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Abstract: This work proposes a novel nonlinear Proportional-Integral (PI) controller, which
utilizes a generalized first-order reset element. The proposed element can achieve similar
magnitude-characteristics as its linear counterpart but with less phase lag at the open-loop
crossover frequency (i.e. the control bandwidth), according to a sinusoidal-input describing
function (SIDF) analysis. The same can be achieved with an existing reset-based integrator,
the Clegg integrator (CI). However, it is known that a Proportional-CI (PCI) element can
excessively generate higher-order harmonics of its input, which are neglected in the SIDF-
analysis. Furthermore, a PCI can cause a limit cycle when placed in closed-loop with certain
types of plants. The novel PI controller proposed in this work can prevent the limit cycle and can
reduce the generation of higher-order harmonics, while retaining the beneficial phase advantage
that is associated with existing reset-based PI controllers.

Keywords: PI control, nonlinear feedback control, reset control, limit cycle, higher-order
harmonics, frequency-domain

1. INTRODUCTION

Linear control has been an important factor in enabling
and improving numerous industrial applications, rang-
ing from chemical process plants to semiconductor chip
manufacturing equipment (Lamnabhi-Lagarrigue et al.,
2017). Proportional-Integral-Derivative (PID) feedback
controllers are conventionally utilized, among others be-
cause they are relatively easy to implement and design
(Åström and Hägglund, 2001). The latter can be done in
the frequency-domain using a frequency-response function
(FRF) of the plant, which can be acquired based solely
on measurement data. However, linear control is subject
to inherent limitations, which can for example be char-
acterised by means of Bode’s gain-phase relationship or
trade-offs between overshoot and rise-time specifications
(Freudenberg et al., 2000).

Reset control is a nonlinear control technique that can
overcome certain limitations of linear control, as illustrated
by e.g. Beker et al. (2001). The first reset element was
developed by Clegg (1958), which is known as the Clegg
integrator (CI). This element behaves like a linear inte-
grator but resets its output to zero when the input signal
is equal to zero. In Clegg (1958), a sinusoidal-input de-
scribing function (SIDF) analysis of the CI was performed,
which suggests that the element can overcome Bode’s gain-

⋆ This work is supported by ASMPT.

phase relationship. In a SIDF-analysis, the CI’s output
behaviour is investigated when excited with a sinusoidal
input. Although the output signal is not sinusoidal, the
SIDF-analysis investigates the behaviour of the first-order
harmonic, i.e. the harmonic with the same frequency as the
input signal. This first-order harmonic shows equivalent
magnitude-characteristics as a linear integrator. However,
whereas a linear integrator has a phase lag of 90◦, this is
only 38.1◦ for the CI.

Even though a SIDF-analysis illustrates that the CI has
potential for replacing the integral part of the classical
(linear) PID element, it can also introduce certain prob-
lems. First, the CI can excite high-frequent resonances of
the plant that is being controlled. Namely, while neglected
by the SIDF-analysis, the CI’s output signal also contains
higher-order harmonics of its input signal (Saikumar et al.,
2021). Since these higher-order harmonics are injected into
the plant, they can excite resonances in the overlapping
frequency-ranges. Second, the CI can cause a limit cycle
in the closed-loop system (HosseinNia et al., 2014). Since
these problems are already observable when utilizing a
more simple PI element, we will focus on that control
configuration in this work.

There exist several nonlinear alternatives for the CI el-
ement which tackle one or both of the described prob-
lems. However, in this work we are only interested in
reset elements that (partially) reset their state(s) when
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the input signal is zero. Namely, this is the only class
of nonlinear elements for which control design tools have
been developed that only rely on a plant FRF and are able
to capture the effect of higher-order harmonics generation
on the closed-loop system (Saikumar et al., 2021). One
control structure exists that: (1) fits into this class of
reset elements, (2) can reduce the generation of higher-
order harmonics, and (3) can prevent the limit cycle. This
so-called PI+CI element has been developed by Baños
and Vidal (2007), which contains both a linear integrator
and a CI, both taking a fraction of the total integral ac-
tion. However, reducing the higher-order harmonics simply
means that a larger fraction of the integral action is taken
by the linear integrator. Therefore, reducing the problem
inherently means trading off the benefit the CI element
offers, i.e. its phase advantage.

