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Abstract: This work compares the performance of PI and FOPI controllers for a children’s
anesthesia administration system applied to a FOPDT model based on data of 46 patients.
Parameter tuning is performed through a multi-objective differential evolution optimization
algorithm that includes a spherical pruning mechanism to obtain a good distribution along the
Pareto front. The design objectives were the median and interquartile range of the integral of the
absolute value of error (IAE). The Pareto front of the solutions of FOPI dominated the ones of
the PI controller, although the PI Pareto front had a less disperse distribution. The best option
of each Pareto set was determined by testing each option with the 46 patients and looking for
the case that complies with the most or all problem constraints. The results of the tests showed
that PI had a stable behavior with all patients, while FOPI showed an undesirable behavior
with 5 out of 46 patients that did not comply with the constraints of the problem. Despite FOPI
had a time response 37.33% faster, PI had better control characteristics and complied with all
the design constraints in all patients, hence a control scheme such as FOPI is not justified.
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1. INTRODUCTION

Control theory can be found in a wide variety of fields of
engineering and science, having automatic control as an
essential tool (Ogata, 2010). A popular technique of auto-
matic control is the use of a feedback signal to generate a
closed loop and tell the controller the actual state of the
plant for it to perform the control action (Dı́az-Rodŕıguez
et al., 2019). This approach is used with PID controllers,
which use a proportional, integral and derivative action
to perform corrections. The proportional action reduces
the error between the setpoint and the value measured
in the feedback loop from the output of the process. The
integral action reads the feedback signal over time and
reduces the offset from the measured feedback and the
derivative action reads the rate of change in the feedback
signal and corrects the value if there are unusual variations
(Borase et al., 2021). This structure is preferred due to its
ease of development and implementation. It is extensively
found in applications of power electronics, pneumatics,
motion control, process control and others (Åström and
Hägglund, 2001). In order to improve the characteristics of
PI controllers, Fractional Order controllers were proposed
by generalizing the order of the integral control action
⋆ This work was partially funded by the National Council of Scien-
tific and Technological Development of Brazil (CNPq) through the
grants PQ-2/310195/2022-5 & Universal/408164/2021-2.

through the addition of a fractional integral of order λ in
the controller equation(Seo and Choi, 2019). Its effective-
ness in comparison to the integer order PI was tested by
Pullaguram et al. (2018) within the implementation of an
autonomous microgrid VSC system, Dabiri et al. (2018)
used it in the design of controllers for linear dynamic
systems, Edet and Katebi (2018) applied it in process
control systems and Xu et al. (2022) used it in the optimal
control of a pumped storage unit. As any PID based con-
trol structure, its efficiency depends in the correct tuning
of its parameters to the problem at hand. Theorists of this
area have shown greater interest in automatic tuning, and
here is where the criteria and background knowledge of the
control engineer becomes vital Su et al. (2020). Although
it provides a good improvement in comparison to classical
approaches, it requires a well tuned base to develop, and
benchmarks for tuning such as Ziegler-Nichols have shown
poor results in many cases (Kumar et al., 2018; Åström
and Hägglund, 2001). As the control architecture increases
in complexity, more variables are required to be tuned
correctly. This can be achieved in various ways that range
from automatic tuning, to empiric methods based on the
knowledge of the plant and the experience in the field, but
all of them result time consuming both in implementation
and analysis. This is where multi-objective optimization
becomes important as it allows the designer to have a set
of viable options that consider performance metrics for
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their election, giving more relevant information for deci-
sion making and the election of the controller variables. It
is important to remember that the set of possible variables
at the end of the optimization process have different trade-
offs and advantages that must be analyzed before choosing
one option (Marques and Reynoso-Meza, 2020).

