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Abstract: Greenhouses provide controlled environments for cultivating crops. This work
explores the design of PID-based greenhouse climate control techniques using natural ventilation,
considering both measurable disturbances and operational constraints. A nonlinear model was
developed to relate natural ventilation (the primary climate actuator) with interior temperature
in greenhouses, the critical factor being the relationship between air flow rate and vent aperture,
which is a source of uncertainty in the related literature. Novel calibration issues are included
for this term. The nonlinear model is used to devise control strategies combining PI control
and feedback linearization. The resulting simulations and robustness analysis, which accounts
for uncertainties in the relevant parameters, demonstrate that the combination of PID and
feedback linearization techniques is a suitable control approach. In summary, practical tradeoffs
can be achieved between setpoint tracking, disturbance rejection, control effort, and robustness.
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1. INTRODUCTION

Climate control in greenhouses enables optimal crop pro-
duction. The air temperature inside the greenhouse sig-
nificantly affects the physiological processes of the plants,
and therefore it is important to regulate it in an appropri-
ate range depending on the crop variety and greenhouse
location. This controls plant growth and increases the
quality of production while reducing energy consumption
(Rodŕıguez et al., 2015; Montoya-Ŕıos et al., 2020).

The microclimate within a greenhouse is determined by a
combination of physical processes that involve the transfer
of energy (radiation and heat) and the balance of mass
(water vapor and carbon dioxide fluxes). These processes
are affected by external environmental conditions, the
structure of the greenhouse, the soil material, the type
and state of the crop, and the influence of actuators.

The temperature inside a greenhouse regulated by natural
ventilation is affected by a variety of factors, such as
solar radiation, outside temperature, wind speed, soil tem-
perature, and nonmeasurable disturbances such as crop
transpiration. Natural ventilation allows for air exchange
between the interior and exterior of the greenhouse. Gen-
erally, the outside air is cooler than the inside air and tends
to fill the lower layers of the air volume. Warm air rises to
the upper layers and exits the greenhouse through the top
vents (Rodŕıguez et al., 2015; Montoya-Ŕıos et al., 2020).

⋆ This work is a result of the CyberGreen Project, PID2021-
122560OB-I00, and the Agroconnect (www.agroconnect.es) fa-
cilities, grant EQC2019-006658-P, both funded by MCIN/AEI/
10.13039/501100011033 and by ERDF A way to make Europe.

Algorithms are needed to regulate the indoor temperature
by controlling the opening of vents, taking into account the
aspects that have been mentioned. The literature on con-
trol techniques is vast (Garćıa-Mañas, 2023). In relation
to those discussed in this work, PID control (Boaventura
Cunha et al., 1997; Davis, 1984; Setiawan et al., 1998),
event-based control (Liu et al., 2022), feedforward control
(Garćıa-Mañas et al., 2021; Montoya-Ŕıos et al., 2020;
Rodŕıguez et al., 2001) and modifications based on feed-
back linearization (Hoyo et al., 2019; Lijun et al., 2018;
Piñón et al., 2005) should be highlighted. PID control
compensates for disturbances by feedback. Event-based
control allows saving energy at the cost of worsening set-
point tracking. Feedforward control is usually implemented
through a static term or by using transfer functions only
valid in a determined operating point. This work is based
on the combination of PI and feedback linearization tech-
niques, proposing algorithms that allow the temperature
in a greenhouse to be regulated throughout the operational
range using natural ventilation. The main contribution
of the paper is the methodology for calibrating control-
oriented models of greenhouse climate, where the relation-
ship between air flow rate and vents aperture is different
from that used by other authors, and the analysis and
evaluation of different control approaches for this kind of
application.

The next section describes the greenhouse from which the
data were obtained for model calibration and validation,
followed by sections summarizing the models obtained, the
control techniques developed, and the simulation results.
The paper ends with the main conclusions.
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2. GREENHOUSE FACILITY

The greenhouse used in this study is illustrated in Figure
1. It is located at El Ejido (Almeŕıa, South-East Spain)
with a total surface of 1500 m2 and a volume of 6995 m3

for growing tomatoes. Data were collected over a period
of ten days in August, which is the worst-case scenario for
temperature control with natural vents in warm latitudes.
Solar radiation and wind speed values were filtered out
because of noise in the measurement signal. The sampling
time is 1 minute (one test day is 1440 minutes). The
ventilation used is the zenithal (top) one. Temperature
values inside the greenhouse are very high because of the
season of the year. The reason is that during August
there is no production in the greenhouse, so new strategies
can be tested without impacting on the crop. Notice that
not considering the crop is worse for temperature control
because the crop is a natural cooler, which favours a
drop in temperature. Therefore, if the designed controllers
perform well, they will also perform well at any other time
of the year when the transpiration of the crop influences
the inside temperature.

