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Abstract: In the context of traditional PID model-based control, where sinusoidal or PRBS
excitation on a real plant is not advisable or desirable, this paper outlines a method to
obtain some relevant information by merely comparing model-based and actual time-domain
reaction curves. This comparative analysis yields valuable information that can be subsequently
translated into a practical estimate of uncertainty in the frequency domain. This, in turn, will
enable the control designer to gain some insight into imposing realistic boundaries for closed-
loop response specifications, which will ultimately be consistent with what can be expected
from the actual plant response. The conditions for robust stability and robust performance are
outlined and further assessed through academic simulation experiments.
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1. INTRODUCTION

Identification based on step time response or reaction
curve is extensively used in industrial process control,
with the aim of attaining low-order linear models. Obvi-
ously, nonlinearities, process variations or high-frequency
dynamics are not captured, somehow intentionally, by
these models. With respect to the latter, this elementary
approach clearly imposes very important limitations in
the bandwidth of the model-based control system, as the
model will only provide an appropriate description of the
system’s behavior for a relatively-low frequency range,
with moderate or severe uncertainty at higher frequencies
(Astrom (1995), Åström and Murray (2021)). These lim-
itations are deemed to be fair payment for the simplicity
gained in the subsequent control design.

The basis of classical linear control theory and the core of
many well-known textbooks in the field rely on this prin-
ciple and its inherent trade-off between simplicity and al-
lowed uncertainty (Åström and Hägglund (2006); Skoges-
tad and Postlethwaite (2005); Altmann (2005); Hägglund
(2023); Vázquez et al. (2022); Guzmán et al. (2023)).

Frequency response analysis, typically based on sinestream
or pseudo-random binary sequence (PRBS) perturbation,
on the other hand, provides a simple tool for assessing the
accuracy of a given model at a certain frequency range,
by comparison of the nominal and experimental frequency
responses or by deriving some uncertainty frequency plots.
This can be particularly useful when the specifications for
the control system are given in, or are translated into,
the frequency domain, being the vicinity of the desired
crossover frequency the most relevant frequency band.

In many industrial environments, however, the prospect
of making a series of experiments that are intended to

take the system (or part of it) out of its usual operational
routine, leading it into resonance states, may seem unre-
alistic, unaffordable or downright scary in the eyes of the
plant managers and operators. By the same token, the use
of more sophisticated techniques in the context of indus-
trial processes, such us evolutionary algorithms for PID
tuning based on hyperparameter optimization (Mart́ınez-
Luzuriaga and Reynoso-Meza (2023)), is notably challeng-
ing, if not nearly unfeasible.

On a different note, even among the control education
community, we can witness that, whenever it is time to
readjust content in elementary control-related subjects,
requiring some sacrifices to be made, frequency-based
analysis and design tools can be the easy targets to be
kicked out.

Given this state of affairs, if the plain reaction curve is
indeed the least we have to settle for, always available as
the most immediate, well-known, intuitive and frictionless
tool when it comes to experimenting with the system,
we can ask ourselves which additional information can be
drawn from it, that enables us to provide simple jet useful
guidelines for assessing in the design stage of elementary
controllers ?

This paper tries to answer that question. Given an approxi-
mate time-based linear model of the plant under study, this
work introduces a simple method that provides a frequency
estimation of the underlying multiplicative uncertainty.
This is not intended as an exhaustive modelling tool what-
soever. Instead, it has to be understood as a handy tool
in assessing the choice of consistent control specifications,
saving both, time and effort, while avoiding any attempt
of disruptive experimentation on the real plant. On the
other hand, in the context of robust control, the specific
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design method under consideration can take advantage
of this same uncertainty estimation, in order to establish
appropriate bounds to ensure closed-loop robustness.

This paper is organized as follows. First, Section 2 outlines
some intuitions that can be derived from simple graphical
comparison of the modelled and actual reaction curves.
Section 3 revisits the classical concepts of additive and
multiplicative uncertainties in the frequency domain, while
Section 4 exploits this description to establish a convenient
link between the information gathered in the time domain
and uncertainty described in the frequency domain. Such
a link is at the core of the proposed procedure to assist in
providing consistent specifications for the controlled sys-
tem, but this section restricts the study to mere stability
conditions. Section 5, on the other hand, deepens this time-
frequency connection by additionally tacking robust per-
formance into consideration. Section 6 proposes a typical
simulation experiment to test the proposed methodology.
Finally, the paper ends offering some conclusions of the
work in Section 7.

