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Abstract: The paper deals with the estimation of a Second-Order-Plus-Dead-Time (SOPDT) process
transfer function for the tuning of a Proportional-Integral-Derivative (PID) controller. In particular,
different methodologies for the estimation of the transfer function parameters based on the open-loop
process step response are proposed and compared to an existing one that has been recently presented in
the literature. A pole-zero cancellation strategy is then employed to tune the PID controller. Advantages
and disadvantages of the different methods are then discussed by considering the obtained results and
implementation issues.
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1. INTRODUCTION

Proportional-Integral-Derivative (PID) controllers are wide-
spread in industry because they are able to provide a satis-
factory performance despite their relative simplicity. In other
words, they provide a cost/benefit ratio that is difficult to im-
prove with other more advanced control techniques. In addition
to a simple structure, one of the main advantages of PID con-
trollers is the availability of many tuning rules (O’Dwyer, 2006)
that simplify their design. Usually, these tuning rules are based
on a simple model of the process that should be obtained also
with a simple experiment in order to keep the design effort at a
reasonable level.
In this context, the two typical approaches are the closed-loop
and the open-loop ones (Liu et al., 2013). In the first case a
relay-feedback experiment is employed to estimate character-
istic parameter of the process (see, for example, (Yu, 1999)).
In the second case, typically, an open-loop step response is
evaluated in order to estimate a First-Order-Plus-Dead-Time
(FOPDT) or a Second-Order-Plus-Dead-Time (SOPDT) trans-
fer function of the process. Given that the ideal PID controller
transfer function has two zeros and a pole at the origin, a
SOPDT transfer function is clearly more appropriate to achieve
an overall better controller performance. For this reason, dif-
ferent methodologies have been proposed to estimate an ac-
curate SOPDT transfer function by evaluating an open-loop
step response. A recent review of these methods can be found
in (Maxim and De Keyser, 2022). It is worth stressing that
a SOPDT model is capable to describe both processes with
an underdamped (Rangaiah and Krishnaswamy, 1996) and an
overdamped response. Focusing on the latter case, which is the
most common for industrial processes, an approach based on
least squares can be employed (Cox et al., 2016). However, it

has a significant computational burden, which makes its im-
plementation difficult in edge (single-station) controllers. An
alternative is to consider a few points on the process reaction
curve and to estimate the transfer function parameters based on
them (Huang et al., 2001). The main disadvantage in this case is
that the presence of noise can result in a wrong selection of the
points, yielding an inaccurate final result. It is therefore more
convenient to have a technique based on integrals of signals so
that there is an inherent robustness to the measurement noise
(De Keyser and Muresan, 2019). This is the underlying idea of
the method proposed in (Maxim and De Keyser, 2022), which
has, however, the disadvantage of requiring the numerical so-
lution of a fairly complex equation and the selection of the
optimal dead time through an iterative procedure, which makes
the approach more suitable to be implemented in a Distributed
Control System (DCS) architecture rather than in a single-
station control device.
Summarizing, it is desirable to have a computationally simple
procedure that is robust to measurement noise (thus, based on
integrals of signals) and provides an accurate result.
In this paper we aim to make a step forward in this direction.
In particular, we propose different methodologies to estimate
a SOPDT transfer function (by evaluating the open-loop step
reponse for processes with overdamped dynamics) where these
issues are at least improved and we discuss the obtained results
with respect to the performance achieved by a PID controller
tuned by applying a classic pole-zero cancellation method. The
pros and cons of each method are given in order to enable the
user to select the most appropriate one for a given application
in terms of performance and implementation effort.
The paper is organized as follows. The problem is formulated
in Section 2. The new methodologies for the estimation of the
transfer function parameters are presented in Section 3. Illus-
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trative results are shown and discussed in Section 4 and, finally,
conclusions are given in Section 5.