3. GREENHOUSE TEMPERATURE MODEL

A complete model of the greenhouse climate based on
energy and mass balances can be found in (Rodŕıguez
et al., 2015). From the complete model, a simplified
lumped-parameter model of greenhouse temperature only
considering natural ventilation as actuator is given as
follows, where the dependence of variables with time has
been omitted for the sake of space:

ct
dXt,a

dt
= crPr,e + ccvs(Xt,ss −Xt,a)−

−(ϕv + ccvc)(Xt,a − Pt,e) (1)
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where Xt,a is the inside temperature (controlled variable,
K), U is the manipulated variable (vents aperture, limited
between 0◦ and 31.7◦), entering the equation within the
ventilation flow term ϕv, and Pr,e (W/m2), Pt,e (K), Pv,e

(m/s) and Xt,ss (K) are the main disturbances, namely
outside radiation, temperature, wind speed and soil tem-
perature, respectively. The effect of crop transpiration
is considered an unmeasurable disturbance, as discussed
above. There are models in the literature (Rodŕıguez et al.,
2015) in which the latent heat effect of crop transpiration
inside the greenhouse is modelled through the leaf area
index.

All the values of the coefficients in (1) are defined in
Appendix A (note that ct = csp,acd,a(cgv/cga)). cr is
the coefficient of absorption of short-wave radiation of
the air, ccvs is the coefficient of convection with the
soil, ccvc is the coefficient of heat transfer through the
greenhouse cover due to convection and conduction effects
(loss coefficient), ccvi is the wind effect coefficient, which

Fig. 1. (a) Greenhouse, (b) outdoor weather station, (c)
detail of top ventilation, (d) temperature and humid-
ity sensor and (e) indoor radiation sensor

considers the effects due to the pressure differences caused
by the wind, and ccd is the discharge coefficient, which is
a ratio of the theoretical flow rate to the actual flow rate
flowing through the ventilation openings. These last two
coefficients depend on wind speed, so considering them
as constants introduces uncertainty in the model. More
details on these coefficients can be found in Rodŕıguez
et al. (2015).

3.1 Model calibration

Some of these coefficients must be estimated using real
data. As the model is nonlinear, genetic algorithms (Houck
et al., 1996) were used to determine the values of these pa-
rameters, based on minimization of the mean square error

(MSE = 1
N

∑N
k=1(y(k) − ym(k))2, y being the real tem-

perature and ym that provided by the model). In addition,
to assess the model fitting, comparison statistics are used,
such as the mean (MAE) and maximum absolute error
(MxAE), as well as its standard deviation (StAE). The
search ranges for the parameters were established based on
those published in the literature and a previous calibration
in (Rodŕıguez et al., 2015), which has been improved fol-
lowing the proposed methodology, where it has been taken
into account that three of the coefficients are not related
to ventilation (cr ∈ [0.04 0.5], ccvs ∈ [0.5 3], ccvc ∈ [1 5])
while two of them play a relevant role in the ventilation
flux (ccvi ∈ [0.08 1], ccd ∈ [0.1 1]). Therefore, a two-stage
calibration procedure was used, first estimating the three
parameters that do not depend on ventilation (using data
when the vents are fully closed - stage 1) and once their
value was fixed, those related to ventilation are estimated
on days when the vents are opened (stage 2). Figure 2 (top
plot) shows the days used in stage 1 and stage 2. This
two-stage approach also takes into account the results of
the sensitivity analysis explained in the next subsection,
from which it was concluded that the main parameters
that influence model calibration are cr and ccvc, which
are fixed in the first stage. For calibration, 80% of the
available data in each stage (without and with ventilation)
is used to find the best solutions with genetic algorithms,
and the remaining 20% is used to validate the model
with the new estimated parameters (including a day with
and a day without ventilation). In the genetic algorithm,
as combination operators, simple and heuristic crossover
and crossover arithmetic were used, while as mutation
operators nonuniform and boundary mutation were cho-
sen. The final values for the model parameters found are
shown in Appendix A. Compared to the values previously
estimated in (Rodŕıguez et al., 2015), the improvements
can be seen in Table 1. Figure 3 shows the performance of
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Fig. 2. (a) stages of the calibration procedure and final
validation results with all the data. (b) plot of the
sensitivity analysis