This work seeks to determine if the use of a FOPI con-
troller improves significantly the administration of anes-
thesia and the control characteristics presented by a PI
controller and would justify its added complexity on its
deploy, taking into account two performance metrics and
analyzing their effectiveness. The structure of this work
is the following: Section 2 provides the theoretical infor-
mation related with PI and FOPI controllers, Section 3
describes the multi-objective algorithm used for the opti-
mization of control variables, Section 4 describes the model
and variables involved, Section 5 explains the optimization
process and testing, Section 6 shows the results of the tests
with both controllers and Sections 6 and 7 discusses the
findings and conclusions of this paper.

2. THEORETICAL BACKGROUND

This section deals with the necessary theoretical concepts
in order to fully understand the proposed comparison,
mainly focused in the definition of the controllers.

2.1 FOPI Controller

A fractional-order proportional integral takes the regular
proportional integral control action and adds a fractional
operator in the integral block of the controller. It has been
found that it improves the stability, transient time, and
overall precision (Zaid et al., 2023). Examples both from
medical and industrial areas were presented by (Wang
et al., 2023) and (Reddy and Devabhaktuni, 2022). A
comprehensive expression of the transfer function of this
controller, in the Laplace form, can be found in Equation
1.

Gc = Kp +
1

Tisλ
(1)

Where Kp and Ki are the gains for the proportional and
integral action, and λ is the fractional order operator that
can take values between 0 and 2.

3. MULTI-OBJECTIVE OPTIMIZATION
ALGORITHM

A more complex control architecture has more variables
to tune correctly. This represents a challenge taking into
account that there is not one perfect combination of values
that will work for any case. Moreover, if the performance
needs to be assessed, it is very common to use two or
more metrics in order to have a good representation of the
effectiveness of the control action, not only measuring the
usual time domain responses. Multi-objective optimization
(MOO) seeks for a group of viable options to implement,
considering two or more performance metrics that may
be in conflict. It is important to understand that MOO
presents a set of options with different trade-offs between
the design objectives, giving the designer the last word on
deciding the best option, or options, for the analyzed case.

3.1 Pareto Front

It is a set of optimal solutions to a problem with two
or more design objectives that may be in conflict. Each
element has different characteristics regarding the perfor-
mance of each design objective, presented in the objective
vector J (θ). This individual trade-off has to be analyzed
to select the optimal option to the problem (Meza et al.,
2017). Figure 1 shows an example of Pareto Front.

Fig. 1. Pareto Front approximation. (Meza et al., 2017).

3.2 Pareto Dominance

The concept of dominance defines a better set of optimal
options for the analyzed design objectives, which form the
decision vector θ.

Fig. 2. Pareto dominance between two Pareto sets. (Meza
et al., 2017).

When comparing Pareto sets, it is possible to determine
which has better performance when a decision vector θ1

dominates another vector θ2, denoted as θ1 ⪯ θ2, if
the objective vector J

(
θ1
)
is better than J

(
θ2
)
in at

least one objective, and is not worse than J
(
θ2
)
in all

objectives. An example can be seen in Figure 2, where
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the blue Pareto front has a better response of J1(x)
and J2(x) than the other solution options. MOO has
shown good results in works like the one developed by
Demirtas et al. (2019), where an Elman Neural Network
and a FOPI controller were used to control the speed of
induction motor. Another example is the use of a multi-
dimensional particle swarm optimization algorithm for the
parallel tuning of six fractional order controllers for a
PMSG based wind energy conversion system, performed
by Sahraoui et al. (2023). An application of particle
swarm optimization was developed by Aguilar et al. (2020)
for the PI controllers of a wind turbine under electrical
fault conditions to improve the control behaviour. Within
the concepts of MOO, it is important to determine the
design concept of the controller before establishing other
procedures. The characteristic values of controllers will be
optimized taking into account the general description of
the PID controller shown in Equation 2, which can be
generalized and applied for any combination of controllers:

C (s) = Kc

(
b+

1

Tisλ
+ c

Td · sµ
Td

N sµ + 1

)
R (s)

−Kc

(
1 +

1

Tisλ
+

Td · sµ
Td

N sµ + 1

)
Y (s)

(2)

where Kc is the proportional gain, Ti the integral time,
Td the derivative time, N the derivative filter, b, c the set-
points; λ and µ are the fractional order. In order to have
a successful optimization process, it is vital to separate
it into three stages: multi-objective problem definition,
multi-objective optimization process and multi-criteria
decision making.