2. INTUITIONS FROM THE REACTION CURVE

In general, when we exclusively rely on the reaction curve,
our intuition suggests the importance of being cautious
in specifying how fast we want the resulting closed-loop
response to be. It tells us that we should be consistent with
the accuracy of our knowledge about the system, given by
the apparent discrepancies between modelled and actual
step responses.

We can imagine the experimental reaction curve of a par-
ticular system, starting from a predefined operation point,
given zero initial conditions in their increments. From the
response of the actual system, we typically identify a low-
order model that captures the most dominant dynamics.
Then, we compare the response of the model, y(t), with
respect to the response of the actual plant, y∗(t), as illus-
trated in Fig. 1.

Fig. 1. Example of reaction curve comparison, nominal
versus actual plant.

While it is not possible to establish a direct correspon-
dence between a specific time and a particular frequency
(Qian and Chen (1999)), we can intuitively infer that, if
we specify the desired response time for the controlled
system to be close to or longer than the time scale of the
identified main dynamics (loosely defined as reliable time
scope, given by a lower threshold treliable, and highlighted
by the green area in Fig. 1), it is expected that we get “ac-
ceptable” results. On the contrary, if we specify a compara-

tively demanding closed-loop performance (corresponding
to time scales under the scope of the red area in the figure,
coarsely-defined as unreliable time scope and given by an
upper threshold tunrealiable), the results will much likely
be unacceptable. Somehow, we can try to rationalize the
expected results by arguing that the discrepancy between
both incremental signals (actual and nominal responses)
around those time scales remain close or become distant
from each other, in relative terms, respectively:

y(t)

y∗(t)
≈ 1 for t ≥ treliable ,

but

y(t)

y∗(t)
� 1 for t ≤ tunrealible .

The authors are well aware that this is only an intuitive
concept, which may present some loopholes. This is partic-
ularly evident when the model exhibits an excess of poles
greater than one, leading to a step response with no abrupt
change in slope. Similarly, its effectiveness is compromised
when applied to systems with dead time.

Therefore, in the next sections, we want to introduce some
rigour to these intuitions about what level of uncertainty
the designer is facing at different time scales and how to
leverage this knowledge to assist in the definition of reliable
specifications. Nevertheless, since uncertainties are more
effectively addressed in the frequency domain, our focus
shifts towards that direction in the upcoming section.

3. ADDITIVE UNCERTAINTY REVISITED

Assuming we are in the context of a SISO system, lets
call G(s) the nominal transfer function representing the
dynamics of that system (that is our nominal plant), while
G∗(s) will represent the uncertain, actual description of the
system (the uncertain plant).

Uncertainty can be described in additive fashion and ex-
pressed in the frequency domain Skogestad and Postleth-
waite (2005):

G∗(jω) = G(jω) + Ea(jω) (1)

where Ea(jω) represents the so-called additive uncer-
tainty, which is typically defined as:

Ea(jω) = |Wa(jω)|∆a(jω) , ‖∆a‖∞ ≤ 1 (2)

where Wa(jω) is a weight introduced in order to normalize
the uncertainty to be less than 1 in magnitude at every
frequency, according to the chosen norm:

‖∆a‖∞ , max
ω
|∆a(jω)|

Usually, the multiplicative formulation for uncertainty is
preferred. In this case, the disturbed plant can be said to
be:

G∗(jω) = G(jω) (1 + Em(jω)) (3)

being Em(jω) the multiplicative uncertainty, defined in a
similar way:

Em(jω) = |Wm(jω)|∆m(jω) , ‖∆m‖∞ ≤ 1 (4)
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Clearly, the following relation holds:

Em(jω) =
Ea(jω)

G(jω)
(5)

Multiplicative uncertainty is more informative, in the sense
that, for instance, at frequencies where |Wm(jω)| > 1,
uncertainty exceeds 100% and, evidently, no control based
on the nominal model is advisable at those frequencies.