In this work we propose a novel reset integrator that can
mitigate negative impact of higher-order harmonics and
can prevent the limit cycle, without trading off the bene-
ficial phase advantage associated with the CI element. In
order to achieve this, a key insight is that phase advantage
is often only required around the control bandwidth, in
order to achieve sufficient phase margin. To develop the
proposed integrator, inspiration is taken from Heertjes
et al. (2021); Hosseini et al. (2022); van Eijk et al. (2023),
where another nonlinear integrator strategy is developed
based on the hybrid integrator-gain system (HIGS). In this
work we use a similar approach but make use of a general-
ized first-order reset element (GFORE) instead of HIGS,
which have a similar SIDF. The benefit of using a GFORE
is that its phase lag – according to a SIDF-analysis – can
be tuned between −90◦ and 0◦, while with HIGS it is only
possible to achieve a phase lag between −90◦ and −38.15◦.
Furthermore, it is unclear how the higher-order harmonics
generated by HIGS affect the closed-loop system, while
these effects can be analysed for our proposed (reset-
based) integrator using the tools in Saikumar et al. (2021).

The remainder of this paper is organized as follows. In
Section 2 the necessary theoretical preliminaries are given.
We propose our novel integrator in Section 3. Its benefits
in terms of reducing higher-order harmonics generation
and preventing the limit cycle are discussed in Section 4
and 5, respectively. Finally, Section 6 provides concluding
remarks and elaborates on future research.

2. PRELIMINARIES

Consider the reset element given in state-space represen-
tation by

R :=


ẋ(t) = ωr

(
e(t)− bx(t)

)
, if e(t) ̸= 0,

x(t+) = γx(t), if e(t) = 0,

v(t) = x(t),

(1)

with state x ∈ R, input e ∈ R, output v ∈ R, integrator
frequency ωr ∈ R>0, reset fraction γ ∈ (−1, 1], b ∈ {0, 1},
and time t ∈ R, where t+ := limτ→t+0 τ . By setting b = 0
and γ = 0, the CI is obtained (Clegg, 1958). As part of our
proposed integrator we utilize a GFORE, which is obtained
by setting b = 1 (Saikumar et al., 2021).

To analyse the frequency-domain behaviour of the reset
element, we can perform a higher-order SIDF (HOSIDF)
analysis, as developed by Nuij et al. (2006). In this method,

e u

R

Cpar

Cpos
z
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w

L

Fig. 1. Schematic representation of a system L with reset
element R and LTI elements Cpar and Cpos.

we consider the response to sinusoidal inputs e(t) =
ê sin(ωt), with amplitude ê ∈ R>0 and frequency ω ∈ R>0.
For these inputs, the output of the reset element converges
to a 2π

ω -periodic solution (Guo et al., 2009, Proposition
2). Therefore, according to Saikumar et al. (2021), this
stationary output can be described by the Fourier series

vs(t) =

∞∑
n=1

|Hn(ω)|ê sin
(
nωt+ ∠Hn(ω)

)
, (2)

where Hn ∈ C is the nth-order SIDF, with order n ∈ N. An
analytical expression for the HOSIDFs of the reset element
has been derived in Saikumar et al. (2021). For later use, a
special case of Saikumar et al. (2021) is given in Lemma 1,
which contains an analytical expression for the HOSIDFs
of a GFORE.

Lemma 1. (Saikumar et al., 2021, Theorem 3.1) The
HOSIDFs of a GFORE, i.e. reset element R with b = 1,
are given by

Hn(ω) :=


ωr(ωr + jω)−1

(
1 + jΘD(ω)

)
, for n = 1,

ωr(ωr + jnω)−1jΘD(ω), for odd n ≥ 2,

0, for even n,
(3)

where j :=
√
−1 and

ΘD(ω) =
2(1− γ)

π
· ω2

ω2 + ω2
r

· 1 + e(−πωr/ω)

1 + γe(−πωr/ω)
. (4)

