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Abstract: The necessity of painless surgery and delivering an accurate dose of drug to induce
anaesthesia to the patient is indubitable. Delivering a higher dose to the patient may lead to
adverse effects and postoperative complications, while a lower dose obviously leads the patient
to regain consciousness during the surgery and in extreme cases even to surgery failure. To
overcome such complications during surgeries several research studies revolve around the design
of a computer-controlled system to deliver an accurate dose of drug to induce anaesthesia.
Therefore this paper aims to introduce an exact linearization of the drug administration model
in anaesthesia, without losing too much information about the internal dynamics. This is
realised by creating a linear map between the input and output. The control law uses this
model and is designed to ensure performances of no overshoot and minimum steady-state
error. The control loop is tested on a system with parametric uncertainties (related to patient
intra/inter-variability). The simulation results validate the proposed approach and demonstrate
its robustness.
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1. INTRODUCTION

It is obvious the need of anaesthesia in the context of
surgery and medicine in general. With the progress of
technology and system control engineering a computer
based drug dosing of general anaesthesia management
can be achieved. One way to tackle anaesthesia is by
controlling the Depth of Hypnosis, defined as a specific
state of unconsciousness. In the present research, the
Bispectral Index (BIS) is used as an accurate estimation
of the level of unconsciousness Soltesz et al. (2020). This
choice is based on the fact that dedicated sensors exist to
measure the BIS signal. Having an accurate measurement,
the feedback is ensured for the control loops in this
anaesthesia process. This will help anaesthesiologist in
the first stage by offering information in any point of the
process. It can act as a digital twin of the anaesthesiologist.
The BIS signal is considered 100 % for a fully awake
patient and decreases towards 0%, a state of no cortical
activity, due to the administration of Propofol. In most
clinical interventions, a BIS signal of 50% is considered
suitable for surgery, but the actual value can vary in a
range from 40% to 60% C. Rosow (2001).

The modelling of drug administration in anaesthesia can
be realised by Pharmacokinetics- PK part that discusses
the kinetics of the drug, or the rate of transfer between
different compartments and Pharmacodynamics -PD that
represents the effect of drug concentration on the depth of

Hypnosis -DoH [Al-Rifai and Mulvey (2016) Blussé van
Oud-Alblas et al. (2019) Minto et al. (1997)].

Multiple control strategies are developed for anaesthesia
in existing literature. For example in Morley et al. (2000)
a closed loop control strategy is presented with the BIS
being the control target, while in Merigo et al. (2019)
an optimal PID controller is proposed. In all cases the
process is linearised by using approximation methods of
the model [Beck (2015),Kharisov et al. (2012),Struys et al.
(2004),Zhusubaliyev et al. (2015)].

The primary focus of the present paper lies in the feedback
linearization approach, which aims to maintain essential
information about the internal dynamics while establish-
ing a linear mapping between the input and output.

The present paper is structured as follows: Part 2 describes
the mathematical model, while part 3 discusses the feed-
back linearization of the BIS model as the theoretical core
of the paper. Section 4 includes the simulation results with
concluding remarks given in the final section of the paper.

2. MATHEMATICAL MODEL

The mathematical model will portray the dynamics be-
tween the input u(t) as the amount of Propofol and the
output y(t) =̇ BIS(t) as the measurable Bispectral In-
dex. In this paper the next general form of the system will
be considered:
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Σ :

{
ẋ = f(x) + g(x)u(t) + p(x)d(t)

y = h(x),
(1)

where x ∈ R4, x = [x1, x2, x3, xe]
⊤

are the states of
the system that represent the concentration of the drug
in the compartments of the model and xi[mg/ml], f(x)
is the vectorial function that defines the dynamics of
ẋ, g(x) will map the input u(t) onto x, as well the
function p(x) does to the exogenous uncontrollable input
d(t). The latter one is considered to be the disturbance,
which refers to any external influence or change that
affects the behaviour of the internal states or the out-
put function. For the purposes of the current paper we
will make the assumption of d(t) ≡ 0. The model is a
Pharmacokinetics-Pharmacodynamics PK-PD compart-
mental model used multiple times throughout literature
Gambús and Trocóniz (2015), Blussé van Oud-Alblas et al.
(2019). For the purposes of the present paper the model
from the open source simulator will be used Ionescu et al.
(2021), as such let us define the vectorial function that
gives the states of the model from (1):

f(x) =

−c1x1(t) + k21x2(t) + k31x3(t)
k12x1(t)− k21x2(t)
k13x1(t)− k31x3(t)
k1ex1(t)− ke0xe(t)

 , (2)

where c1 = k10 + k12 + k13. Each of the constant elements
kij , i ̸= j convey an information regarding the transfer rate
of drug concentration within the states of the system. With

the input mapping function onto (2) as g(x) = [1 0 0 0]
⊤

and the nonlinear output function that also describes the
BIS as the next Hill function:

h(x) = E0 − Em
xe(t)

γ

Cγ
50 + xe(t)γ

, (3)

in this case h(x) = BIS(t)[%]. From this it can be stated
that the model is a nonlinear one, given that the output
function is strongly nonlinear.