the calibrated model in two days, one without ventilation
and the other with ventilation.

Table 1. Statistics on the total data

MSE MAE MxAE StAE

Initial parameters 2.9350 1.3487 5.0427 1.0566
Final parameters 1.6574 1.0735 3.3524 0.7107

3.2 Sensitivity analysis

Sensitivity analysis is a tool that helps calibrate models
and consists of measuring the degree to which variations
in one or several parameters affect the fitting of the model
to real data. The procedure is as follows: the value of a
parameter is modified in a range around its established
value, theoretically the optimum, in such a way that
small variations are made successively until the whole
range is covered; for each of these variations, the model
is evaluated. The evaluation criterion would coincide with
the selection function to be optimized. Once the whole
model has been evaluated for the range of parameter
variations, the results of the evaluation of the cost function
against the parameter variations are plotted and analyzed.
This process can be repeated for all parameters to be
analyzed by setting all parameters to their fixed value
except for the one under study. Figure 2 (lower plot)
shows a plot of the results of the sensitivity analysis.
Note that there is symmetry in the evaluation of the cost
function with respect to the minimum, which confirms the
hypothesis of using MSE.

Fig. 3. Results of the calibration procedure

4. CONTROL APPROACHES

Based on (1), different control approaches can be proposed
considering PID control and modifications. Feedforward
control can be used in this kind of plant (Rodŕıguez et al.,
2001). For example, linearization of (1) around a particular
operating point provides the transfer functions that relate
the inputs (both controllable ones and disturbances) to
the output. The linearization procedure is included in
Appendix B (online). Substituting the values of the de-
scriptive parameters of the model leads to the linearized
differential equation, which allows simplified transfer func-
tions relating the inputs (manipulable and disturbances)
to the output to be obtained. The transfer functions
that relate the disturbances to the output allow for the
design of feedforward controllers. This control approach
has shown to provide adequate results, but it is sensitive
to modelling uncertainties and provides different closed-
loop performance (in terms on characteristics response
times) depending on the operating conditions (for that
reason, results are not shown in this paper due to space
restrictions).

In this paper, PID-based feedback linearization is used to
control the greenhouse, as explained in the following.

4.1 Nonlinear PI-based control with feedback linearization

This control approach seeks to achieve good disturbance
rejection while maintaining the same closed-loop be-
haviour even when changes in operating conditions oc-
cur. The feedback linearization technique (Isidori, 1995)
is based on the idea of treating nonlinear systems as
linear ones (through algebraic transformations and feed-
back), which can then be controlled with PID control
schemes. As the relative degree of the nonlinear model
in (1) is one and there is a direct relationship between
the manipulable variable and the controlled one, feedback
linearization (FL) can be applied by replacing different
terms (always including nonlinear ones) to the right of the
equal sign with a virtual control signal v(t), making the
system linear (either an integrator G(s) = k/s or a first
order G(s) = k/(τs + 1)) and allowing for the use of PI
controllers for design purposes. The relationship between
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Fig. 4. Selection of v(t) in FL1, FL2 and FL3

the virtual control signal v(t) and the real control signal
U(t) is algebraic and invertible under logical operational
assumptions (e.g. there is no thermal inversion). This
approach is easy to implement, but requires constraint
mapping mechanisms, which means that the saturation
in the control signal U(t) is transformed to time-varying
limits in the virtual control signal v(t), that is,

vmin(t) = min
Umin≤U(t)≤Umax

v(t),

vmax(t) = max
Umin≤U(t)≤Umax

v(t). (2)