What is described next can be considered one of the
main contributions of the paper, namely, a new procedure
to theoretically link the time-domain error between the
nominal and the actual outputs – which can be easily
estimated from simple reaction-curve experiments – to
an estimation of the corresponding additive frequency-
domain uncertainty.

4. BRIDGING TIME-DOMAIN ERROR AND
FREQUENCY-DOMAIN UNCERTAINTY

Considering the time error signal between the actual and
the nominal step responses of the system (see Fig.4):

e(t) = y∗(t)− y(t).

Assuming U as the step amplitude and applying Laplace
transform:

e(s) = y∗(s)− y(s) = [G∗(s)−G(s)]
U

s
s e(s) = U [G∗(s)−G(s)] ,

what means that, assuming zero initial conditions, additive
uncertainty can be directly obtained from the Laplace
transform of the derivative error function:

Ea(s) =
1

U
L [de/dt] .

Stated in the frequency domain, the Fourier transform of
the derivative error signal provides the frequency profile of
the additive uncertainty:

Ea(jω) =
1

U
F [de/dt] .

The step-by-step procedure can be described as follows.

• First, we obtain the empirical error signal from both
reaction curves:

e(t) = y∗(t)− y(t). (6)

• Then, we compute the numerical time derivative
of this error signal, preferably scaled by the step
amplitude:

ėU(t) =
1

U

de(t)

dt
. (7)

• Next, we get the estimation of the additive uncer-
tainty by applying the Fast Fourier Transform (FFT)
to the previous signal:

Êa(jω) = FFT [ėU(t)] . (8)

• Finally, by point-to-point division of complex num-
bers, we get the estimation of the multiplicative un-
certainty:

Êm(jω) =
Êa(jω)

G(jω)
. (9)

This will not provide us with an analytical expression for
the multiplicative uncertainty, which, by the way, will not
be required. Instead, we just need to evaluate its graphical
representation.

The multiplicative uncertainty uses to increase as the
frequency does. This fact tells us that, by sticking to our
model, we will have absolute lack of knowledge on the
behaviour of the actual system at frequencies higher than
a cutoff frequency, ω0, defined as the lowest frequency at
which |Êm(jω0)|dB ≈ 0 [dB].

Accordingly, trying to rely on the assumed model to
specify, for instance, a cutoff frequency close or over
that threshold would most certainly lead to a very poor
stability performance on the part of the controlled system.
According to this, a consistent specification for the closed-
loop step time can be obtained under the condition:

tclr &
π

2ω0
, (10)

where tclr stands for the closed-loop rise time, designed in
a model-based control synthesis.

The aim of this condition is to guarantee that the result-
ing closed-loop system has, at least, a stable response.
Consequently, we can understand it as a robust stability
condition. The next section tries to go a step further by
focusing on robust performance, instead.

5. PROVIDING ROBUST PERFORMANCE

In the previous section, robust stability has been ad-
dressed, offering a knowledgeable response for the speci-
fication of the closed-loop response time. Now it is time
to tackle robust performance, so as to provide additional
guidelines with the aim of guaranteeing that the resulting
controller, designed using the plant model and the uncer-
tainty estimation, provides much more than just nominal
performance.

In this section, we delve into estimating the minimum
closed-loop rise times to ensure a certain level of robust
performance. This entails achieving a real controlled sys-
tem behavior that is relatively similar to that obtained on
the model.

The approach will rely on the estimation of the maximum
expected phase loss at a given frequency, described as a
function of the uncertainty associated with that frequency.

Assuming that robust stability has been guaranteed, and,
therefore |Wa(jω)| < |G(jω)| at the frequencies at which
the system is being controlled, we are concerned about the
maximum phase shift, φmax, that the real system can incur
with respect to the model at a particular frequency, ω, as
a function of the additive uncertainty, Wa(jω), associated
with that frequency:

∠G∗(jω) ≥ ∠G(jω)− φmax(ω) (11)

