearity.

Ak

A1
=

4(1− β)

k(1− k2)
×(

δ
A cos

(
k sin−1

(
δ
A

))
− k sin

(
k sin−1

(
δ
A

))√
1− δ2

A2

)
(
(1− β)

(
2 δ
A

√
1− δ2

A2 + 2 sin−1
(
δ
A

))
+ πβ

)
(2)

Using the previous equation, the total effect of the higher
order harmonics respect to the fundamental one, expressed
in percentage, can be calculated by equation (3). It should
be noted that values of AT near to zero indicate the
prevalence of the main harmonic over the higher order
components, and consequently, a better estimation of the
critical point based on the DF approach.

AT =

∑∞
k=3,5,... |Ak|

|A1|
× 100 =

∞∑
k=3,5,...

∣∣∣∣Ak

A1

∣∣∣∣× 100 (3)

The surface defined by equation (3) is shown in Figure 4,
furthermore the contour lines of this surface are depicted
in Figure 5. It can be seen that AT is strongly affected by
both β and δ/A. It is worth noting that, despite the value
of δ/A, AT decreases rapidly as β increases. The highest
value of AT correspond to β = m2/m1 = 0, that is, for
non-linearity configurations with m2 = 0, which include
the cases of classical and saturation relay. On the other
hand, for β = 1 the amplitudes of higher order harmonics
are zero. This result is coherent with the fact that for β = 1
the non-linearity is transformed into a single gain of value
m1, and consequently, the output to a sinusoidal input
has only a first order harmonic corresponding to the input
amplification: m1A sin(ωt).

Remark 1. A very important feature shown in Figure 5 is
that for β > 0.6 the values of AT are lower than 10%,
disregarding the value of δA. Based on this fact, it is rea-
sonable to consider that non-linearity configurations with
β > 0.6 are more suitable for identification through the
DF approach than those with smaller values of β, since the
former reduce the impact of the superior harmonics in the
output. This property of the gain-changing non-linearity
will be used in the identification procedure proposed in the
next section.

4. IDENTIFICATION PROCEDURE

The goal of the identification procedure is to estimate the
ultimate gain taking advantages of the gain-changing non-
linearity properties commented in the previous sections.
From Remark 1, the best configurations for identification

Fig. 4. Surface of AT as a function of δ/A and β = m2/m1.

Fig. 5. Contours of AT as a function of δ/A and β =
m2/m1.

are those with m2/m1 = β > 0.6. However, according
to Figure 3, the locus of −1/N(a) over the real axis is
completely defined by the two slopes, the locus being
narrower as m1 and m2 are closer, that is, as β increase.
These two facts lead the selection of m1 and m2 to reduce
the effect of higher order harmonics, and at the same time,
guarantee a wide enough locus of −1/N(a) to assure its
intersection with Gol(jω), in order to obtain limit cycle
oscillations.

Because the plant model is unknown a priori, not infor-
mation is available about the intersection point of Gol(jω)
with the real axis, and consequently, proper values of m1

and m2 which guarantee both β > 0.6 and the intersection
between Gol(jω) and 1/N(A) can not be assigned at the
beginning of the experiment. To overcome this issue, the
values of m1 and m2 must be initially fixed to assure the
intersection between Gol and −1/N(A), no matter where
the intersection take place. To this end, the configuration
of the non-linearity should approximate an ideal relay,
whose negative inverse of the describing function extends
over the negative part of the real axis. Therefore, an
experiment with m1 = ∞ and m2 = 0 is carried on in
the first stage of the identification procedure. Using the
amplitude of the oscillation Ao, an initial estimation of
|Gol(jωo)| can be obtained by the equation:
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|Ĝol(jωo)| =
πAo

4D
. (4)

To improve the initial estimation of |Gol(jωo)|, the values
of m1 and m2 need to be recalculated to develop a second
experiment with a reduced impact of the higher order
harmonics, that is, for m2/m1 = β ⩾ 0.6. Furthermore,
its values must assure the intersection between Gol and
−1/N(A) to guarantee stable limit cycle oscillations for
the second phase of the identification. In this sense, as-
suming that the actual critical point is relatively close to
Ĝol(jωo), it is feasible to obtain m1 and m2 through the
following equations:

m1 =
k1

|Ĝol(jωo)|
, k1 > 1 (5)

m2 =
k2

|Ĝol(jωo)|
, k2 < 1 (6)

The parameters k1 and k2 define both the range of
−1/N(A) over the real axis and the value of β, therefore
its choice is a trade-off between reducing the effect of high
order harmonics and guarantee the existence of a limit
cycle. Since the initial estimation of |Gol(jωo)| is carried
out from a relay experiment, a reasonable selection of
k1 and k2 must take into account the estimation error
introduced by this kind of experiment in order to assure
the intersection between Gol and −1/N(A).