The different design approaches (FL1, FL2, and FL3) are
shown in Figure 4, depending on the choice of virtual
control signal v(t). Table 2 summarizes the main equations
used for the design of the controllers. For PI design
purposes using the linear equivalent, the specification has
been τcl = ατ , providing Kc = 1/(αkU ). The parameter
α is selected equal to 0.2 in the simulations shown in
this paper. The tracking constant of the anti-windup
mechanism is selected as Tt = Ti. The implementation
is also described in Figure 5. The relationship between
the virtual control signal v(t) and the real control signal
U(t) is given in Table 3. As can be seen, this nonlinear
transformation is invertible in every case where there is
no thermal inversion, that is, the indoor temperature is
different from the outdoor temperature (usually higher).
Operational constraints in v or U (2) can be imposed to
avoid U reaching large values. Note that if in the third
method (FL3), instead of using pole-zero cancelation, the
SIMC method is applied (Skogestad, 2003), it provides
Ti = 0.8τ as the only difference, providing quite acceptable
results (FL3.2). Figure 6 shows representative results with
the four approaches.

4.2 Evaluation of the control approaches

In addition to the well-known IAE (
∫
|e(t)|dt), ITAE

(
∫
|te(t)|dt), ISE (

∫
e2(t)dt), and ITSE (

∫
te2(t)dt) indexes

used to evaluate controller performance based on the error
between reference and output (e(t) = r(t) − y(t)), the
Control Effort Index CEI =

∫
|∆u(t)| has also been used

(Table 4). The best controller is FL1, with lower control
effort and better performance. However, a robustness anal-
ysis considering uncertainties in cr, ccvc and ccvs (perform-
ing variations of ±10% about nominal values) reflects that
FL1 is in this case less robust against model uncertainties
and prone to large settling times, as the controller does not

Fig. 5. Nonlinear PI based on FL approaches

Table 2. Summary of controllers’ design

FL1

Virtual signal v = crPr,e + ccvs(Xt,ss −Xt,a)−
−(ϕv + ccvc)(Xt,a − Pt,e)

Linear equivalent G(s) = 1/(cts); k = 1.782 · 10−4 Km2/J
Controller C(s) = Kc, Kc = 29.48 J/(Km2)
Closed loop Gcl = 1/((ct/Kc)s+ 1); τcl = 3.17 min

FL2

Virtual signal v = −ϕv(Xt,a − Pt,e)
Linear G(s) = γ/(ctγs+ 1), γ = 1/(ccvs + ccvc)
equivalent k = 0.17 Km2/W; τ = 15.86 min
Controller C(s) = Kc(1 + 1/(Tis)), Tt = Ti;

Kc = 29.48 W/(Km2); Ti = 15.86 min
Feedforward FffPr,e (s) = −cr;FffXt,ss = −ccvs;

FffPt,e = −ccvc
Closed loop same as FL1

FL3

Virtual signal v = crPr,e + ccvsXt,ss + ccvcPt,e−
−ϕv(Xt,a − Pt,e)

Linear equivalent same as FL2
Controller same as FL2
Closed loop same as FL2
FL3.2, SIMC C(s) = Kc(1 + 1/(Tis)), Tt = Ti;

Kc = 29.48 W/(Km2); Ti = 12.68 min

include integral action, which is also a problem when load
disturbances are present. The analysis has been performed
using four days with extreme values in the performance
indices selected to cover the maximum range of possible
behaviours and the average indices obtained are shown in
Table 5. For example, when variations in cr are produced,
FL1 varies the nominal indices between 96% and 134%,
while the other approaches do so in a narrower interval
(90% to 113%). FL3 (in each of the options) is the best
solution according to the results in Table 4 and the ro-
bustness analysis.
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Fig. 6. Simulation results. The first column shows the main disturbances, the other columns show the performance
achieved with FL1, FL2, FL3 and FL3.2, respectively

Table 3. Relationships between U and v, with c1 =
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Table 4. Performance and control effort indices
for all designed controllers

IAE ISE ITAE ITSE CEI

FL1 372.81 562.72 268610 405443 1145.69
FL2 417.40 607.32 300738 437578 1266.91
FL3 416.33 606.40 299960 436913 1265.70
FL3.2 390.48 584.28 281523 420970 1231.97