3. FEEDBACK LINEARIZATION OF BIS MODEL

This section provides details regarding the mathematical
tools that are needed to construct a linear map between
Propofol input and BIS output. We have seen in the
previous section, that as many other systems, the model
is nonlinear, considered to be a single-input and single-
output –SISO system, with this section the aim is to
analytically construct a control law u(t) in such a way
that we cancel out the nonlinearities. In the following
paragraphs all the steps towards the goal will be discussed.

3.1 Diffeomorfism Transformation

As shown in Isidori (1985), there is a need for a suitable
change of coordinates made in such manner that the
system in the new basis is in normal form. Moving further,
let us define the relative degree ρ around a vicinity of a
point x0 for the nominal input affine system (1), which is
given by the system described by Lie derivative relations:{

LgL
k
fh(x) = 0,∀x ∈ V(x0), k < ρ− 1

LgL
ρ−1
f h(x) ̸= 0

, (4)

where Lfh(x) is the Lie derivative of the nonlinear output
function h(x) with respect to the vector field x along the
vectorial trajectory of f(x), all evaluated within the radius
of the neighbourhood V(x0). If one does not want to em-
bark into solving the Lie derivative system predominantly
due to the intrinsic complexity of the equations involved,
the relative degree can be found by other means.

Proposition 1. The relative degree of the system of form
(1) is the number of times one has to differentiate the
output h(x) with respect to time until the value of the
input appears in an explicit form (u(t) is directly used or
referenced), the relative degree will be equivalent to the
order of the derivative where this holds.

For the system (1) let us compute the relative degree:

dh

dt
= −Emγxe(t)

γ−1 k1ex1(t)− ke0xe(t)

(Cγ
50 + xe(t)γ)2

d2h

dt2
=− Emγ(γ − 1) (k1e(−c1x1 + k21x2 + k31x3 + u))

(Cγ
50 + xe(t)γ)3

+
Emγ2 (k1e(−c1x1 + k21x2 + k31x3 + u)

(Cγ
50 + xe(t)γ)2

+Q(x)

(5)

where Q(x) are other terms in which u(t) does not appear.
Paying attention to the second time derivative (5) the
input u(t) appears in an explicit form therefore the relative
degree ρ = 2. It is easy to see that for our case the relative
degree is less than the order of the system (ρ = 2 < n = 4),
this implies that some zero dynamics or internal dynamics
will be present. With this in mind we consider the following
coordinate transformation:

z = Φ(x) =


ϕ1(x)
ϕ2(x)

...
ϕn(x)

 , (6)

where z ∈ Rn and the mapping Φ(x) = z should be a
diffeomorphism – i.e. for Φ(x) exists Φ−1(z) such that

Φ(x),Φ−1(x) ∈ C∞, and the Jacobian matrix ∂Φ(x)
∂x |x0 is

non-singular. The most important propriety of the change
of coordinates is to be a bijective map.

Having a lower relative degree the transformation will
be constructed as follows: the first 2 elements of the
diffeomorphism are given by the first ρ − 1 = 1 Lie
derivatives of the output function with respect to vector
field x and along the vector trajectory of f(x), and to
complete the dimensionality two functions ϕ3(x), ϕ4(x)
are added and will be discussed in the following sections.
Therefore the local coordinates change will be as in (7),

z = Φ(x) =

 h(x)
Lfh(x)
ϕ3(x)
ϕ4(x)

 . (7)

The first 2 coordinates are given by:

z1 =h(x) = E0 − Em
xe(t)

γ

Cγ
50 + xe(t)γ

z2 =
〈
∇h, f(x)

〉
= − Emγxe(t)

γ−1

(Cγ
50 + xe(t)γ)2

· (k1ex1(t)− ke0xe(t))
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To complete the diffeomorphism Φ, we have to find two
functions ϕ3(x), ϕ4(x) such that:

Lgϕi(x) = 0, i ∈ {3, 4}, ∀x ∈ V(x0).

Let us make the next notations:

α(x) = ⟨∇Lρ−2
f ⟨∇h(Φ−1(z)), f⟩, g⟩ .

