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Abstract: This work introduces a Fractional Order PID (FOPID) controller associated with
a nonlinear Filtered Smith Predictor (FSP) to control a Solar Collector Field (SCF) system.
The combined approach enhances the control performance by decoupling model uncertainties.
First, the FOPID addresses linear model uncertainties through optimal robust design across
the operational conditions, while the FSP compensator adeptly manages the system’s varying
time delays. Rigorous tuning in the frequency domain considering closed-loop, robustness,
and disturbance rejection performances is developed using a bi-level optimization approach
to obtain the FOPID control parameters. Experimental results of the FOPID + nonlinear FSP
demonstrate low rise time for reference tracking and robust stability across several operating
conditions, even in the face of high-frequency disturbances in the solar irradiance due to passing
clouds. Moreover, the nonlinear FSP effectively handles variations in time delays undergone by
the water flow variation during the experiment. The achieved outcomes of the overall control
structure, comprising the FOPID + FSP, demonstrate a promising approach for SCF system
control, obtaining robust behavior in the presence of model uncertainties and disturbances while
offering satisfactory reference tracking capabilities across an extensive range of plant operations.

Keywords: Fractional Order PID controller, Fractional PID tuning, Solar collector fields, Solar
energy

1. INTRODUCTION

In control engineering, a fractional order PID (PIλDµ

or FOPID) controller is an extension of the classical
PID controller, which incorporates integral and derivative
actions defined for arbitrary (real) order indices. Since its
introduction in (Podlubny, 1994), FOPID controllers have
been studied for distinct designs and tuning methods to
achieve superior performance compared to classical PID
design (Shah and Agashe, 2016). The outcome has been
a remarkable enhancement in loop shaping and a more
robust control loop behavior, often proving unattainable
for the classical PID controller.

The FOPID controller attributes hold significant promise
in complex system control. Specifically, controlling Solar
Collector Field (SCF) systems within solar plants presents
an intriguing challenge. The discontinuous nature of solar
irradiance and the nonlinear dynamics and variable time
delays inherent to SCFs challenge classical PID control
schemes (Camacho et al., 2012). In this context, adopting
a FOPID controller emerges as a crucial means to enhance
the performance of solar plants. Review works of FOPID
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controllers have showcased their capability to outperform
conventional PID controllers in various critical scenarios
(Shah and Agashe, 2016). These include demonstrating
superior iso-damping characteristics, effectively handling
systems with long delays, ensuring robust stability in chal-
lenging situations, and delivering more refined control for
nonlinear and non-minimum phase systems. Therefore, the
study of FOPID in SCFs is attempting since the control
features address all the mentioned system complexities,
enhancing solar plant control efficiency.

Several works have investigated FOPID for renewable sys-
tems (Alilou et al., 2023; Singh et al., 2020). However, few
studies have delved into this approach concerning SCFs.
First, Elmetennani et al. (2017) introduced a FOPID con-
trol strategy for parabolic troughs grounded in frequency
domain performance analysis through simulation experi-
ments. The approach involves optimizing FOPID param-
eters for robustness, reference tracking, and disturbance
rejection performances in a closed-loop system. Similarly,
Meng et al. (2020) followed an analogous methodology
when studying FOPID in parabolic distributed solar col-
lectors, applying statistical tests to evaluate various opti-
mization algorithms. Noteworthy contributions by Beschi
et al. (2016) involve implementing a FOPID controller in
a solar furnace thermal facility, employing a frequency
domain-based design for a gain-scheduling FOPID con-
troller, and applying a similar tuning strategy to the earlier
works.
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Based on the previous review, this work proposes a FOPID
to assess robustness, reference tracking, and disturbance
rejection performances in SCF systems. The control tun-
ing is formulated over a bi-level optimization solution
using global and local optimization algorithms to tune
the FOPID parameters. The control tuning considers the
uncertainties of the linearized model from the nonlin-
ear lumped-parameters equation of the system dynamic
model. The obtained controller is applied in the real-world
system in the Solar Energy Research Center (CIESOL)
at the University of Almeŕıa, southern Spain. Moreover,
the FOPID is implemented considering an advanced dead-
time compensator structure based on a nonlinear Filtered
Smith Predictor (FSP) (Normey-Rico and Camacho, 2007)
to assess the time-varying delay presented in the system.