Since our proposed integrator also considers linear time-
invariant (LTI) control elements in parallel and after the
GFORE, consider the system L shown in Fig. 1. This
system consists of reset element R, LTI element Cpar with
output w ∈ R, and LTI element Cpos with input z := v+w
and output u ∈ R. Note that the input-output relations
of Cpar and Cpos can be described in the frequency-
domain by W (s) = Cpar(s)E(s) and U(s) = Cpos(s)Z(s),
respectively. Here, s ∈ C is the Laplace variable, and
the capitalized variables E,W,Z,U ∈ C are the Laplace
transforms of the respective non-capitalized time-domain
signals. The HOSIDFs of the complete system L are given
by (Karbasizadeh, 2023, Chapter 10)

Ln(ω) :=


Cpos(jω) [H1(ω) + Cpar(jω)] , for n = 1,

Cpos(njω)Hn(ω), for odd n > 1,

0, for even n,
(5)

where the even-order SIDFs are zero because the even-
order SIDFs of the reset element are zero (Saikumar et al.,
2021, Theorem 3.1).
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Fig. 2. Schematic representation of the proposed nonlinear
PI element, with a GFORE in reset element R (b = 1)
and LTI element CPI.

3. DEFINITION OF NOVEL PI-ELEMENT

Consider an LTI PI-element, given in the frequency-
domain by

Clin(s) = 1 + ωi ·
1

s
, (6)

with integrator frequency ωi ∈ R≥0. We propose the
nonlinear PI-element shown in Fig. 2, where the linear
integrator is replaced by a series connection of a GFORE
and another LTI PI element, given in the frequency-
domain by

CPI(s) =
ωc + s

ωcs
, (7)

with phase-shift frequency ωc ∈ R>0. Subsequently, the
GFORE’s integrator frequency is fixed as

ωr =
ωc√

1 + Θ2
D,∞

, ΘD,∞ =
4(1− γ)

π(1 + γ)
. (8)

Hereby, the SIDF of this GFORE-based integrator (GFbI)
has equivalent magnitude-characteristics as an LTI inte-
grator

Cint(s) =
1

s
, (9)

for the low-frequent (ω → 0) and high-frequent (ω → ∞)
limit cases (see Appendix A for proofs). This is portrayed
in Fig. 3, which provides the magnitude- and phase-
characteristics of a GFbI’s SIDF, as well as the elements
constructing it, and compares it to LTI integrator Cint.
Note that the GFbI’s SIDF can be constructed using (5)
by substituting Cpar(s) = 0 and Cpos(s) = CPI(s). The
figure shows that the magnitude-characteristics of the
GFbI’s SIDF are similar to those of the LTI integrator
over the complete frequency-range. However, a difference
can be observed in terms of the phase-characteristics. The
LTI integrator has a phase lag of 90◦ over the complete
frequency-range. While this is also the case for the GFbI
in the low-frequency range, the phase lag reduces in the
high-frequency range.

The frequency at which the phase changes can be tuned
using phase-shift frequency ωc, as visualized in Fig. 4a.
For frequencies lower than ωc the GFbI behaves like an
LTI integrator, whereas for frequencies higher than ωc it
behaves like a generalized CI (GCI) – a CI with nonzero
reset fraction γ – with

ωr =
1√

1 + Θ2
D,∞

. (10)

Namely, when tuning the GCI’s integrator frequency ac-
cording to this relation, its SIDF has equivalent magnitude-
characteristics as LTI integrator Cint over the complete
frequency-range (Guo et al., 2009).

-40

-20

0

20

40

M
a

g
n

it
u

d
e

 (
d

B
)

10-2 10-1 100 101 102

Frequency (rad/s)

-80

-60

-40

-20

0

P
h

a
s
e

 (
d

e
g

)

LTI part C
PI

GFORE

GFbI

LTI integr.

Fig. 3. Magnitude- and phase-characteristics of LTI ele-
ment CPI (ωc = 1), the SIDF of a GFORE (γ = 0)
with ωr as in (8), and the SIDF of their series connec-
tion, compared with LTI integrator Cint.

Apart from tuning the frequency-range in which the SIDF
shows reduced phase lag, a specific phase can be obtained
at the high-frequent limit-case by tuning reset fraction γ
according to the relationship (Guo et al., 2009)

lim
ω→∞

∠L1(ω) = arctan

(
4(1− γ)

π(1 + γ)

)
− π

2
. (11)

Note that the phase is completely determined by the
GFORE, because the phase of LTI element CPI converges
to 0◦. The result for various reset fractions is visualized
in Fig. 4b. One can observe from the figure that the
SIDF is equivalent to that of LTI integrator Cint when
reset fraction γ = 1, since this means that no reset
happens at all. When decreasing the reset fraction, the
phase lag reduces. Eventually, for γ → −1, the phase even
approaches 0◦. In conclusion we can observe that the level
of phase lag reduction, as well as the frequency-range in
which this occurs, can be tuned independently from the
magnitude-characteristics.

