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Abstract: In this paper we propose a new tuning methodology for Proportional-Integral-Derivative-
Acceleration (PIDA) controllers. First, a third-order-plus-dead-time transfer function of the (high-order)
process is estimated by evaluating an open-loop step response. Then, the three time constants of the
controller are determined by applying a pole-zero cancellation approach and the proportional gain is
finally adjusted in order to obtain a desired maximum sensitivity. The controller filters are selected
in order to minimize the effects of the measurement noise and to avoid kicks in the control variable.
Simulation results show the effectiveness of the methodology in comparison with PID control.
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1. INTRODUCTION

Nowadays there is a more and more significant research effort
in Proportional-Integral-Derivative-Acceleration (PIDA) con-
trollers, also known as Proportional-Integral-Double-Derivative
controller (PIDD or PIDD2) (Jung and Dorf, 1996b,a; Huba
and Vrancic, 2018; Kumar and Hote, 2018, 2019; Ferrari and
Visioli, 2022). This is because the addition of a control action
proportional to the double derivative (acceleration) of the con-
trol error to the classic Proportional-Integral-Derivative (PID)
control law can yield a relevant performance improvement for
high-order systems (Milanesi et al., 2022) or for integral pro-
cesses (Huba, 2019; Huba et al., 2021; Visioli and Sanchez-
Moreno, 2023; Bistak et al., 2023; Huba et al., 2023a,b,c,d).
However, in order for PIDA controllers to be a valid alterna-
tive for Proportional-Integral-Derivative (PID) controllers, the
same ease of use should be ensured, as the great advantange of
PID controllers is that they are relatively simple and that the
physical meaning of the controller parameters is well known
(Ferrari and Visioli, 2022). Further, there exists a wide variety
of tuning rules that facilitate their design (O’Dwyer, 2006). In
particular, these tuning rules are typically based on a process
model that can be obtained by means of a simple and cost-
effective experiment.
With the same rationale, design methodologies for PIDA con-
trollers have also been proposed. For example, in (Visioli and
Sanchez-Moreno, 2024) an Internal Model Control (IMC) ap-
proach has been employed starting from a high-order process
model estimated through the n-shifting technique based on a
relay-feedback experiment (Sanchez et al., 2021).
In this paper we further pursue this goal by proposing a new
⋆ Project co-funded by the European Union – Next Generation Eu - under
the National Recovery and Resilience Plan (NRRP), Mission 4 Component 1
Investment 4.1 - Call for tender No. 2333 (22nd December 2023) of Italian
Ministry of University and Research; Concession Decree No. 118 (2nd March
2023) adopted by the Italian Ministry of University and Research, Project code
D93C23000450005, within the Italian National Program PhD Programme in
Autonomous Systems (DAuSy).

tuning procedure for PIDA controllers that can be considered
a generalized Haalman tuning. Starting from a Third-Order-
Plus-Dead-Time (TOPDT) process model determined by ap-
plying the technique presented in (Sanchis and Peñarrocha-
Alós, 2022), a pole-zero cancellation like in the Haalman tuning
method (Åström and Hägglund, 2006) is employed in order to
determine the time constants of the controller. Then, differently
from the Haalman method for which the gain of the controller
is found in order to achieve a fixed value of the phase margin,
here the gain of the controller is determined in order to achieve
a desired value of the maximum sensitivity, which is considered
a better measure of the system robustness. In this way, the
selected value of the maximum sensitivity is a tuning knob that
allows the user to handle the trade-off between performance
and robustness (and control effort). In this context, the filters
in the controller are also suitably designed in order to make
the controller proper, to avoid detrimental effects of the mea-
surement noise on the actuator and to avoid the derivative and
acceleration kicks.
It is worth stressing at this point that pole-zero cancellation
is generally not recommended for lag-dominant processes as
this results in very sluggish load disturbance step responses.
However, we have to take into account that a PIDA controller
is advantageous with respect to a PID controller for high-order
processes and in this case the (apparent) dead time is not much
smaller than the dominant time costant, making the pole-zero
cancellation strategy appropriate.
The paper is organized as follows. The problem is formulated
in Section 2 and the tuning procedure is explained in Section 3.
Simulation results showing the performance achieved by PIDA
controllers, including a comparison with PID controllers, are in
Section 4. Finally, concluding remarks are in Section 5.