The results presented here differ from the previous works
in Elmetennani et al. (2017); Meng et al. (2020) mainly
in two aspects. First, the control structure considers the
system delays, a crucial aspect of the SCF process control.
Secondly, a nonlinear FSP is applied in addition to a single
FOPID controller to deal with the variation of system
delays. This approach improves the control structure by al-
lowing the FOPID to deal with linear model uncertainties
through a robust design considering the complete operat-
ing range. At the same time, the FSP compensator handles
the varying time delay, increasing the overall robustness
and closed-loop performance of the control framework.
After a comprehensive analysis of the control performance,
the FOPID is implemented in an actual facility, proving
the effectiveness of the presented strategy.

This work is organized as follows: Section 2 details the
CIESOL SCF system model. Section 3 presents the details
for tuning the FOPID control parameters. In Section 4,
the results of the implementation of the FOPID in the
CIESOL facility are presented. Finally, Section 5 discusses
the achieved results.

2. CIESOL SOLAR COLLECTOR FIELD MODELING

The CIESOL plant employs the flat-plate SCF to produce
hot water, serving as a thermal energy source for a heat
exchanger or an absorption machine based on seasonal
demand. In this work, a lumped-parameters model is used
to describe the outlet temperature dynamic in the form of
the following equation

dTsc,o(t)

dt
=

β

ρ · Cp ·Asc
· I(t)

−
H

ρ · Cp ·Asc · L
·
(

Tsc,o(t) + Tsc,in(t− tdTin
)

2
− Ta(t)

)
−

q(t− tdq )

Asc · cf
·
Tsc,o(t)− Tsc,in(t− tdTin

)

L
,

(1)

in which Tsc,o(t) [oC] is the outlet water temperature,
Tsc,in(t) [

oC] is the inlet water temperature, I(t) [W/m2]
is the solar irradiance, and Ta(t) [oC] is the ambient
temperature. In this system, the manipulated variable is
the water flow q(t) [m3/h], and the controlled variable
is Tsc,o(t). The time delay tdTin

is related to the inlet
temperature, and tdq is associated with the water flow
rate. As defined in Normey-Rico et al. (1998), the time
delay depends on the water flow rate, causing a varying

time-delay behavior, that is, dq(q(t)). In Eq. (1), the model
parameters β, H, Asc, Cp, ρ, L and cf are, respectively,
the irradiance efficiency and conversion factor related to
the dimension of the collectors [m], global heat losses
coefficient [W/oC] per equivalent L tube length, pipe
cross-section area [m2], specific heat capacity of the water
[J/kgoC], water density [kg/m3], equivalent absorber tube
length [m], and the conversion factor from hours to seconds
and for the equivalent collector tube length [s/h]. The
parameter values and their further description are detailed
in Pataro et al. (2022).

The FOPID is developed based on the linearized model of
Eq. (1) in a specific approximated quasi-stationary point
(considering a clear day with slight irradiance variations).
Then, the inputs and the output values are obtained in this
specific condition, defined as T a, T sc,in, q and I and T sc,o,
respectively. Therefore, by employing the Taylor series
expansions truncated in the first derivative and assuming
the deviation variable notation X̌(t) = X− X(t), the SCF
linear model in Laplace frequency domain s is expressed
as

Ťsc,o(s) =

KI Ǐ(s) +KTa Ťa(s) +KTin
e
−tdTin

s
Ťin(s) +Kqe

−tdq s
q̌(s)

(τs+ 1)

(2)

where the model parameters are defined as

Kq =
−Cpρ

cfL
(T sc,o − T sc,i)[

ρCpq

cfL
+

H

2L

] KI =
β[

ρCpq

cfL
+

H

2L

]
KTsc,in

=

[
ρCpq

cfL
−

H

2L

]
[
ρCpq

cfL
+

H

2L

] KTa =
H
L[

ρCpq

cfL
+

H

2L

]
τ =

ρCpAsc[
ρCpq

cfL
+

H

2L

]
(3)