Remark 2. The possibility of tuning the GFbI’s phase
in the high-frequency range, shows similarities to what
can be done using an LTI fractional integrator. How-
ever, note that the SIDF-based magnitude- and phase-
characteristics of a GFbI are not constrained by Bode’s
gain-phase relationship. Therefore, these characteristics
cannot be achieved using any LTI system, even if they
are of fractional-order.

4. REDUCTION OF HIGHER-ORDER HARMONICS

From the point of view of a SIDF-analysis, the most bene-
ficial phase-characteristics of the GFbI would be obtained
if ωc → 0, which means that the GFbI reduces to a GCI.
When γ → −1, it is even possible to achieve no phase
lag over the complete frequency-range. However, a SIDF-
analysis neglects the higher-order harmonics that are gen-
erated by the GFbI. When the magnitude of the HOSIDFs
is reduced compared to the magnitude of the SIDF, this
means that a SIDF-analysis becomes more accurate.

As explained earlier, the HOSIDFs of a GFbI can be
derived using (5). In the remainder we will analyse the
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Fig. 4. Magnitude- and phase-characteristics for the first-
and third-order SIDF of a GFbI.

higher-order harmonics by focusing on the magnitude-
characteristics of the third-order SIDF. Namely, on one
hand, the even-order SIDFs are all equal to zero, because
the even-order SIDFs of a GFORE are equal to zero (see
Lemma 1). On the other hand, a GFORE’s odd-order
SIDFs with n > 3 always have a lower magnitude than
the third-order SIDF. Namely, according to Lemma 1, its
magnitude-characteristics are given by

|Hn(ω)| =
ωrΘD(ω)√
ω2
r + n2ω2

. (12)

For any frequency ω, a larger n results in a lower magni-
tude of the HOSIDF. Since the goal is to keep the magni-
tudes of all HOSIDFs small compared to the SIDF, such
that they can be neglected, designing a low third-order
SIDF directly means that all HOSIDFs are at least as low
as that one. For the same reason, the phase-characteristics
of the HOSIDFs will not be further analyzed.

In Fig. 4a, the magnitude-characteristics of the GFbI’s
third-order SIDF are visualized for different values of
phase-shift frequency ωc. As concluded earlier, increasing
ωc results in a smaller frequency-range with reduced phase
lag. However, one can also observe that increasing ωc re-
sults in smaller HOSIDFs, especially for frequencies lower
than ωc. For frequencies higher than ωc, the magnitude
of the third-order SIDF is similar and almost independent
from ωc. To lower the magnitude of the third-order SIDF
for frequencies higher than ωc, one can tune reset fraction

e

R ωi

u

Fig. 5. Schematic representation of a PCI-element, with a
CI in R (b = 0, γ = 0) and ωr as in (10).

γ, as displayed in Fig. 4b. By increasing the reset fraction,
the magnitude of the third-order SIDF is decreased over
the complete frequency-range. For γ = 1, i.e. an LTI
integrator, the magnitude of the third-order SIDF is equal
to zero.

The benefit of the GFbI over the CI, in terms of higher-
order harmonics reduction, becomes apparent when study-
ing it as a part of the proposed nonlinear PI-element.
Therefore, we compare our proposed structure shown in
Fig. 2 with the PCI-element displayed in Fig. 5. By pre-
senting both systems in a different manner, its HOSIDFs
can still be computed using (5). Namely, the system shown
in Fig. 2 is equivalent to the system in Fig. 1 when
choosing Cpos(s) = ωiCPI(s) and Cpar(s) =

1
ωiCPI(s)

. The

same holds for the system shown in Fig. 5 by choosing
Cpos(s) = ωi and Cpar(s) =

1
ωi
.