Multi-objective Problem Definition (MOP) It defines the
characteristics of the problem to be solved, the mathemat-
ical model and the optimization objectives for measuring
the desired performance to be achieved. MOP charac-
terizes to be formulated from the point of view of the
designer, instead of designing from the point of view of
the optimizer.

Multi-objective Optimization Process Evolutionary al-
gorithms could be used to approximate a Pareto set of
viable solutions. These algorithms base their behaviour in
evolutionary and nature-inspired techniques due to their
ability to evolve an entire population towards the Pareto
front.

Multi-criteria Decision Making (MCDM) This step uses
the Pareto front obtained previously to show all the
viable solutions for the MOP. It is more common to use
visualization tools in order to understand the trade-offs
present in the Pareto front. Two-dimensional problems
can be accurately assessed using graphical analysis of the
Pareto front, but it becomes more complex as the problem
has more dimensions to be evaluated.

4. MODEL OF THE ANESTHESIA
ADMINISTRATION SYSTEM

This work seeks to control an anesthesia administration
system designed specially for children, where propofol is
the main drug used to induce a state of deep hypnosis. The

medical and scientific support for this model is provided
by the work of van Heusden et al. (2013). It proposes
a closed-loop control system that regulates the infusion
of propofol to the patient, using the depth of hypnosis
(DOH) as the measured signal for feedback, obtained from
the NeuroSENSE DOH monitor. The following constraints
need to be considered for the controller:

(1) A state of deep anaesthesia within 40-60% must be
achieved within the first 5 minutes of operation;

(2) Hypnosis states below 40% should be avoided for
more than 5 minutes;

(3) Settling time must be minimized.

4.1 Patient database

The information of infusion rates and recordings were
obtained using theWAVCNS index in a closed-loop control
of propofol anesthesia (van Heusden et al., 2013). A
total of 99 patients were documented in an initial phase
between 6-16 years of age. After analyzing the database,
16 patients were discarded due to insufficient data quality
or corrupted data and 36 patients were discarded due to
a strong reaction to stimulation during the induction of
anesthesia. From this new total of 50, 4 models could not
be validated due to a lack of robustness. The final number
of patient models to be used was 46 and an extract of their
information can be seen in Table 1. E0 is the average effect
measured during the first 50s of propofol infusion, Td is the
time delay between the infusion and the observed clinical
effect, γ is the cooperativity coefficient, E50 is the effect
site concentration corresponding to a 50% of effect and k
is the time needed for the patient to reach a stable DOH.

Table 1. Extract of model parameters of 15
patients

Patient E0 Td k E50 γ
[s] [min−1] [µg/kg/min]

1 93.11 35 0.152 217 1.77
2 92.46 82 0.135 316 1.91
3 92.46 21 0.254 385 1.94
4 91.47 48 0.188 515 1.57
5 91.60 41 0.108 315 1.58
6 88.45 40 0.214 365 1.80
7 92.91 68 0.194 282 1.63
8 88.89 94 0.212 473 1.53
9 94.58 16 0.132 263 1.71
10 92.89 115 0.177 415 1.56
11 91.68 29 0.133 267 1.83
12 90.30 4 0.058 228 1.64
13 91.38 41 0.131 229 2.01
14 92.76 58 0.251 400 1.81
15 91.78 117 0.288 282 1.81

4.2 Model of the problem

The model of this problem was obtained through super-
vised experiments both in open and closed loops and these
produced a first-order plus dead-time (FOPDT) model
(Equation 3) and a Hill function (Equation 4) to capture
the non-linearity inherent of the process, where the param-
eters E0, E50 and γ were identified from data and ELTI is
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the effect predicted by the FOPDT model (van Heusden
et al., 2013).