As can be seen, the proposed linear model can change
depending on the system conditions. Hence, the design of
the feedback FOPID controller depends on the varying
parameters τ(q) and Kq(Φ), for Φ = [q, T sc,o, T sc,in].
Considering the actual operating limits of the CIESOL
plant in a standard scenario, the water flow can vary from
3 m3/h to 12 m3/h and a ∆T = T sc,o−T sc,in from 3 oC to
10 oC. This operating range can cause the time constant
to vary from τmin = 17.53 s to τmax = 33.63 s (91 %),
the model gains Kq from Kqmax

= −0.479 (oC·h)/m3 to
Kqmin = −1.84 (oC·h)/m3 (283 %) and the time delay
from dqmin

= 33 s to dqmax
= 53 s (60 %) 1 .

As seen, the parameters of the linear model undergo sig-
nificant variations (as demonstrated through the percent-
age index relating the maximum and minimum constant
values). Therefore, this study proposes two control archi-
tectures: first, an optimal-tuned FOPID controller focuses
solely on the linearized model and its parameter uncer-
tainties, excluding the varying time delays. This approach
ensures robustness specifically to address the system’s
nonlinear aspects. Second, the challenge of varying time
delays is managed by the nonlinear FSP structure. This

1 The delay values are obtained from empirical validation experi-
ments in the existing CIESOL facility.
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decoupled control structure, FOPID + nonlinear FSP,
enables a faster response in the closed-loop system while
simultaneously handling the delay variations through the
robust filter of the Smith predictor dead-time compen-
sator.

3. FRACTIONAL ORDER PID DESIGN

The basis of FOPID controllers is to formulate the inte-
gral and derivative in terms of fractional calculus, which
extends the order from integer to any real number. In this
work, the Grümwald-Letnikov operator 0D

α
t is applied to

perform the integrals and derivatives in the form of

0D
α
t =

dαf(t)

dtα
= lim

h→0

1

hα

t−α
h∑

r=0

(−1)r
(n
r

)
f(t− rh), (4)

in which t−α
h is the integer part and α and t are the

limits of the operator. Note that n is the integer value that
satisfies the n − 1 < α < n condition. Assuming α > 0,
the operator represents fractional differential. Conversely,
if α < 0, the operator represents a fractional integral (see
(Shah and Agashe, 2016) for further details). Hence, one
can apply the Grümwald-Letnikov operator to the control
law of the PID controller, resulting in

u(t) = Kp

(
e(t) +

1

Ti
0D

λ
t e+ Td0D

µ
t e

)
. (5)

Hence, by employing the Laplace transform in Eq. (5), the
FOPID controller can be obtained as

C(s) =
U(s)

E(s)
= Kp

(
1 +

1

Tisλ
+ Tds

µ
)
, (6)

in which λ is the fractional order of the integral action and
µ is the fractional order of the derivative action. Based
on the presented control law, the FOPID includes two
more degrees of freedom (λ and µ), which can increase the
range of feasible solutions to achieve the proposed control
performance compared to a standard PID controller. This
work employs an optimization method to tune the FOPID
controller, namely, parameters Kp, Ti, Td, λ, and µ, to
achieve the required closed-loop and robustness perfor-
mance for SCF systems, following the methodology used
in the literature (Elmetennani et al., 2017; Meng et al.,
2020; Beschi et al., 2016).

3.1 Optimization tuning procedure

First, to consider an implementable FOPID controller,
following the steps presented by Beschi et al. (2016), a
fractional filter is included in the derivative term, resulting
in the following solution

C(s) =
U(s)

E(s)
= Kp

(
1 +

1

Tisλ
+

Tds
µ

Td
Nµ sµ + 1

)
. (7)

in which 1
N is the filter time constant. In this work,

N = 100 is chosen to exclude it from the decision variables
of the optimization problem, as noisy signals are observed
in this process. As noted in the results section, this solution
is very promising for the SCF control problem.

Secondly, the optimization problem considers the entire
range of possible combinations of τ and Kq. Note that the
delay dq is not considered in this stage since the nonlinear
FSP framework will be imposed afterward. Hence, the

process model is also dependent on the linear parameters
in the form of

P (s,Θ) =
Tsc,o(s)

q(s)
=

Kq(Φ)

(τ(q)s+ 1)
, (8)

in which [Kq(Φ), τ(q)] ∈ Θ, Θ ⊆ R2, τ(q) ∈ [τmin,τmax]

and Kq(Φ) ∈ [Kqmin
,Kqmax

].