2. PROBLEM FORMULATION

The considered control scheme is the standard feedback control
system of Figure 1, where P is the (high-order) process, C is
the PIDA controller, r is the reference signal, y is the process

Preprints, 4th IFAC Conference on
Advances in Proportional-Integral-Derivative Control
Almería, Spain | June 12-14, 2024

© 2024 the authors. Accepted by IFAC for publication
under a Creative Commons License CC-BY-NC-ND

406



Fig. 1. The considered control scheme.

variable, d is the load disturbance signal, n is the measurement
noise signal, e is the control error and u is the control variable.
The controller is of PIDA type. For the purpose of tuning its
parameters, the controller transfer function can be expressed as

C(s) = Kp

(
1+

1
Tis

+Tds+Tas2
)

(1)

where Kp is the proportional gain, Ti is the integral time con-
stant, Td is the derivative time constant and Ta is the acceleration
(double derivative) time constant.
It appears that the transfer function (1) is improper and there-
fore is not realizable. Thus, filters on the derivative and ac-
celeration action can be added, yielding the following transfer
function that can be realized:

C(s) = Kp

(
1+

1
Tis

+
Tds

Td
N s+1

+
Tas2(Ta

M s+1
)2

)
(2)

Note that filtering the derivative and acceleration actions allows
the reduction of the effects of the measurement noise on the
control variable (and therefore on the actuator) and the pres-
ence of derivative and acceleration kicks, which would also be
detrimental for the actuator.
The methodology proposed in this paper aims to determine
all the controller parameters in order to have a satisfactory
performance in both the load disturbance rejection and set-point
following tasks. Further, a user-chosen maximum sensitivity,
which is a measure of the control system robustness, should be
obtained. It is defined as

Ms := max
ω∈[0,+∞)

∣∣∣∣ 1
1+C( jω)P( jω)

∣∣∣∣ , (3)

and typical values are in the range between 1.4 and 2.0 (Åström
and Hägglund, 2006).

3. METHODOLOGY

The tuning methodology starts with the determination of a
TOPDT model of the process by means of the technique pro-
posed in (Sanchis and Peñarrocha-Alós, 2022), which con-
sists of evaluating an open-loop step response and determining
the time instants t5, t35 and t85 when the output, respectively,
achieves 5%, 35% and 85% of its final value. Then, the follow-
ing model is obtained:

P̂(s) =
K

(1+ τs)
(

1+ (1−α)L
2 s

)2 e−αLs (4)

where
L = 1.3t35 −0.29t85

τ = 0.67(t85 − t35)

α = 0.598+0.4799
t5
L
−

0.41(
t5
τ

)0.6

(5)

and the gain K can be easily estimated as the ratio between the
steady-state variation of the output and of that of the input. The
transfer function (4) can be rewritten as

P̂(s) =
K

a3s3 +a2s2 +a1s+1
e−αLs (6)

where

a3 = L2τ

(
α

2
−

1
2

)2

a2 = L2
(

α

2
−

1
2

)2

−2Lτ

(
α

2
−

1
2

)
a1 = τ −2L

(
α

2
−

1
2

) (7)

Now, considering the controller transfer function (1), the inte-
gral, derivative and acceleration time constants can be deter-
mined by applying a pole-zero cancellation, yielding

Ti = a1

Td =
a2

a1

Ta =
a3

a1

(8)

Then, the proportional gain Kp can be determined by consider-
ing the controller transfer function (2) with M = N = 10 (which
are typical values for industrial controllers) and by then setting
its value in order to obtain the desired maximum sensitivity.
This can be achieved by means of a very simple numerical
procedure, where the value of Kp can be increased until the
required value of Ms is achieved.
Finally, in order to better filter the measurement noise, an addi-
tional low-pass filter is applied to the controller output (Visioli
and Sanchez-Moreno, 2024). It is defined as

F(s) =
1(

0.05
ωgc

s+1
)n (9)

where n = 2 and ωgc is the gain crossover frequency of the
loop transfer function C(s)P̂(s), that is the frequency for which
|C( jωgc)P( jωgc)|= 1. It appears that it is a second-order filter
with a cut-off frequency that is 20 times larger than the system
bandwidth, so that the measurement noise is filtered without
introducing a significant phase lag in the control system.
Remark 1. Although the presence of the filters makes the pole-
zero cancellation not exact, the selected values of M and N,
which place the filters at high frequency, do not impair the
soundness of the approach. In fact, the exactness of the pole-
zero cancellation is sacrificed in order to achieve the desired
robustness.
Remark 2. The Haalman method for PID controller consists
in determining the integral and derivative time constants by
applying a pole-zero cancellation to a SOPDT process transfer
function and then in selecting the proportional gain in order to
obtain a phase margin equal to 52 degrees. Considering a de-
sired value of the maximum sensitivity instead of a fixed value
of the phase margin can therefore be seen as a generalization of
the methodology.