2. PROBLEM FORMULATION

We consider the following SOPDT transfer function to model
the process dynamics:

P(s) =
Y (s)
U(s)

=
µ

(τ1s+1)(τ2s+1)
e−θs (1)

where, evidently, µ is the gain, τ1 and τ2 are the two time
constants and θ is the dead time. Without loss of generality,
we assume τ1 ≥ τ2. Further, we assume τ1 ≥ θ as this is the
typical case for industrial processes where a PID controller is
applied.
We aim to estimate the process parameters by evaluating the
process output y(t) when a unit step signal is applied to the
input u, that is:

y(t) = µ

[
1− τ1

τ1 − τ2
e−

t−θ
τ1 +

τ2

τ1 − τ2
e−

t−θ
τ2

]
(2)

In this context, the process gain µ can be easily estimated by
calculating the ratio between the variation of the steady-state
value of the output and the amplitude of the step input. For this
reason and for the sake of simplicity, we will not consider the
estimation of µ in the rest of the paper.
The purpose of the model is then to tune a PID controller in
series form, whose transfer function is

C(s) = Kp
Tis+1

Tis
Tds+1
Tf s+1

(3)

where Kp is the proportional gain, Ti is the integral time con-
stant, Td is the derivative time constant and Tf is the time con-
stant of a low-pass filter that is necessary to have a proper con-
troller transfer function. Although many methods exist to tune
the PID parameters based on a SOPDT model (1), we decide
to apply the Haalman method based on pole-zero cancellation
(Åström and Hägglund, 2006) because it is directly related to
the estimated model. Thus, the three main PID parameters are
selected as

Ti = τ1 Td = τ2 Kp =
2τ1

3µθ
(4)

By neglecting the filter, the loop transfer function resulting from
the pole-zero cancellation is

L(s) =
2

3θs
e−θs (5)

The filter time constant can then be selected as one tenth of
the inverse of the gain crossover frequency of (5). In this
way, the additional phase lag introduced by the filter does not
significantly influence the dynamics of the closed-loop system.
It is worth stressing that the focus of the paper is not on the
design of the PID controller (for this reason we do not consider
any practical issue such as actuator saturation, etc.). Instead, the
performance achieved by the PID control system is used only
to assess the methodology to estimate the process parameters.

3. ESTIMATION METHODS

In this section we present three newly developed methods for
estimating the parameters of the SOPDT transfer function (1).
They will then be compared with the one presented in (Maxim
and De Keyser, 2022).

3.1 Iterative method

In the first method we first consider the process P(s) without
dead time, that is, θ = 0. Denoting as

y∞ := lim
t→+∞

y(t) (6)

the final value of the step response, we can easily calculate

A1 :=
∫

∞

0
(y∞ − y(t))dt = µ(τ1 + τ2). (7)

Since the gain µ is known, the sum of the two time constants
can be employed to define a time interval to compute the
(normalized) integral of the process response, that is:

A2 :=
∫

τ1+τ2

0
y(t)dt (8)

(see the areas A1 and A2 in Figure 1). Now, define the ratio
between the two time constants as r := τ2

τ1
. The value of A2/A1

can be expressed as a function of r (De Keyser and Muresan,
2019):

A2

A1
=

e−1

1− r2 (e
−r − r2e−1/r) (9)

It can then be computed for different values of r and then a
numerical fitting of the results can be found. It results:

r =
p1

A2
A1

+ p2
(10)

where p1 = 0.01043 and p2 = −0.2594. Finally, we have that
the estimated values of the time constants are

τ̂1 =
A1

µ(1+ r)
τ̂2 = rτ̂1. (11)

In this way the two time constants have been obtained by using
only integrals of signals, so that the procedure is insensitive
to the measurement noise. However, the numerical fitting (10)
introduces an inaccuracy in the estimated model.
In order to estimate the parameters of a SOPDT model, an itera-
tive approach like the one proposed in (Maxim and De Keyser,
2022) can be employed. In particular, different values of the
dead time can be considered. For each of them the two time con-
stants can be estimated by considering the delay-free response
and, eventually, the value of the dead time can be selected
as the one that minimizes the sum of square errors between
the estimated and the true responses. Formally, given the step
response y(t), the following algorithm can be applied.

(1) Select a minimum dead time θ (for example, θ = 0) and a
maximum one θ (for example, as the time when the step
response attains half of its final value).

(2) For each value θ̂ ∈ [θ ,θ ]:
(a) calculate A1 =

∫
∞

0 (y∞ − y(t))dt −µθ̂ .
(b) calculate t̄ = A1/µ − θ̂ .
(c) calculate A2 =

∫ t̄
0 y(t)dt.

(d) calculate r according to (10) and τ̂1 and τ̂2 according
to (11).

(e) calculate the step response ŷ(t) of
P̂(s) = µ

(τ̂1s+1)(τ̂2s+1)e−θ̂s.