In Figure 2, we illustrate this concept by depicting the
Nyquist diagram of an example G(s). For any particular
frequency, ω1, if we assume to know |Wa(jω1)|, we can
outline the circumference within which G∗(jω1) must lie
(shown in red in the figure). Then, we can verify that
the maximum possible phase shift that G∗(jω1) can incur
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with respect to G(jω1) is the angular separation between
G(jω1) and any of the two segments that are tangent to the
mentioned circumference, starting from the origin. From
this, we can easily derive the following relation:

sin(φmax(ω)) =
|Wa(jω)|
|G(jω)|

=
|Wm(jω)G(jω)|
|G(jω)|

,

leading us to a very convenient expression:

sin(φmax(ω)) = |Wm(jω)| . (12)

Fig. 2. Estimation of maximum phase loss at a given
frequency, ω

1
, depending on the additive uncertainty

at that frequency.

Figure 3 represents this dependence of the maximum phase
loss at a given frequency, (−φmax(ω)) with the multiplica-
tive uncertainty magnitude expressed in [dB]. The maxi-
mum phase loss will reach −90o if |Wm(jω)|dB eventually
hits 0 [dB]. In the plot, however, only a reasonable extent
of the variables has been covered.

The level of robust performance is being understood as
the worst-case reduction in a nominally designed phase
margin. Let us suppose we have, indeed, a controller
C(s), providing nominal performance on G(s), according
to the designed nominal phase margin. The value of φmax

can be thought of as the maximum reduction in that
theoretical value of the phase margin, provided that the
crossover frequency, ωc, remains roughly the same. So, we
are specifically interested in φmax(ωc).

Assuming the controller has been nominally designed
with an ample phase margin, let’s consider, for instance,
approximately 90o, it might be admissible for this margin
to be reduced −15o or −20o, without expecting significant
deviations in the resulting response. Accordingly, we can
use this plot to deduce that a reasonable upper limit for
multiplicative uncertainty around the crossover frequency
would be in the order of −10dB (please, notice the
highlighted red dot on the curve).

Consequently, denoting ω10 as the frequency at which
|Êm(jω10)|dB ≈ −10 dB, robust performance can be
achieved by fulfilling the following condition 1 :

tclr &
π

ω10
. (13)

Finally, it should be emphasized once more that the
method relies on the assumption that the gain of the real

1 Please, notice that, according to this expression, tclr is not obtained
by dividing by 2, since a phase margin greater than 70o is assumed.

Fig. 3. Representation of the maximum phase loss from
the multiplicative uncertainty magnitude.

system is very close to that of the model at the critical
frequencies. This hypothesis can be considered realistic,
as long as the multiplicative uncertainty is indeed low at
these frequencies. For instance, according to the previously
exemplified values, the maximum gain variation would be
about 30% (associated to a value of −10 [dB]). Notice,
however, that this maximum gain variation occurs under
alignment of Wa(jω1) with respect to G(jω1) (see Fig. 2),
in which case the value of φmax would be zero. In contrast,
for the value φmax(ω1) estimated in that figure, the gain
reduction would be given by the cos(φmax(ω1)), which, for
φmax(ω1) = 20o, can be estimated close to 6%.

6. SIMULATION EXPERIMENT

Following a simulated experiment, we will verify that the
estimation on the additive and multiplicative uncertainties
by means of the algorithm introduced in Section 4 are, in
fact, very good estimations of the real ones.

Fig. 4 shows a typical example of nominal versus actual
step responses in a typical overdamped system. The error
between these two outputs and its time derivative are also
provided. The simulated nominal and real 2 plants used
for this experiment are specifically the following:

G(s) =
10

(s+ 1)
, (14)

G∗(s) =
11

(0.5s+ 1) (0.4s+ 1) (0.1s+ 1)
(15)

where we can see that there is uncertainty, not only in the
identified dynamics, but also in the static gain.

First, taking advantage of the priviledged knowledge
granted by the theeoretical exercise, we obtain the very
additive and multiplicative uncertainties we are trying to
estimate by our algorithm. These will derived as follows:

Ea(jω) = G∗(jω) − G(jω)

Em(jω) =
Ea(jω)

G(jω)

2 The real plant is provided for the case the reader would like to
reproduce the experiments.
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Fig. 4. Nominal versus actual plant experiment, showing
typical overdamped step responses, along with the
error and its time derivative.