= LgL
ρ−1
f h(Φ−1(z))

β(x) = Lρ−1
f ⟨∇h(Φ−1(z)), f⟩ .

= Lρ
fh(Φ

−1(z))

qi(z) = ⟨∇ϕi(Φ
−1(z)), f⟩ = Lfϕi(Φ

−1(z)), i = 1, 4,

The key propriety of this transformation stands in its
derivative with respect with time, such as if the compu-
tation is made the normal form of the system reveal itself
and it can be seen in (8). In this new form of the system
the dynamics, including the nonlinear terms, are isolated
with the input function, now u(t) can be picked in such a
way that those terms cancel each other out.

This will convey a linear map between input u(t) and
output y(t).

Φ(ẋ) = ż =


z1

β(z) + α(z) · u(t)

q3(z)
q4(z)

 . (8)

Therefore, the new coordinates are defined with a bijective

map between the two: x
Φ−1(z)⇐====⇒
Φ(x)

z.

3.2 Zero Dynamics

In examining equation (8), it becomes evident that there
exists a partial transformation of coordinates due to the
relative degree being less than the system’s order. This
transformation introduces two supplementary functions
denoted as qi(z), i = 1, 4. This yields that the system
has 2 internal states, that lack of effect into the output,
the dynamics of those internal states will be called zero
dynamics and to fulfil the purposes of this paper an
analysis is clearly needed. Let us split the state vector in
the new coordinates into two parts

z =

[
ζ

η

]
, (9)

where ζ ∈ R2 is the sub-state vector that contains the
main states of the system that were part of (7) and
η ∈ R2 represents the sub-state vector containing the
internal states and they can be seen in (8). We can make
a choice for ϕi(x) i = 3, 4 with the constraint that Φ(x)
will still be a diffeomorphism, the most logical choice is
to include the exact states that were not included in the
transformation, therefore: ϕ3(x) = x2 and ϕ4(x) = x3.

Now the dynamics of the system will be described by
differentiating z:

Ψ :


ż =

 ζ̇

η̇

 = Φ(ẋ),

y = z1(t).

As the name suggests the influence of internal dynamics
of the system appears in the case of zeroing the output. In
the literature this problem is stated as finding all pairs of
(x0, u0) such that the relation (10) holds:

Ψ :

{
Φ(ẋ)

∣∣
(x0,u0)

y(t)≡0.
(10)

A clear solution is (0, 0), but we want to exclude the trivial
pair. The normal form of the system give us the relation
y(t) = z1(t) = 0 ⇒ ż1 = ż2 = 0, from this is easy to
observe the only dynamics are given by ϕ3x) = x2 and
ϕ4(x) = x3. Therefore the evolution of (Ψ) is given by η
as all the states ζ ≡ 0 with η̇ = q(0, η). With this is mind
it can be stated a new relation for q3(x) given by the Lie
derivatives:

q3(z) = Lfϕ3(Φ
−1(z)) = ⟨∇ϕ3, f(x)⟩

=

[
∂x2

∂x1

∂x2

∂x2

∂x2

∂x3

∂x2

∂x4

]
· f(x) = ẋ2. (11)

In the same manner, we have:

q4(z) = Lfϕ4(Φ
−1(z)) = ⟨∇ϕ4, f(x)⟩ = ẋ3. (12)

as such, the zero dynamics can be stated as follows

η̇ =

[
q3
q4

]
=

[
ẋ2

ẋ3

]
,

and the system Ψ in its explicit normal form is:

Ψ :


ż1 = z2
ż2 = β(z) + α(z) · u(t)
η̇ = q(ζ, η)

y = z1

. (13)

The most important characteristic of the dynamics, is it’s
stability, therefore we focus on the subsystem η̇(t). In
Isidori (1985) it was shown that computing the trajectory
of the internal states taking a linear approximation of the
newly formed sub-system for internal dynamics are
interchangeable. Starting with the system in normal form
presented in (13) the linear approximation of the zero
dynamics when η = 0 is given by the Jacobian matrix:

Anc =

[
∂q

∂η

] ∣∣
(ζ,η)=0 =

 ∂q3
∂x2

∂q3
∂x3

∂q4
∂x2

∂q4
∂x3

 |(ξ,η)=0

=

 ∂

∂x2
(k12x1 − k21x2)

∂

∂x3
(k12x1 − k21x2)

∂

∂x2
(k13x1 − k31x3)

∂

∂x3
(k13x1 − k31x3)


=

[
−k21 0
0 −k31

]
. (14)

The eigenvalues of the companion matrix of the vector η
are the roots of the characteristic polynomial correspon-
dent with the zeros of the transfer function if one were to
linearize around the equilibrium point x = 0. As stated
before, η̇ = Ancη, thus when the system is in a state of
zeroing the output all of the states of the system (Ψ) will
evolve on the subset:

Z⋆ = {x ∈ R4 : h(x) = Lfh(x) = 0}, (15)

with the dynamics dictated by η and, because the eigen-
values λ1 = −k21, λ2 = −k31 ∈ C− the set Z⋆ is a
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stable set. Moreover it is a smooth manifold of dimension
2 giving a mathematical assurance that the computation
of a diffeomorfism holds even in the case of zeroing the
output.