(f) calculate SSE =
∫

∞

0 (y(t)− ŷ(t))2dt.
(3) Select τ̂1, τ̂2 and θ̂ as those that provide the minimum

value of SSE.

Remark. With respect to the procedure in (Maxim and De Keyser,
2022), the method proposed in this paper is computationally
simpler, as it has the advantage to avoid to solve numerically a
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Fig. 1. Depiction of the areas A1 and A2 for the iterative method.

transcendental equation and to compute the response of a first-
order system.

3.2 Non-iterative method based on a single point

In order to avoid the iteration to determine the dead time,
which makes the algorithm unsuitable for edge controllers, an
algorithm based on a single point (thus, in principle, sensitive
to the measurement noise) can be applied.
In fact, in the presence of dead time, we have that

A1 =
∫

∞

0
(y∞ − y(t))dt = µ(τ1 + τ2 +θ) (12)

By defining t̄ = τ1 + τ2 +θ , it can be found that

y(t̄) = µ

1− τ2e−
τ1+τ2

τ2 + τ1e−
τ1+τ2

τ2

τ1 − τ2

 (13)

This means that the value of y(t̄) does not depend by θ but only
by the ratio r. In fact, by collecting τ1 and simplifying, it results:

y(t̄) = µ

(
1− re−

1+r
r + e−

1+r
r

1− r

)
(14)

However, equation (14) cannot be solved analytically to find r
once y(t̄) is found on the open-loop step response. Therefore,
non-linear regression has to be applied for exploiting this de-
pendency as

r = (ȳ−a)4b (15)

where ȳ = y(t̄)
µ

, a = 1.592 and b = 13.98.

Since τ1 + τ2 + θ = A1
µ

, ȳ can be easily found on the step
response but its determination is quite sensitive to the measure-
ment noise. Thus, some filtering can be necessary, for example
by computing the mean value of ten samples of the step re-
sponse y(t) before and after the time instant t̄.
At this point equation (10) can be used to find

α =
A2

A∗
1
=

p1

r
− p2 (16)

where A∗
1 = A1 −µθ is the part of A1 after the dead time θ . So,

once the area A2 is computed by integrating the step response
until t̄, A∗

1 can be obtained as

A∗
1 =

A2

α
(17)

Hence, the dead time can be estimated as

θ̂ =
A1 −A∗

1
µ

(18)

Finally, similarly to equations (11), the estimations of the two
time constants can be obtained as

τ̂1 =
A1/µ − θ̂

1+ r
τ̂2 = rτ̂1 (19)

Fig. 2. Depiction of the main parameters for the non-iterative
method based on a single point.

A graphical representation of the method is shown in Figure 2.
It appears that the computational burden of this method is
less than that of the previous one where iterations have to
be made. However, being based on a single point of the step
response (in addition to the defined areas), it is more sensitive to
measurement noise and to modelling uncertainties. Further, two
numerical approximations of the solutions of equations (15)
and (10) are present.

3.3 Non-iterative method based on integrals only

The third method aims to avoid iterations and to use only
integrals of signals. As a first step, the area A1 is calculated as in
(12). Then, we consider the step response yF(t) of a first-order
system whose time constant is τ1 + τ2 +θ :

yF(t) = µ

[
1− e−

t
τ1+τ2+θ

]
(20)

It can be found that the amplitude of the intersection between
yF(t) and the response (2) of the SOPDT system depends on
the values of the system parameters but it is in any case close
to 0.7µ . Let’s denote the time interval when this intersection
happens as t07. This can be found by solving the equation

1− e−
t07

τ1+τ2+θ = 0.7 (21)
which yields (see (12))

t07 =−A1

µ
log(0.3) (22)

Then, it can be found that there is a linear relationship between
the ratio r of the time constants and the ratio of the delay-free
intersection time instant and of the highest time constant, that
is:

τ2

τ1
= m

t07 −θ

τ1
+q (23)

Thus, after having calculated A1 and A2 (see Figure 3), we
have a system of three equations (12), (16) and (23) with three
unknowns (τ1, r and θ ). Note that there is an analytical solution
for such a system (the resulting expressions are not shown
for the sake of brevity). The values of p1, p2, m and q have
been found through a numerical procedure in order to minimize
the approximation error, yielding p1 = 0.0110, p2 = −0.2555,
m = 0.7091 and q = 0.8292.
The advantage of this method is that it is only based on integrals
of signals. However, this comes at the expense of a numerical
approximation in the selection of the value of the intersection
point and in the determination of the coefficients p1, p2, m and
q. Further, as a single point of the step response plays a key
role, the robustness to modelling uncertainties can be critical.
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Fig. 3. Depiction of the main parameters for the non-iterative
method based on integrals only. The blue line is the first-
order system response yF(t).