Assuming C(s) and P (s,Θ), and considering s = jw and
L(jw,Θ) = C(jw)P (jw,Θ), the following optimization
problem is imposed to minimize the maximum sensitivity
gain

Ms = max
w

|S(jw,Θ)| =
∣∣∣ 1

1 + L(jw,Θ)

∣∣∣ , (9)

in the form of
min
C(jw)

Ms, (10)

subject to:

i) wc = 1 rad/s , (desired gain crossover frequency);

ii) ϕm = 85o , (desired phase margin range);

iii)

∣∣∣ 1

1 + L(jw,Θ)

∣∣∣ < 0.01 , ∀w < 10−4 , (load disturbance

rejection performance);

vi) |T (jw,Θ)| =
∣∣∣ L(jw,Θ)

1 + L(jw,Θ)

∣∣∣ < 0.01 , ∀w > 101 , (noise

rejection performance).

v) − 13.6 < Kp < −0.136;

vi) 3.6 < Ti < 67.26;

vii) 0 < Td < 17.53;

viii) 0.4 < λ < 1.8;

ix) 0.1 < µ < 1.8

x) C(jw) = Kp

(
1 +

1

Ti(jw)λ
+

Td(jw)µ

Td
Nµ (jw)µ + 1

)
.

(11)

The optimization procedure considers important aspects:

• The frequency range employed varies from 10−5 rad/s
and 102 rad/s considering the time constant fre-
quency wτmin

= 0.358 rad/s and all the optimization
constraints range;

• The range of all possible models is reduced to the
vertices of the polytope composed by the maximum
and minimum time constants and gains, that is,
Θ1 = (τmin,Kqmin), Θ2 = (τmax,Kqmin), Θ3 =
(τmin,Kqmax), and Θ4 = (τmax,Kqmax). This pro-
cedure allows to bound the entire combination of
models and reduce considerably the computational
cost;

• The choice of the closed-loop and robust perfor-
mances (constraints i to iv) are based on the insights
of the SCF system and following adequate design for
FOPID in the literature (Elmetennani et al., 2017;
Meng et al., 2020; Beschi et al., 2016);

• The FOPID controller parameter limits (constraints v
to ix) are defined based on tuning the initial PID con-
troller using the IMC tuning (Åström and Hägglund,
1995) for a nominal plant (τmax and Kqmax

, worst
case scenario), to establish bound for a stable con-
troller. Moreover, the λ > 0.4 limit guarantees the
elimination of steady-state error.

Finally, the optimization problem is solved in a bi-level
approach. First, the global Genetic Algorithm (GA) solver
from MATLAB obtains a global solution at an upper level,
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aiming to find the minimum Ms. In addition, this solution
is refined by applying a gradient local method, using
fmincon, from MATLAB. The lower-level optimization is
also formulated to find the minimum Ms, but in this case,
the optimal parameters found by the GA are considered
as the initial guess of the decision variables. The presented
optimization problem is computed offline since the FOPID
controller parameters are fixed, and thus, no struggle
related to the computational burden is accounted for in
the proposal.

The optimization parameters for both solvers are defined
in Table 1.

Table 1. Optimization solver options

Options

fmincon

Algorithm: active-set
Constraint Tolerance: 10−5

Step Size: 1.49 · 10−8

Function Tolerance: 10−6

Max Evaluations: 105

Max Iterations: 400
Optimality Tolerance: 5 · 10−4

StepTolerance: 10−6

GA algorithm

Constraint Tolerance: 10−5

Crossover Fraction: 0.0200
Fitness Limit: -Inf

Function Tolerance: 10−6

Max Generations: 500
Max Time: Inf

Mutation Function: Gaussian operator
Population Size: 200

3.2 Optimization results

The proposed bi-level algorithm is performed identically to
the presented FOPID controller and to the conventional
PID, in which the optimization parameters are merely
Kp, Ti, and Td. Table 2 depicts the obtained results
for both controllers. The FOPID controller’s additional

Table 2. Optimization results for the FOPID
and conventional PID controllers.