In order to get some information about the magnitude
of the estimation error introduced by the relay feedback
experiment, its value has been calculated for the batch of
134 models presented in the Appendix A. This test batch
was firstly proposed in Åström and Hägglund (2006), and
it includes models with multiple poles, complex and real
poles, integrators, non-minimal phase and time delays.

The results are shown in Figure 6. As expected, the
largest errors correspond to low filtering models, because
of the discordance with the DF assumption about the
effect of higher order harmonics. It should be noted
that in the worst cases, the relative error is under 25%,
so this value could be considered as a reasonable up-
per bound of the estimation error in the early stage
of the identification procedure, and consequently, the
actual critical point is expected to be in the range
[−1.25|Ĝol(jωo)|,−0.75|Ĝol(jωo)|]. Therefore, taking into
account that for the gain-changing non-linearity the locus
of − 1

N(A) is limited to the interval [− 1
m2

,− 1
m1

], the equa-

tions to calculate m1 and m2 are as follows:

m1 =
1

0.75|Ĝol(jωo)|
(7)

m2 =
1

1.25|Ĝol(jωo)|
(8)

From the previous expressions, the values of k1 and k2
of equations (5) and (6) are deduced to be 1

0.75 and 1
1.25 ,

respectively.

Equations (7) and (8) lead to β = m2/m1 = 0.75/1.25 =
0.6. According to Figure 5, this value of β guarantees a
relatively low influence of the higher order harmonics in
the non-linearity output, concretely less than the 10% re-
spect to the fundamental component. In the identification

Fig. 6. Relative error of the estimated oscillation points
with the conventional relay method applied to the
batch of models in Appendix A.

procedure, the values of m1 and m2 can be calculated
from the amplitude of the relay induced oscillations (Ao)
using the following expressions, which are obtained by
substituting equation (4) in (7) and (8).

m1 =
5.3D

πAo
(9)

m2 =
3.2D

πAo
(10)

Using these values of m1 and m2, a new experiment is
developed at the end of which an improved estimation of
|Gol(jω)| is calculated as follows:

|Ĝol(jωo)| =
1

N(Ao)
(11)

where N(Ao) is given by equation (1), being Ao the
amplitude of the oscillation induced by the gain-changing
non-linearity. The rest of parameters in the equation (1),
that is m1, m2 and δ, are set to the values used for this
last experiment.

The identification procedure can be summarized in the
following steps:

(1) Configure the gain-changing non-linearity as a relay,
that is, set m1 = ∞ and m2 = 0. The relay
amplitude D should assure a reasonable amplitude
of the induced oscillation.

(2) Carry out the relay feedback experiment with the
configuration of the non-linearity fixed in the step 1.
Once the system presents a stable oscillation, measure
its amplitude Ao.

(3) Calculate the value of m1 and m2 using equations
(7) and (8), and reconfigure the gain-changing non-
linearity with these values.

(4) Develop a second experiment with the new configu-
ration of the non-linearity. Once the system presents
a stable oscillation, measure its amplitude Ao.

(5) Calculate the value of |Gol(jωo)| by equation (11).

Once finalized the experiment 2, its result can be used for
tuning a PID or another kind of controller.

5. SIMULATION EXAMPLES

In this section several simulation examples are introduced
to clarify the identification procedure and to verify its
effectiveness on estimating the ultimate gain. It is worth
noting that in all the examples the model of the plant
is unknown from the identification algorithm point of
view. In fact, the goal of the procedure is to estimate
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Fig. 7. Time response during the experiment with G1.

the critical gain without previous information about the
system dynamics.

Five systems with very different dynamic behavior are
considered, whose models are given by equations (12)
to (16). Concretely, low and high order systems, with
and without time delay, as well as non-minimum phase
dynamic are studied when applied the proposed procedure.
In all cases the relay amplitude D is assumed to be 1.

G1(s) =
e−1s

1s+ 1
(12)

G2(s) =
e−1s

(1s+ 1)2
(13)

G3(s) =
1

(1s+ 1)5
(14)

G4(s) =
1

(s+ 1)(0.5s+ 1)(0.25s+ 1)(0.125s+ 1)
(15)

G5(s) =
−2(s− 0.5)

(s+ 1)2
(16)

Figures 7 and 8 show the time response of error (e) and
control (u) signals during the identification for systems
G1 and G5, which have been selected to illustrate the
performance of the procedure. In both figures the vertical
dashed lines indicate the final of each experiment. As can
be seen from the plot of u, experiment 1 corresponds
to a relay feedback test, which is attained by setting
m1 = ∞ and m2 = 0 in the non-linearity. At the
end of experiment 1, the non-linearity is reconfigured by
recalculating the slopes m1 and m2, then experiment 2
begins, which finishes with the calculation of |Gol(jωo)|.
It should be noted that, as a result of the non-linearity
configuration with the suitable values of m1 and m2

proposed in the procedure, e and u are almost sinusoidal
signals throughout the experiment 2. This fact reveals
the reduced amplitude of the higher order harmonics, in
contrast with experiment 1, where the signals are far from
being sinusoidal.