The time responses will be sampled at ten milliseconds
interval, Tm = 0.01 [s], being the corresponding Nyquist
frequency ωN = 314.16 [rad/s]. Then, we obtain the es-

timation of these uncertainties Êa(jω) and Êm(jω) by
means of the proposed algorithm, using (6)-(9). Figure 5
shows the comparison between the actual and estimated
additive uncertainties. In the case of the multiplicative
uncertainty, though, we are essentially concerned about its
magnitude, the comparative evaluation of which is shown
in Figure 6, for the case at hand. We can verify that the
estimations are quite close to the actual uncertainties up
to frequencies close to the Nyquist frequency.

Fig. 5. Comparison between the actual and estimated
additive uncertainty for the case study.

Fig. 6 gives us the key insights. From this figure, we can
obtain values for ω0 ≈ 3 [rad/s] and ω10 ≈ 1 [rad/s].
From ω ≈ 3 [rad/s] on, the multiplicative uncertainty is
compromising the stability of the real plant. According
to our robust stability threshold, given by (10), we can
impose the specification constraint: tclr & 0.5 [s]. However,
if robust performance is also required, the specification

Fig. 6. Comparison between the magnitude of the actual
and estimated multiplicative uncertainties for the case
study. The relevant frequencies for robust stability
and performance are also shown.

constraint: tclr & 3 [s], must be imposed instead, according
to (13).

To corroborate the hypotheses, let us suppose a model-
based controller has been designed by cancelling the dy-
namics of the model, in the following form:

C(s) =
Kc

s

1

G(s)
=
Kc

s

s+ 1

10
. (16)

By using this PID controller, (being TI = 1 [s], TD = 0 [s],
and KP = Kc

10 TI), the theoretical closed-loop transfer func-
tion from the reference to the output (i.e. the complemen-
tary sensitivity transfer function) can be computed as:

T (s) =
C(s)G(s)

1 + C(s)G(s)
=

1
1
Kc
s+ 1

. (17)

Due to the fact that the model-based T (s) is a first-order
transfer function, tclr can be calculated as:

tclr =
3

Kc
. (18)

In the following figures, nominal versus experimental con-
trol results are presented, by specifying different values
for the desired closed-loop response time. In all cases,
y∗(t) and y(t) represent the actual and model output,
respectively, yr(t) represents the provided reference, while
u∗(t) and u(t) refer to the real and model control outputs
that are fed into the respective systems. In the experiment
shown in Figure 7, Kc has been adjusted for a nominal
tclr ≈ 3[s], the minimum estimated value for achieving
robust performance. It can be seen that the actual response
is similar to the nominal one, in terms of settling time
and absence of overshoot. In Figure 8, on the other hand,
Kc has been tuned to obtain a nominal tclr ≈ 0.5[s], the
minimum estimated value just to ensure robust stability.
It can be verified that, despite the real closed-loop system
is stable, its output exhibits a high overshoot, around 60%,
bordering on instability, which drastically differs from
the nominal response. Finally, a value of Kc for getting
tclr ≈ 0.1[s] has been tested. As stated before, since this
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value is far under the threshold for robust stability, the
actual closed-loop response becomes clearly unstable, as
shown in Figure 9.

Fig. 7. Nominal vs. actual control results for tclr ≈ 3[s].

Fig. 8. Nominal vs. actual control results for tclr ≈ 0.5[s].

Fig. 9. Nominal vs. actual control results for tclr ≈ 0.1[s].

7. CONCLUSIONS

This study introduces a valuable connection between the
time-domain reaction curve of a dynamic system and the
associated additive and multiplicative uncertainties de-
scribed in the frequency domain. Starting with the step re-
sponse of the actual system and the corresponding output
of a low-order model derived from it, this work describes
how the derivative of the error between these two re-
sponses can be linked to the frequency-domain uncertainty
inherent to the assumption of such a model. Despite the
proposed method is clearly rooted in frequency domain
concepts, it eventually enables the control designer to
formulate consistent control specifications, just by relying
on some easy-to-get key measures, readily obtainable from
the time domain, without the need of exposing the actual
plant to any frequency-based experimentation. These key
measures ultimately provide some limits to the closed-loop
rise time that should be specified, ensuring robust stability
or robust performance as required.
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