The state feedback is considered as:

u⋆(t) =
−Lρ

fh(x)

LgL
ρ−1
f h(x)

=
−L2

fh(x)

LgLh
f (x)

. (16)

If x ∈ Z⋆ and u(t) = u⋆(t), the vector field that gives
the original orthonormal vector basis can be denotes as in
(17).

f⋆(Φ−1(z)) = f(Φ−1(z)) + g(Φ−1(z)) · u⋆(t), (17)

this gives a closed-loop relation described by (18)

Φ−1(ż) = f⋆(Φ−1(z)), (18)

with the very helpful propriety that if its initial conditions
are on the smooth manifold Z⋆ it is guaranteed that they
will evolve onto the same manifold-closed path with a
trajectory governed by Anc. As the final step towards
analysing the zero dynamics of the system, the subsequent
values for Anc are extracted from Ionescu et al. (2021):

Anc =

[
−0.0735 0

0 −0.0035

]
; η

(i)
0 =

[
N (0, 30)
N (0, 30)

]
, i = 1, 40

where N (0, 30) is the normal distribution with the mean
µ = 0 and standard deviation σ = 30, this will result in
random initial conditions with values inside the interval
[−30, 30]. The objective is to showcase the internal sta-
bility of the system irrespective of the initial conditions,
hence the case of 40 random initial conditions. The evolu-
tion of the internal states can be seen in Fig. 1, it also can
be observed that one state is faster than the other, however
both will eventually evolve towards the equilibrium value
of 0.

Fig. 1. The evolution of zero dynamics

3.3 Compensation of residual Non-Linearities

From the previous section one can denote that for u = u⋆

the system will be stabilised even at the zeroing of the
output situation, but much more than that the system

will become linear because the input will cancel out the
nonlinearities from the ρth state. As for the analytical
expression the input can be rewritten as:

u =
1

α(ζ, η)
(−β(ζ, η) + v(t)), (19)

where v is defined as the new exogenous input for the
new system. However a common problem arises: the limits
of the control signal. For (19) Isidori has proven that
α(ζ, η) ̸= 0 therefore excluding the situation of boundless
input. But, the problem of an infeasible signal remains.

To align our theoretical analysis with the real world
application a saturation was added to the values of u(t),
in order to not lose the generality let us define umin and
umax as the minimal and maximal values for the input u,
therefore

u = sat{ 1

α(ζ, η)
(−β(ζ, η) + v(t)), umin, umax} (20)

By its definition a saturation added in the system is
a powerful nonlinear element, however given that we
assumed that the system is input-affine the nonlinear
terms will be compensated by other means. One method is
to artificially change the operation point towards a point
where the saturation element does change the values of u.

3.4 Control Trajectory

As it has been presented, the internal states can be
excluded from the control strategy if their dynamics are
stable which holds for our case because they do not affect
the output. If the inner loop is closed the system will
become a 2nd order linear, fully controllable and observable
system. It is worth mentioning that the internal states are
correspondent with the uncontrollable states of the system
if a linear approximation around an equilibrium point is
taken.

Now let us tackle the problem of output tracking where
output y has to follow a certain trajectory yref . This is the
scope of the exogenous input v(t) from the equation (19).
Considering the relative degree ρ = 2, the usual method
of describing v(t) is by the relation:

v(t) = y(2)r (t)−
2∑

j=1

kj−1(zi(t)− y(j−1)
r (t)), (21)

where y
(j)
r (t) is the jth derivative of the reference, zi are the

states of the linear system, and kj ∈ R are the controller’s
parameters which should be designed. This structure is
perfect for a state-feedback framework from which all kj
elements can be found, such an example was presented in
a previous paper Pintea and Mihaly (2023) applied on a
different model, however for the purposes of the present
paper a different structure, PD structure is used.