The magnitude- and phase-characteristics of a PCI’s first-
and third-order SIDF are visualized in Fig. 6. One can
observe that the difference in magnitude between the
first- and third-order SIDF is large in the high-frequency
range. However, in the low-frequency range the magnitude-
gap is only 11.6 dB. Even though the first-order SIDF
is still dominant, the influence of higher-order harmonics
cannot be neglected. Next, consider our proposed PI-
element with the same integrator frequency ωi, ωc = 0.9,
and γ = −0.5, for which the magnitude- and phase-
characteristics of the first- and third-order SIDF are also
portrayed in Fig. 6. One can observe that the proposed
PI-element not only yields a large magnitude-gap in the
high-frequency range, but also in the low-frequency range.
Furthermore, the smallest magnitude gap can be observed
at a frequency of ω = 0.593, which is equal to 18.74 dB.
Therefore, the magnitude gap of the proposed PI-element
is, for all frequencies, larger than the smallest gap with
the PCI. Even though the HOSIDFs of the proposed PI-
element are overall reduced compared to the PCI, it is able
to achieve better first-order SIDF phase-characteristics.
Namely, consider the case in which both nonlinear PI
elements are utilized to control a plant. The frequency
at which the open-loop FRF has a magnitude of 0 dB
– the control bandwidth – is often chosen to be larger
than the integrator cut-off frequency ωi (Munnig Schmidt
et al., 2014). In this example, the phase advantage of
our proposed element is larger than the one of the PCI
for frequencies ω > 1.4ωi. Specifically at ω = 5ωi, our
proposed PI-element yields 1.6◦ less phase lag than the
PCI element. By further utilizing this benefit, one can also
increase the integrator frequency ωi to achieve a larger
low-frequent magnitude. This is also visualized in Fig. 6,
showing that we can achieve a 5.6 dB larger magnitude in
the low-frequency range, while having the same phase lag
as the PCI at ω = 5ωi, as well as a larger magnitude gap
(16.48 dB) between the first- and third-order SIDF.
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Fig. 7. Schematic representation of a closed-loop system
with LTI plant P and feedback controller Cfb.

Remark 3. Instead of comparing the proposed PI to a PCI,
we could have also chosen other reset-based elements, such
as a PI+CI or one containing a GCI. However, with both
of these it remains impossible to achieve less phase lag and
a larger magnitude gap between the first- and third-order
SIDF at the same time.

5. LIMIT CYCLE PREVENTION

In this section we show that the proposed PI-element can
prevent the undesired limit cycle which can arise with a
PCI, when these are utilized to control certain types of
plants. For that purpose, consider the closed-loop system
shown in Fig. 7, consisting of an LTI plant P with output
y ∈ R and input u, and feedback controller Cfb with output
u and input e := r−y, where r ∈ R is the reference signal.

Consider a simple first-order plant, given in the frequency-
domain by

P (s) =
0.1

s+ 0.1
, (13)

which already suffices to illustrate the occurrence of the
limit cycle. Consider the case in which the plant is con-
trolled by the LTI PI-element in (6), where ωi = 1.3917
is tuned to achieve a phase margin of 30◦. The step
response that is obtained with this feedback controller
is portrayed in Fig. 8. One can observe that, after the
initial rise time, the system overshoots the reference and
oscillates around the reference until it settles. Next, we
replace the LTI PI-element for a PCI with the same in-
tegrator frequency ωi. The step response shows that the
overshoot can be eliminated. However, the system suffers
from the limit cycle (HosseinNia et al., 2014). Namely,
each time when the reference position is reached, i.e. the
error signal is equal to zero, the state of the integrator is
reset to zero. Hence, the control output that is necessary
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Fig. 8. Numerical step response simulations with plant
P in (13), controlled by either LTI PI Clin, a
PCI, or a proposed PI-element (γ = 0, ωc ∈
{0.399, 0.1331, 0.04437}), all with ωi = 1.3917.

to stay in the equilibrium is removed, and the system
will show undershooting behaviour. This cycle will then
continue to repeat itself. To prevent the limit cycle, our
proposed nonlinear PI-element can be utilized. By tuning
the phase-shift frequency ωc, one can tune the behaviour
between that of the LTI PI-element (ωc → ∞) and the
PCI-element (ωc → 0). When starting with a high value
for the phase-shift frequency, reducing it will lower the
overshoot caused by the LTI PI-element and allows for
faster settling. When starting with a low value, increasing
it will diminish the undershoot caused by the PCI-element.
Furthermore, the undershoot is not persistent anymore.
Namely, our proposed solution internally incorporates an
LTI PI-element after the GFORE, which makes it possible
to build and retain the control output that is necessary
to stay at the reference. Finally, it is interesting to see
that – by properly tuning the phase-shift frequency – it
is possible to achieve neither overshoot nor undershoot.
After the initial rise time, the system will instantly settle
at the reference.