4. ILLUSTRATIVE RESULTS

4.1 Example 1

As a first illustrative example, we consider a true SOPDT
process

P1(s) =
1

(10s+1)(5s+1)
e−2s. (24)

First, the case without noise is evaluated. By applying the
methodologies presented in Section 3 and the one proposed
in (Maxim and De Keyser, 2022), we obtain the values of
the estimated parameters shown in Table 1. The comparison
between the step responses of the true process and the estimated
ones is shown in Figure 4, where it appears that the responses
are almost completely overlapped. The PID tunings resulting
from the application of the tuning rules (4) are shown in Table 2.
The unit set-point step responses and the unit load disturbance
step responses of the closed-loop systems are shown in Figures
5. It can be observed that the responses are very similar, with the
exception of the non-iterative method based on integrals, which
provides a more sluggish response. This is due to a smaller
value of the proportional gain, as a consequence of the larger
estimated value of the dead time of the process.
Subsequently, the case with measurement noise is considered.
In particular, at each sampling instant, a random value between
-0.1 and 0.1 (that is, 10% of the set-point step amplitude)
is added to the true open-loop step response. The resulting
process parameters are shown in Table 3 and the comparison
between the step responses of the estimated models are shown
in Figure 6. Also in this case it appears that they are almost
overlapped. However, differently from the noise-free case, the
non-iterative method based on single point introduces some
uncertainty (as expected, since, despite the filtering, the single
point value is sensible to the noise). This can be clearly seen
from the PID tuning (see Table 4) and from the closed-loop set-
point and load disturbance step responses shown in Figures 7.
Indeed, the PID tuning based on the model estimated by the
non-iterative method based on single point provides a more
aggressive response because of the smaller estimated value of
the dead time, which yields a higher value of the proportional
gain.

Table 1. Estimated process parameters for Exam-
ple 1 with no noise.

Method τ1 τ2 θ

Iterative method 10.02 5.00 1.97
Non iterative method - single point 9.89 5.20 1.91
Non iterative method - integrals only 10.77 4.01 2.22
(Maxim and De Keyser, 2022) 9.99 5.01 2.00

Table 2. PID parameters for Example 1 with no
noise.

Method Kp Ti Td Tf

Iterative method 3.39 10.02 5.00 1.25
Non iterative method - single point 3.44 9.89 5.20 1.22
Non iterative method - integrals only 3.23 10.77 4.01 1.42
(Maxim and De Keyser, 2022) 3.34 9.99 5.01 1.27

Fig. 4. Open-loop step responses for Example 1 with no noise.
Black line: true process. Green line: iterative method.
Red line: non-iterative method based on a single point.
Magenta line: non-iterative method based on integrals
only. Blue line: (Maxim and De Keyser, 2022).

Fig. 5. Set-point and load disturbance step responses for Exam-
ple 1 with no noise. Green line: iterative method. Red line:
non-iterative method based on a single point. Magenta
line: non-iterative method based on integrals only. Blue
line: (Maxim and De Keyser, 2022).

Table 3. Estimated process parameters for Exam-
ple 1 with noise.

Method τ1 τ2 θ

Iterative method 10.02 5.03 1.97
Non iterative method - single point 9.02 6.33 1.65
Non iterative method - integrals only 10.77 4.01 2.23
(Maxim and De Keyser, 2022) 9.99 5.01 2.00
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Table 4. PID parameters for Example 1 with noise.

Method Kp Ti Td Tf

Iterative method 3.39 10.00 5.03 1.25
Non iterative method - single point 3.65 9.02 6.33 1.05
Non iterative method - integrals only 3.22 10.77 4.01 1.42
(Maxim and De Keyser, 2022) 3.34 9.99 5.01 1.27

Fig. 6. Open-loop step responses for Example 1 with noise.
Yellow line: true process. Green line: iterative method.
Red line: non-iterative method based on a single point.
Magenta line: non-iterative method based on integrals
only. Blue line: (Maxim and De Keyser, 2022).