5. CONCLUSIONS

This article introduces an enhanced nonlinear model of
a greenhouse, which has been refined through the im-
plementation of a parameter calibration approach that
relies on stepwise data decomposition and sensitivity anal-
ysis. Although the amount of data available has been a
limitation, the methodology is extensible to any type of
greenhouse. Different types of controller that combine PID
control with feedback linearization have been developed
and compared in simulation. Various metrics have been
used in the comparison and an analysis of the robustness to

uncertainty has been conducted. It was found that the first
controller, whose transfer function is an integrator, gave
a better response and a slightly more favourable control
effort, but did not respond well in the face of uncertainty.
The FL3 approaches appear to be suitable for this kind
of application, as they achieve a good tradeoff between
performance and robustness against model uncertainty. As
the controller includes integral action, steady-state errors
are avoided even in the presence of uncertainty.

The control strategy can be implemented using the
discrete-time version of the nonlinear model and a sam-
pling time appropriate to closed-loop dynamics (at least
1/10 of the closed-loop time constant). Notice that the
final user only has to modify the desired closed-loop time
constant once implemented to modify performance; this
is also another advantage of the approach. Future work
will include the extension of the proposed methodology
to the simultaneous control of temperature and humidity,
also using the nonlinear model that relates humidity to

IFAC PID 2024
Almería, Spain | June 12-14, 2024

476



natural ventilation and a selective control algorithm, as
presented in (Garćıa-Mañas et al., 2024). In real tests, it
will be analyzed if it is necessary to include any model
adaptation or robustification mechanism as in (Guesbaya
et al., 2022), but from the robustness analysis it seems not
necessary.

Table 5. Indices in the robustness analysis

Parameter IAE ISE ITAE ITSE CEI

FL1

cr(−10%) 498.67 671.97 359285 484153 1097.55
cr(+10%) 473.09 549.91 340683 396210 1152.49
ccvc(−10%) 430.07 570.80 316295 411220 1117.41
ccvc(+10%) 412.97 585.12 297540 421583 1122.27
ccvs(−10%) 370.39 545.64 266868 393133 1156.05
ccvs(+10%) 404.35 590.99 291342 425805 1096.11

FL2

cr(−10%) 452.23 684.42 325825 493130 1218.00
cr(+10%) 395.72 547.27 285135 394308 1281.14
ccvc(−10%) 419.92 598.32 302550 431088 1294.72
ccvc(+10%) 427.55 624.31 308053 449820 1204.23
ccvs(−10%) 410.08 592.77 295460 427103 1244.22
ccvs(+10%) 438.29 630.93 315778 454575 1266.91

FL3

cr(−10%) 450.89 682.96 333373 492078 1217.00
cr(+10%) 394.62 546.46 284323 393725 1279.82
ccvc(−10%) 420.18 497.86 302743 430758 1231.36
ccvc(+10%) 424.65 622.68 305948 448635 1251.08
ccvs(−10%) 407.02 591.33 293258 426048 1288.89
ccvs(+10%) 437.59 630.22 315278 454075 1203.29

FL3.2

cr(−10%) 424.81 659.25 306075 474985 1180.79
cr(+10%) 372.45 528.76 268348 380973 1250.26
ccvc(−10%) 394.56 577.05 284283 415765 1205.08
ccvc(+10%) 400.12 601.25 291200 433195 1209.29
ccvs(−10%) 381.58 569.72 274975 410483 1255.80
ccvs(+10%) 395.09 586.86 296823 439268 1168.95
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Appendix A. MAIN PARAMETERS OF THE MODEL

Parameter Symbol Value Units

Radiation coefficient cr 0.0911 -
Soil convection coefficient ccvs 2.3769 W/(m2K)
Cover convection coefficient ccvc 3.5195 W/(m2K)
Wind effect coefficient ccvi 0.7630 -
Discharge coefficient ccd 0.1327 -
Length of ventilation cven,l 40 m
Width of ventilation cven,w 1.9250 m
Acceleration of gravity cg 9.8 m/s2

Air density cd,a 1.197 kg/m3

Specific heat of air csp,a 1005 J/(kgK)
Greenhouse area cga 1500 m2

Greenhouse volume cgv 6995 m3

Appendix B. LINEARIZATION OF THE MODEL

Linearization of the model can be found in

https://cutt.ly/TwSef2yT
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