Remark 4. Note that step response simulations with the
plant in (13) have also been performed in Baños and Vidal
(2007), where instead a PI+CI element was utilized to
prevent the limit cycle. By properly tuning its fraction of
nonlinear versus linear integral action, it is also possible
to achieve finite-time convergence without any overshoot
(Nair et al., 2018). A benefit of our proposed PI-element
is that it contains an extra tuning parameter, i.e. it can be
tuned in different ways to achieve finite-time convergence
without overshoot. Therefore, it gives us more freedom to
also reduce the higher-order harmonics generation, which
is not possible with the PI+CI.

6. CONCLUSION

In this paper a novel GFORE-based PI-element is pro-
posed which can overcome two limitations of a PCI-
element. First, the proposed solution can prevent the limit
cycle which is observed with a PCI. When properly tuned,
the step response shows that it is possible to achieve
finite-time convergence without any overshoot, which is
not possible with a PCI or LTI PI-element. Second, the
novel PI-element can reduce the generation of higher-order
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harmonics, especially in the low-frequency range. Even
though other alternative solutions exist that can achieve
the same benefits, these either require trading off the
beneficial phase-advantage at the open-loop crossover fre-
quency, or they cannot be straightforwardly designed while
taking the effect of higher-order harmonics into account.
The reset-based PI-element proposed in this work does
not face this trade-off. Instead, it can even improve the
mentioned phase-advantage, or achieve the same phase-
advantage with larger integral gain.

As a part of our future work, we will investigate how
the proposed PI-element should be tuned in a closed-
loop setting, e.g., to diminish higher-order harmonics
generation. Furthermore, it is of interest to evaluate the
behaviour of the novel element when controlling a more
complex plant. For example, this concerns higher-order
plants, and plants with a right-half plane zero or dead-
time.
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Appendix A. CONSTRUCTION OF THE GFBI

The magnitude-characteristics of the LTI integrator in (9)
are given by

|Cint(jω)| =
1

ω
. (A.1)

We can derive from (5) that the magnitude-characteristics
for the SIDF of a GFbI are given by

|L1(ω)| = |H1(ω)||CPI(jω)|. (A.2)

We know from Lemma 1 that the magnitude-characteristics
for the SIDF of a GFORE are given by

|H1(ω)| =
ωr

√
1 + Θ2

D(ω)√
ω2
r + ω2

, (A.3)

while those of LTI element CPI in (7) are

|CPI(jω)| =
√

ω2
c + ω2

ωcω
. (A.4)

Finally, substituting (A.3)-(A.4) in (A.2) yields

|L1(ω)| =
1

ω
·
ωr

√
ω2
c + ω2

ωc

√
ω2
r + ω2

·
√

1 + Θ2
D(ω). (A.5)

A.1 Low-frequent limit case

From Lemma 1 we conclude that ΘD(0) = 0. Then, utiliz-
ing (A.5), we find that limω→0 |L1(ω)| = limω→0

1
ω . There-

fore, the SIDF of the GFbI has equivalent magnitude-
characteristics as the LTI integrator for the low-frequent
limit case. Namely, from (A.1) it can be observed that
limω→0 |Cint(jω)| = limω→0

1
ω .

A.2 High-frequent limit case

We define ΘD,∞ := limω→∞ ΘD(ω). From Lemma 1 we
then conclude that ΘD,∞ is as in (8). Then, utilizing (A.5),
we find that

lim
ω→∞

|L1(ω)| = lim
ω→∞

1

ω
· ωr

ωc
·
√

1 + Θ2
D,∞. (A.6)

Next, substituting (8) in (A.6) results in limω→∞ |L1(ω)| =
limω→∞

1
ω . Therefore, the SIDF of the GFbI has equivalent

magnitude-characteristics as the LTI integrator for the
high-frequent limit case. Namely, from (A.1) it can be
observed that limω→∞ |Cint(jω)| = limω→∞

1
ω .
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