Fig. 7. Set-point and load disturbance step responses for Exam-
ple 1 with noise. Green line: iterative method. Red line:
non-iterative method based on a single point. Magenta
line: non-iterative method based on integrals only. Blue
line: (Maxim and De Keyser, 2022).

4.2 Example 2

As a second illustrative example, we consider a high-order
process

P2(s) =
1

(s+1)8 . (25)

In case there is no noise, the resulting estimated parameters
obtained with the proposed methodologies are those shown in
Table 5. It can be observed that the non-iterative methods yield
an estimated process where a time constant is much higher

Fig. 8. Open-loop step responses for Example 2 with no noise.
Black line: true process. Green line: iterative method.
Red line: non-iterative method based on a single point.
Magenta line: non-iterative method based on integrals
only. Blue line: (Maxim and De Keyser, 2022).

Fig. 9. Set-point step responses for Example 2 with no
noise. Green line: iterative method. Red line: non-iterative
method based a single point. Magenta line: non-iterative
method based on integrals only. Blue line: (Maxim and
De Keyser, 2022).

than the other one, so that the resulting model is, in practice, a
FOPDT one. This is also confirmed by the comparison between
the step responses of the true process and the estimated ones
shown in Figure 8. Further, the non-iterative methods yield
a smaller dead time, which results in a more aggressive PID
controller, as it can be seen in Table 6 and in Figure 9, where
the unit set-point step responses and the unit load disturbance
step responses of the closed-loop systems are plotted.
Similar considerations can be done regarding the case with
noise (again, the estimation of the model is performed when
a random value between -0.1 and 0.1 is added to the true open-
loop step response). Results are shown in Tables 7 and 8 and
in Figures 10 and 11. They clarify that the noise issue is less
relevant in case there are significant modelling uncertainties.
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Table 5. Estimated process parameters for Exam-
ple 2 with no noise.

Method τ1 τ2 θ

Iterative method 2.10 2.01 3.88
Non iterative method - single point 3.97 0.29 3.73
Non iterative method - integrals only 3.74 0.57 3.68
(Maxim and De Keyser, 2022) 2.37 1.79 3.87

Fig. 10. Open-loop step responses for Example 2 with noise.
Yellow line: true process. Green line: iterative method.
Red line: non-iterative method based on a single point.
Magenta line: non-iterative method based on integrals
only. Blue line: (Maxim and De Keyser, 2022).

Fig. 11. Set-point step responses for Example 2 with noise.
Green line: iterative method. Red line: non-iterative
method based on a single point. Magenta line: non-
iterative method based on integrals only. Blue line:
(Maxim and De Keyser, 2022).

Table 6. PID parameters for Example 2 with no
noise.

Method Kp Ti Td Tf

Iterative method 0.36 2.10 2.01 2.47
Non iterative method - single point 0.71 3.97 0.29 2.38
Non iterative method - integrals only 0.68 3.74 0.57 2.35
(Maxim and De Keyser, 2022) 0.41 2.37 1.79 2.46

Table 7. Estimated process parameters for Exam-
ple 2 with noise.

Method τ1 τ2 θ

Iterative method 2.08 1.90 3.93
Non iterative method - single point 4.08 0.04 3.79
Non iterative method - integrals only 3.77 0.41 3.74
(Maxim and De Keyser, 2022) 2.35 1.77 3.82

Table 8. PID parameters for Example 2 with noise.

Method Kp Ti Td Tf

Iterative method 0.35 2.08 1.90 2.50
Non iterative method - single point 0.72 4.08 0.04 2.41
Non iterative method - integrals only 0.67 3.77 0.41 2.38
(Maxim and De Keyser, 2022) 0.41 2.35 1.77 2.43

5. CONCLUSIONS
In this paper we have proposed new estimation methods for
SOPDT transfer functions, which can play a key role in the
achieved control system performance if PID tuning rules are
employed. Advantages and disadvantages of each method are
provided, so that the user can select the most suitable one for
a given application. In particular, the noise level, the compu-
tational capabilities of the controller device and the control
specifications have to be considered.
In general, simple non-iterative methods can be on-line imple-
mented into real-time controllers, without affecting their com-
putational load. However, potential robustness issues arise for
methods based on a single point. For higher order processes,
more accurate estimations can be obtained by iterative methods
requiring several step response simulations. Thus, they have to
be implemented into upper layer supervisory operator worksta-
tions, not in charge of real-time control algorithms.
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