The results of the identification for models G1 and G5 are
depicted in Figures 9 and 10, where the polar plot of the
open loop transfer functions (G1(jω) and G2(jω)) as well

Fig. 8. Time response during the experiment with G5.

Fig. 9. Polar plot with the identification results for G1.

as the frequency response points estimated using both a
relay experiment and the proposed procedure are shown.
As can be seen, in both cases the use of the gain-changing
non-linearity allows improving the estimation significantly.
The locus of −1/N(A), also represented in the figures, are
wide enough to guarantee the intersection with Gol(jω). It
can be observed that the plots of −1/N(A) are centered in
the point obtained from the relay experiments, extending
to left and right in a range of ±25%, that according to
Figure 6 can be considered the upper bound of the esti-
mation error from relay feedback experiments. Therefore,
the actual critical point is expected to be within this range,
which can indeed be seen in the figures.

Models G1 to G5 have been used to compare the gain-
changing non-linearity identification procedure presented
in this paper with other methods previously proposed in
the literature. Concretely we consider the classical relay
feedback, as well as two improved versions of the relay
type experiments: the preload-relay Tan et al. (2006) and
saturation-relay Yu (2006). The relative error between the
identification results obtained with each method and the
actual critical point of these systems were calculated. The
results are summarized in Table 5. As can be seen, the
gain-changing method provides the lowest relative estima-
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Fig. 10. Polar plot with the identification results for G5.

tion error for all the systems. Furthermore, the improve-
ment in the ultimate point identification is higher for low
order systems. This fact is coherent with the significant
presence of non-fundamental harmonics in these systems
whose effect is minimized when introducing the gain-
changing non-linearity with the proper values of slopes m1

and m2 obtained with the proposed algorithm.

Table 1. Relative error in the ultimate point
estimation.

Method G1 G2 G3 G4 G5

Gain-changing 0.10 0.13 0.09 0.06 0.21
Simple relay 12.24 5.92 1.46 2.83 16.84
Preload relay 4.90 3.02 0.70 1.29 7.93
Saturation relay 1.38 0.70 0.42 0.69 0.79

6. CONCLUSIONS

This article presents a new method to estimate the ulti-
mate gain and frequency for tuning PID controllers. The
procedure includes a novel type of experiment based on
the use of the gain-changing non-linearity, which allows
the estimation error to be reduced. Several simulation ex-
amples show the advantages of the proposal over previous
approaches. The procedure can be easily implemented as
part of automatic PID tuning algorithms to improve their
performance.

REFERENCES
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Appendix A. BATCH OF MODELS

Models 1 to 21 in Figure 6:

G(s) =
e−s

Ts+ 1
,

T = 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1,

1.3, 1.5, 2, 4, 6, 8, 10, 20, 50, 100, 200, 500, 1000

(A.1a)

Models 22 to 42 in Figure 6:

G(s) =
e−s

(1 + sT )2
,

T = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1,

1.3, 1.5, 2, 4, 6, 8, 10, 20, 50, 100, 200, 500

(A.1b)

Models 43 to 52 in Figure 6:

G(s) =
e−s

(s+ 1)(Ts+ 1)2
,

T = 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 2, 5, 10

(A.1c)

Models 53 to 58 in Figure 6:

G(s) =
1

(s+ 1)n
,

n = 3, 4, 5, 6, 7, 8

(A.1d)

Models 59 to 67 in Figure 6:

G(s) =
1

(s+ 1)(αs+ 1)(α2s+ 1)(α3s+ 1)
,

α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

(A.1e)

Model 68 to 76 in Figure 6:

G(s) =
1

s(1 + sT1)
e−sL1 , T1 + L1 = 1,

L1 = 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1

(A.1f)

Model 77 to 113 in Figure 6:

G(s) =
Te−sL1

(T1s+ 1)(Ts+ 1)
, T1 + L1 = 1, T = 1, 2, 5, 10,

L1 = 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1
(A.1g)

Models 114 to 124 in Figure 6:

G(s) =
1− αs

(s+ 1)3
,

α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1

(A.1h)

Models 125 to 134 in Figure 6:

G(s) =
1

(s+ 1)((sT )2 + 1.4sT + 1)
,

T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

(A.1i)
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