4. SIMULATION RESULTS

In the following illustrative examples we evaluate the proposed
PIDA tuning procedure by considering the control system re-
sponse to a unit step set-point signal and to a unit step load
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disturbance signal. In both cases measurement noise has been
added to the feedback signal (see Figure 1). In particular, the
signal n consists of a random value in the range [-0.1,0.1], thus
equal to the 10% of the step amplitude. The performance of the
PIDA controller has been compared with that obtained by a PID
controller with a transfer function

C(s) = Kp

(
1+

1
Tis

+
Tds

Td
N s+1

)
. (10)

In order to provide a fair comparison, the tuning of the PID
controller has been performed by applying an approach that is
analogous to that applied for the PIDA controller. In particular,
a method based on the evaluation of the open-loop step response
is employed in order to estimate a Second-Order-Plus-Dead-
Time (SOPDT) transfer function (Veronesi et al., 2024). Then,
pole-zero cancellation (by neglecting the filter on the derivative
action) is used to determine the values of Ti and Td . Subse-
quently, N = 10 is fixed and the value of the proportional gain
is found in order to achieve the desired maximum sensitivity.
Finally, in order to filter the measurement noise, the low-pass
filter (9) with n = 1 is applied to the PID output. As for the
PIDA controller, the cut-off frequency is selected 20 times
higher than the gain crossover frequency of the loop transfer
function.

4.1 Example 1

As a first illustrative example we consider the fourth-order
process

P1(s) =
1

(s+1)4 (11)

The evaluation of the open-loop step response yields the
TOPDT model (K = 1, L = 2.159, α = 0.382, τ = 2.037)

P̂1(s) =
1

0.905s3 +3.159s2 +3.37s+1
e−0.826s (12)

Based on (12), the three time constants of the PIDA controller
results as Ti = 3.37, Td = 0.938, and Ta = 0.269. Then, after
having fixed the desired maximum sensitivity as Ms = 1.4
and after having fixed M = N = 10, the proportional gain is
determined as Kp = 1.31. The gain crossover frequency of the
loop transfer function results to be ωgc = 0.39, so that we have

F(s) =
1

(0.13s+1)2 (13)

The results related to the unit set-point step response are shown
in Figure 2 (left) where the process variable and the control
variable are plotted. Note that the control variable is plotted
with a different time scale in order to better highlight the
transient response. In the same figure, the results obtained with
a PID controller are also shown. In this case the SOPDT model
is

P̂1(s) =
1

2.062s2 +2.875s+1
e−1.12s (14)

which yields Ti = 2.88, Td = 0.72, and Kp = 0.91 (note that Ms
is again equal to 1.4). Then, N = 10, ωgc = 0.39 and

F(s) =
1

0.158s+1
(15)

It appears that the PIDA controller provides a better perfor-
mance. This is confirmed by the values of the integrated ab-
solute error (IAE), defined as

IAE =
∫

∞

0
|e(t)|dt, (16)

which results to be IAE = 3.31 for the PIDA controller and
IAE = 3.88 for the PID controller. The improvement on the IAE
is paid with a higher maximum value of the control variable, but
it can be observed that there are no proportional, derivative and
acceleration kicks and the noise is filtered very effectively. It is
worth noting that the filter on the PID controller is also essential
to filter the noise.
The load disturbance step response is also shown in Figure 2
(right). Also in this case the PIDA controller performs better
than the PID controller, without a significant increment of the
control effort and by keeping the noise level in the control signal
at a reasonable level. The IAE results to be IAE = 3.01 for the
PIDA controller and IAE = 3.59 for the PID controller.
The case with Ms = 2.0 is then evaluated. The proportional
gains result to be modified as Kp = 2.48 for the PIDA controller
and Kp = 1.69 for the PID controller. These values yields a
gain crossover frequency ωgc = 0.78 for the PIDA controller
and ωgc = 0.60 for the PID controller. Results are shown in
Figure 3, in the left part for the set-point step response (note
that, again, the control variable has been plotted in a different
time scale) and in the right part for the load disturbance step
response. As expected, the PIDA controller is more aggressive
than in the previous case, which implies that higher values of
the control variable and of the noise are obtained. However, also
in this case the PIDA controller reduces the IAE with respect to
the PID controller (from IAE = 3.36 to IAE = 2.79 for the set-
point following task and from IAE = 2.39 to IAE = 1.96 for the
load disturbance rejection task). It is therefore confirmed that
the desired value of Ms represents a tuning knob that allows the
user to manage the trade-off between performance and control
effort (as well as between aggressiveness and robustness).