FOPID PID

Ms (GA) [dB] 0.1059 0.495
Ms (fmincon) [dB] 0.1048 0.495
Kp [C◦h/m3] -9.096 -8.590
Ti [s] 6.374 7.288
Td [s] 0.0 0.0
λ [-] 0.83 1
µ [-] - -

degrees of freedom allow for better controller performance
adjustment, obtaining a smaller sensitivity gain Ms than
the PID. One can note that the derivative gain does not
improve the control response for both strategies, which
corresponds to conventional tuning for the SCF systems
(Camacho et al., 2012). To satisfy the proposed closed-
loop response and robustness performance, the FOPID
obtained a slightly higher proportional gain, which allows
the controller to have a faster response and keep the
closed-loop stability for all the bounded linear model
uncertainties. The main difference is observed in integral
order, resulting in the main factor responsible for reducing
the sensitivity gain for the FOPID controller.

Fig. 1 depicts the Bode diagram obtained from the op-
timization method for the FOPID only. As can be seen,
the FOPID can address the robustness stability criteria
defined in the optimization problem, obtaining a smaller
sensitivity gain compared to the PID strategy.

Fig. 1. Bode diagram for the FOPID optimal tuning
parameters. The grey-shadow zone represents the
combination of all possible models. The solid black
lines are the bound formed by the vertices of the
polytope of the τ(q) and Kq(Φ) extreme values. The
”x” marks the gain crossover limit (constraint i of the
optimization problem).

Furthermore, to demonstrate the effective solution of the
optimization tuning regarding addressing all the model
uncertainties using the polytope vertices, Fig. 2 depicts
the reference tracking and disturbance rejection perfor-
mance considering the entire range of τ(q), Kq(Φ), and

for KTsc,in
(Φ) 2 . This result is obtained assuming small

gradients for each parameter and solving the closed-loop
response for the combined solutions. For instance, τ(q1) =
τmin + δτ , for δτ = 0.1, from τmin to τmax, and so on for
Kq(Φ) and KTsc,in(Φ) considering ∆T = ∆Tmin + δ∆T ,
with δ∆T = 0.1. Although the optimization problem is
formulated only considering the vertices of the polytope,
the obtained tuning guarantees that all the linear model
parameter uncertainties are accounted for, resulting in a
robust solution for all possible model parameters. The
result is also confronted by applying the constraint eval-
uation function for all possible models, which resulted in
true outputs for all simulation experiments.

0 50 100 150 200

Time [-]
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O
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t 
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]

Fig. 2. Closed-loop response of the FOPID controller for
all possible combinations of linear model parameters
uncertainties.

2 The simulation is presented only to demonstrate that the polytope
vertices solution is effective to deal with all model combinations for
the different parameters values. Hence, the inlet temperature was
used as it obtained the higher gain among all disturbances.
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Finally, considering a practical implementation of the
obtained FOPID, a discrete approximation is obtained
from the continuous transfer function of Eq. (7). The ap-
proximation is performed considering the Oustaloup filter
(Oustaloup et al., 2000), using a zero-pole order of 3 and a
frequency range from 10−4 rad/s to 10 rad/s. The results
are confronted with the continuous transfer function ob-
tained from the MATLAB toolbox FOMCON (Tepljakov
et al., 2011). Figure 3 demonstrates that the approximated
lead-lag discrete FOPID controller can respond similarly
to the continuous solutions, obtaining slight differences
for higher frequencies. Moreover, the response in the fre-
quency domain approximates an integer order low-pass
filter response due to the presented tuning detailed in
Table 2. The FOPID response, although similar to integer
order controllers, presents better robustness performance
when comparing the Ms parameter in Table 2.
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Fig. 3. Bode diagram comparison of the discrete ap-
proximation and continuous transfer function of the
FOPID controller.