Pi(s) =
1

s
k + 1

eTd (3)

E(t) = E0 − E0
Eγ
LTI

Eγ
50 + Eγ

LTI

(4)

5. METHODS AND TOOLS

This section describes all the elements involved in the
application, optimization and test of the controllers under
the established constraints.

5.1 Definition of the Multi-objective Problem

After identifying the process and the mathematical model
described in Section 4, the control loop presented in Figure
3 will be used.

Fig. 3. PI control loop of the problem.

The measured output will be the DOH. Due to the similar
structure between PI and FOPI, the same control loop will
be applied for the optimization process. For the controller
equation presented in Equation 2, the following design
concepts and decision variables will be used:

(1) PI: θPI = [Kc, Ti] , b = 1, Td = 0, λ = 1.
(2) FOPI: θFOPI = [Kc, Ti, λ] , b = 1, Td = 0.

The MOP statement can be defined as the minimization
of the following multi-objective vector:

min
θ

J(θ) = [J1 (θ) , J2 (θ)] (5)

The design objectives are based on the Integral of the
Absolute Value of Error (IAE), understood as:

IAE(θ) =

tf∫
t=t0

|r(t)− y(t)| dt =
tf∫

t=t0

|e(t)| dt (6)

The objectives are:

Median of the Integral of the Absolute Value of Error
(IAE)

J1 (θ) = median(IAE(θ)) (7)

Interquartile range of the Integral of the Absolute Value
of Error (IAE)

J2 (θ) = IQR(IAE(θ)) (8)

5.2 Multi-objective Optimization Algorithm

Algorithm 1 is a modified version of the Differential Evo-
lution (DE) algorithm that includes convergence capabili-
ties and spherical pruning to promote diversity properties
(Meza et al., 2017).

Algorithm 1: MOEA with pruning mechanism

[h] Generate initial population P |0 with Np individuals;
Evaluate P |0;
Apply dominance criterion on P |0 to get archive Â|0;
Apply pruning mechanism to prune Â|0 to get A|0;
Set generation counter G = 0;
while maximum number of generations reached do

Update generation counter G = G+ 1;
Get subpopulation S|G with solutions in P |G−1 and
A|G−1;

Generate offspring O|G with S|G;
Evaluate offspring O|G;
Update population P |G with offspring O|G;
Apply dominance criterion on O|G;

Apply pruning mechanism to prune Â|G to get A|G;
Update environment variables (if using a self-adaptive
mechanism);

end
return Pareto set approximation Θ∗

p = A|G;

The spherical pruning modification is added to this al-
gorithm to attain a good distribution along the Pareto
Front through the analysis of the proposed solutions in
the current Pareto Front approximation by using normal-
ized spherical coordinates from a reference solution. The
following definitions will be taken into account.

Definition 1 Normalized spherical coordinates Given a
solution θi and J(θi), where r is the radius and β the
angle, let

S
(
J(θi), Jref

)
= [r, β] (9)

Definition 2 Sight range The sight range from the
reference solution Jref to the Pareto Front approximation
J∗
P is bounded by:

βU =
[
maxβ1

(
J
(
θi
))

, ...,maxβm−1

(
J
(
θi
))]

∀J
(
θi
)

βL =
[
minβ1

(
J
(
θi
))

, ...,minβm−1

(
J
(
θi
))]

∀J
(
θi
) (10)

Definition 3 Spherical grid Given a set of solutions in the
objective space, the spherical grid on the m-dimensional
space in arc increments is defined as:

ΛJ∗
P =

[
βU
1 − βL

1

βϵ
1

, ...,
βU
m−1 − βL

m−1

βϵ
m−1

]
(11)

Definition 4 Spherical sector The normalized spherical
sector of a solution θi is defined as:

Λϵ
(
θi
)
=

[⌈
β1

(
J
(
θi
))

Λ
J∗
P

1

⌉
, ...,

⌈
βm−1

(
J
(
θi
))

Λ
J∗
P

m−1

⌉]
(12)

Definition 5 Spherical pruning Given two solutions θi

and θj from a set, θi has preference in the spherical sector
over θj if: [

Λϵ
(
θi
)
= Λϵ

(
θj
)]

∧
[∥∥J (θi)− Jref

∥∥
p
<
∥∥J (θj)− Jref

∥∥
p

] (13)

Algorithm 2 shows the implementation of spherical prun-
ing.