After all this considerations, the inner closed-loop system
after the exact linearization process can be written as:

Ψc :

{
ζ̇ = Acζ +Bcv

y = Ccζ.
(22)

with ζ ∈ R2 being the linear and controllable vector state,
Ac ∈ R2×2, Bc ∈ R2, Cc ∈ R1×2 being the matrices of
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controllable canonical form. The transfer function of the
system becomes a double integrator between v(t) and y(t)

H(s) =
1

s2
. (23)

With this any suitable linear controller can be designed in
order to impose feasible performances. Given the double
integrator, a PD controller with a filter as in (24) is
proposed. This will increase the phase margin and decrease
the time response of the closed loop system.

HPD(s) =
kd · s

Tf · s+ 1
(24)

The process as a whole that the paper presents can be
described in a few steps:

• Diffeomorphism Transformation
• Compute u(t) and close the loop
• Design a controller for the linear inner closed loop

Fig. 2. Block Diagram of the System

This process can be seen in Fig. 2, where the inner closed
loop becomes a double integrator, and for that a HPD(s)
controller is added.

4. CASE STUDY

In this section, a case study will be considered for con-
trolling the BIS (t) [%] in such a manner that it arrives at
BIS = 50%, most important without any overshoot and a
steady-state error as small as possible.

According to the open source simulator the first step is to
define values for the parameters of the model Ionescu et al.
(2021). For the purpose of the present paper the system
in (1) will be considered and let us define the following
values for the vectorial functions:

f1(x) =

−0.8436x1(t) + 0.0735x2(t) + 0.0035x3(t)
0.1841x1(t)− 0.0735x2(t)
0.1958x1(t)− 0.0035x3(t)
0.4560x1(t)− 0.4560xe(t)

 ,

g1(x) = [1 0 0 0]
⊤

and as for the parameters of the output function we have
C50 = 4.6;E0 = 100;Em = 100; γ = 10. This set of values
will be referred to as Patient 1. In this case, as it has
been previously described, the zero dynamics is stable.
The diffeomorfism will be as presented in (7) therefore the
closed-loop transfer function will be a double integrator

H(s) =
1

s2
.

As seen in Fig. 2 the only block left is the HPD(s),
imposing a certain structure for the closed loop that
ensures no overshoot, the controller transfer function is
computed as in (25):

HPD(s) =
0.1s

s+ 1.1
. (25)

Fig. 3 show the controlled output BIS reaching the desired
value of 50% with no overshoot and a steady-state error
εp < 2%.

Fig. 3. The BIS of 1 patient

The proposed control strategy is model based. Thus it is
necessary to analyse the robustness of the approach in the
case of parameter variations due to patient intra/inter-
variability.

To consider this case study complete let us take in consid-
eration the next realisation of the system:

(Σ̃) :

{
ẋ = f(x) + ∆f(x) + g(x)u(t);

y(t) = h(x),
(26)

where ∆f(x) is the varying values of f(x) and their from
can be described as parametric uncertainties smooth in
their arguments. Let us take in consideration a varying
range of ±10% and map them onto the dynamics with a
normal Gaussian distribution as presented in (27).

(
f
g

)
∼ N


(
−10%

0

)
︸ ︷︷ ︸
min{∆f(x)}

,

(
+10%

0

)
︸ ︷︷ ︸
max{∆f(x)}

 (27)

For this now there will be σ sets of values for patients
with the extreme varying values of ±10% on which the
control structure will be tested on. It is expected to have
differences, given the model-based nature of the control
structure. Considering model variations due to patient
variability, the designed control signal u(t) may not ensure
the exact linearization and the inner closed loop may begin
to behave in an unpredictable manner.

Let us consider σ = 10 therefore there will be 10 patients.
The results can be seen in Fig. 4. It is important to notice
that the nature of the signal does not change, it has no
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unwanted dynamics, and most important for us, it has no
overshoot.

Fig. 4. The BIS of σ = 10 patients

The only problem now is the steady-state error that can be
seen in the results, this is due to the residual nonlinearities
that are produced by ∆f(x), but is worth mentioning that
the parametric uncertainties do not introduce dynamics
of other nature, given the evolution of the system. This
section concludes with the idea that the controller works
within performance boundaries if the system has para-
metric uncertainties that can be included in a polytopic
inclusion, or a convex hull under the normal distribution
from (27).

5. CONCLUSION

The paper aimed to design a control law that takes the
exact linearization of the model and ensures performances
of no overshoot and minimum steady-state error for a
system with no parametric uncertainties. The goal was
achieved. Moreover we went at the extent of testing the
control law on a system with parametric uncertainties and
found that the performances are close to the first case.
However this seeds the ideas for future works, where it is
intended to design the control strategy with those para-
metric uncertainties in mind, adding a layer of robustness
to the control law.
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