4. FOPID + NONLINEAR FSP IMPLEMENTATION

The presented FOPID controller is implemented with the
nonlinear FSP to decouple the linear model uncertainties
and the varying time-delay issues. The control scheme is
formulated over the already developed lower-layer control,
in which a PI with an Anti-Wind-up (PI-AW) scheme
controls the pump velocity to achieve the desired water
flow rate. Fig 4 details the complete control structure for
the SCF in the CIESOL facility, in which 1 s sample time
is applied to perform all computations required for the
strategies. One can note that the chosen sample time is
adequate considering the inner loop time constant (5 s)
and outer loop fastest time constant (17.53 s), respecting
a good trade-off for the ratio τ/Ts between 4 to 20 recom-
mended in the literature. It must be noted that the lower-
layer PI-AW presents a closed-loop time constant of 5 s,
which is considerably faster than the SCF time constant,
thereby being negligenced from the nonlinear model of
the FSP compensator. The nonlinear model used for the
FSP is defined in Eq. (1), using validated parameters to
describe the SCF outlet temperature dynamics accurately.
Although the filter Fr aims to achieve robustness regarding
the varying time delay, this structure also improves robust-
ness in closed-loop for model uncertainties, contributing
to a steady behavior of the entire control architecture.
Simulation tests were performed to tune the SP filter to
achieve the desired behavior of the overall control struc-
ture. The delay model was considered 33 s (minimum delay
found in the existing system). In contrast, the validated

Fig. 4. General control scheme of the FOPID + nonlinear
FSP for the SCF system of the CIESOL facility.
The discrete-time delay approximation is defined as
dq = tdq

/Ts.

model, representing the actual system, was assessed at
55 s (maximum delay found in the current system). The
best trade-off in simulations was obtained with the tun-
ing Fr = 0.09516/(z − 0.9048) using the zero-order hold
discretization transform and applying the proper design
proposed in Normey-Rico and Camacho (2007).

Due to the length of the simulated analysis, only the
implemented results of the FOPID + nonlinear FSP in
the actual facility will be presented in this work. However,
in simulations, the controllers are tested in a sunny day
scenario, in which the FOPID obtained a sum of absolute
error 3192.4 and a sum of the control increments 218.4,
while the PID obtained 3188.6 and 332.5. As expected,
these results represent a more conservative tuning of the
FOPID with less aggressive movements of the control
actions, characterizing a more robust behavior (see param-
eter Ms Table 2). Figure 5 displays the control of the SCF
outlet temperature using the FOPID + nonlinear FSP in
the actual CIESOL facility on October 13, 2023. It can
be noted that the proposed FOPID obtained a fast re-
sponse, with time constants of approximately 54 s average
for the reference change scenario. Moreover, during the
experiment, the irradiance variable was affected by high-
frequency variations due to passing clouds. Correspond-
ingly, the proposed FOPID could keep robust stability
in a wide range of SCF operating conditions regardless
of the disturbances while keeping an acceptable reference
tracking performance. Notably, the implemented nonlinear
FSP can adequately deal with variations of time delays as
the water flow varies considerably during the trial, from its
minimum to its maximum value. As a result, the overall
control structure, FOPID + FSP plus the inner loop con-
trol PI-AW, presented a promising approach to control the
SCF system, assuming robust behavior concerning multi-
ple model uncertainties, dealing with model disturbances,
and presenting satisfactory reference tracking for the wide
range of the plant operation.

5. CONCLUSION

This study has introduced a novel approach to the control
SCF, applying a robust-tuned FOPID associated with an
FSP compensator structure. Two critical enhancements
were presented in this research. First, the FOPID tuning
method outperformed the conventional PID under the
same optimization procedure. Secondly, combining a sin-
gle FOPID controller and a nonlinear FSP compensator
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Fig. 5. Empirical results of the FOPID controller in the CIESOL facility.

bolstered the control structure by enabling the FOPID to
deal with linear model uncertainties through robust design
across the entire operating range. In contrast, the FSP
compensator adeptly managed the variable time delays.
Extensive control performance analysis was conducted,
and implementing the FOPID strategy within the CIESOL
facility demonstrated its remarkable effectiveness.

Future works intend to address and compare different
tuning methods of FOPID for SCF systems. Moreover,
further research aims to design a FOPID tuned with a
linear FSP capable of optimally tuning the dead-time
compensator with different tunings, such as lead filter with
and without fractional order.
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