5.3 Multi-criteria Decision Making definition

A graphical analysis will be performed as it is a two-
dimensional problem where the Pareto front of the PI con-
troller solution will be compared to its FOPI counterpart.
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Algorithm 2: Spherical pruning mechanism

Read archive Â|G;

Read and update extreme values for Jref |G;

for each member in Â|G do
calculate its normalized spherical coordinates (Definition
1);

end
Build the spherical grid (Definition 2 and 3);

for each member in Â|G do
calculate its spherical sector (Definition 4);

end
for i=1:Solutions In Archive do

Compare with the remainder solutions in Â|G;
if no other solution has the same spherical sector then

it goes to archive A|G;
end
if other solutions are in the same spherical sector then

it goes to archive A|G if it has the lowest norm
(Definition 5);

end

end
return Archive A|G;

It is expected to have a dominant Pareto front, or at least,
a group of solutions that dominate the other options.

5.4 Description of the Equipment

The platform used for the simulation was an Asus ROG
Strix G513QR personal computer, with a Ryzen 9, 8
core, 5000 series processor, 32GB DDR4 of RAM and
GeForce RTX3070 8GB video card, running on Windows
11. Processing and simulation were performed in Matlab
R2023a. In Simulink, the fixed integration step for the
simulation was 1e−3 with ode8 (Dormand-Prince) solver.

6. RESULTS

The multi-objective optimization process was performed
both for the PI and the FOPI controllers using the same
equipment and initial conditions. The optimization time
for the PI controller was around 13 hours and for FOPI was
around 11 hours, due to the cost function that has a skip
criteria that prevents the simulation to stay in an error,
reducing the optimization time. Each optimization process
produced a Pareto front, both are presented in Figure 4. It
can be seen that the Pareto front of the solutions of FOPI
dominate the ones of the PI controller, although the PI
Pareto front has a less disperse front. After evaluating the
fronts, the best option of each Pareto set was determined
by testing each option with the 46 patients and looking for
the case that complies with the anesthesia administration
system constraints, or that has the highest number of
cases that comply with the aforementioned constraints
explained in Section 4. For the PI, the chosen constants
were: kp = 10.0629 and ki = 2.1669. For FOPI, the chosen
constants were: kp = 28.685, ki = 0.9773 and λ = 1.6175.
The results of these tests with the 46 patients can be seen
in Figure 5. The PI controller showed a stable behaviour
with all patients staying within 40% and 60% DOH and
with a good steady state value. FOPI controller showed a
stable behaviour with most patients, 41 cases stayed within
40% and 60% DOH with a good steady state value, while
5 cases (patients 15, 16, 17, 19 and 26) fell into instability

over the threshold and did not comply with the established
design constraints. It was found that, in these five cases, a
combination of high values of k and delay parameters led
into instability for FOPI. The time improvement in control
of FOPI when compared to PI had an average of 2.0767
minutes, considering that the average time that the PI
controller needed to get into the desired DOH was 5.5621
minutes.
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Fig. 4. Comparison of Pareto fronts after the multi-
objective optimization.

7. CONCLUSION

Regarding the Pareto fronts, the FOPI Pareto front
presents a better set of control options than PI when
analyzing the concept of dominance. After testing the best
option of control variables with all patients, the FOPI
controller presented a faster control response but was not
able to control 5 patients that had high values of k and
delay, while the PI controller had a more stable response
in all cases and was able to control all patients. For this
particular problem, it can be concluded that, although
FOPI had a time response 37.33% faster, the PI controller
has better overall control characteristics and complied
with all the design constraints in all patients, hence, it
is more desirable for this problem and a more complicated
control scheme (FOPI) is not justified.
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