4.2 Example 2

In the second example we consider a eighth-order process
(again with multiple poles)

P2(s) =
1

(s+1)8 , (17)

which is approximated by the following TOPDT system (K = 1,
L = 5.51, α = 0.61, τ = 2.87)

P̂2(s) =
1

3.304s3 +7.304s2 +5.01s+1
e−3.36s. (18)

The pole-zero cancellation approach yields Ti = 5.01, Td =
1.46, and Ta = 0.659. If the desired maximum sensitivity is
Ms = 1.4, the resulting value of the proportional gain is Kp =
0.55. This yields a gain crossover frequency ωgc = 0.11 and
therefore the output filter F(s) is selected as

F(s) =
1

(0.46s+1)2 (19)

Process and control variables related to set-point and load dis-
turbance step signals are shown in Figure 4, where a compari-
son with a PID controller is also performed. The PID controller
is tuned starting from the approximated model

P̂2(s) =
1

4.231s2 +4.115s+1
e−3.88s. (20)

We have Ti = 4.12, Td = 1.03, Kp = 0.40, N = 10, ωgc = 0.099
and

F(s) =
1

0.51s+1
(21)

The resulting integrated absolute values for the set-point step
response are IAE = 10.31 for the PIDA controller and IAE =
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Fig. 2. Set-point (left) and load disturbance (right) step response for Example 1 with Ms = 1.4. Solid line: PIDA controller. Dashed
line: PID controller.
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Fig. 3. Set-point (right) and load disturbance (left) step response for Example 1 with Ms = 2.0. Solid line: PIDA controller. Dashed
line: PID controller.
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Fig. 4. Set-point (left) and load disturbance (right) step response for Example 2 with Ms = 1.4. Solid line: PIDA controller. Dashed
line: PID controller.
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Fig. 5. Set-point (left) and load disturbance (right) step response for Example 2 with Ms = 2.0. Solid line: PIDA controller. Dashed
line: PID controller.
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11.33, while those for the load disturbance step response are
IAE = 9.97 for the PIDA controller and IAE = 11.02 for the
PID controller. These results confirm the effectiveness of the
tuning methodology for the PIDA controllers, by also taking
into account that the noise filtering is effective and the incre-
ment of the control effort is reasonable.
If the value Ms = 2.0 is chosen as the desired maximum
sensitivity, the proportional gain for the PIDA controller be-
comes Kp = 1.02, with a consequent increment of the gain
crossover frequency to ωgc = 0.20. On the other side, for the
PID controller, we have Kp = 0.74 and ωgc = 0.18. The set-
point step response is shown in the left part of Figure 5 (note
again the different time scale of the control variable), while
the load disturbance step response is shown in the right part.
The corresponding values of the integrated absolute errors are
IAE = 10.38 for the PIDA controller and IAE = 11.16, while
those for the load disturbance step response are IAE = 8.65 for
the PIDA controller and IAE = 9.70 for the PID controller. Also
in this case the capability of the PIDA controller to improve the
performance is confirmed, as well as the use of the desired value
of Ms to handle the trade-off between performance and control
effort.

5. CONCLUSIONS

In this paper a simple new tuning methodology for PIDA con-
trollers has been presented. The main idea is to generalize the
Haalman method (based on pole-zero cancellation) by includ-
ing the acceleration action and by selecting the controller gain
in order to achieve a predefined maximum sensitivity. This is
a desired feature as the trade-off between aggressiveness and
robustness and between performance and control effort can be
easily handled. The challenge of avoiding the amplification
of the measurement noise and kicks in the control variable is
faced by suitably designing low-pass filters in the controller. It
turns out that the PIDA controller can be considered as a valid
alternative to PID controller for high-order processes where an
improvement of the performance is required.
Future work will include an analysis of robustness of the
methodology when measurement noise is present in the open-
loop step response used for the determination of the TOPDT
process model.
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