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Abstract: Tuning of proportional-integral (PI) and proportional-integral-derivative (PID)
controllers continues to be a current topic, as the control needs in industry are broad and
diverse. Although PID controllers have been the predominant controller type for several decades,
there are still opportunities to improve the performance of both the installed base and newly
deployed controllers. One of the main challenges is a reliable and easy tuning that can be
performed by an operator on site. From a computer science point of view, the problem of
tuning PID controllers qualifies as a nondeterministic polynomial-time hard problem (NP-
hard). Genetic algorithms are a heuristic approach to approximate this type of problem, and
the continued growth of computational capacity makes them increasingly more viable. In this
work, we present a PID tuning architecture using a genetic algorithm, which incorporates in
its fitness function an emulation of pole assignment and implicit cancellation of the additive
dynamics of zeros in a closed loop, in addition to reducing discretization losses. The tuning is
performed with a paradigm different from the one usually applied in the literature. Rather than
simply minimizing the error between the process variable and the setpoint, the error between
the process variable and an ideal response curve associated with a desired pole assignment is
minimized. This approach provides better control over closed-loop performance.
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1. INTRODUCTION

The field of control engineering is very broad and diverse,
and new contributions are continuously made to this field.
Despite these advances, the de facto standard in the
process control industry for single-loop controllers, e.g.,
for temperature, flow, or level control, is still proportional-
integral-derivative (PID) controllers. It is estimated that
approximately 90% of the control loops in industry are
PID type (Åström and Hägglund, 2001; Knospe, 2006).

Since its inception, probably the most significant challenge
in implementing PID controls has been that of parameter
tuning. Early operators did not have the theoretical and
practical training necessary for accurate tuning, which led
to the introduction of simple heuristics such as those pro-
posed by Ziegler and Nichols and many others (O’Dwyer,
2009). Although understanding of the dynamics of PID
loops has increased, the practical implementation of PID
control often continues to be suboptimal. It is estimated
that up to one third of the installed loops are manually
tuned and that at least one in four uses the manufacturer’s
default gain settings (Ender, 1993). Analytical tuning re-
quires mathematical modeling of or data from the plant
in either the time or frequency domain. At the higher end
of the spectrum is exhaustive or mechanistic mathematical
modeling, which requires detailed and significant consider-
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ation of the physical and/or chemical laws involved. This
approach usually results in complex models that may re-
quire custom controllers. Halfway to the simplest heuristic
tuning, there is the alternative of designing controllers us-
ing black box models, i.e., functional relationships between
the inputs and outputs of a system that represent the
main characteristics of the system without being based
on physical relationships (Zhang, 2010).

Many plants to be controlled by PID controllers can rea-
sonably be approximated as first- or second-order linear
models. If such approximate models are available, the cal-
culation of gains by pole assignment is feasible. Beyond the
representativeness of the chosen model, there are several
reasons why the performance of the practical implementa-
tion may differ from that of the theoretical control design.
Aspects that may cause discrepancies between design and
implementation performance include:

(a) the additive dynamics of zeros when closing the loop;
(b) effects of discretization when using digital controllers

(unless this is considered in the design from the
beginning);

(c) differences in the algorithm implementation between
the design and the actual industrial controller;

(d) discrepancies between digital algorithms and config-
uration errors when selecting time bases.

Since the tuning task only involves choosing three param-
eters, it may seem simple. However, like all nonconvex
optimization problems, tuning the PID parameters for an
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accurate and stable closed-loop control becomes an NP-
hard problem (Somefun et al., 2021). The complexity of
the tuning problem is further increased by the aforemen-
tioned discrepancies between theory and implementation.

Genetic algorithms are a widely used optimization tool
to approximately solve NP-hard problems (Arabi, 2016;
Panchal and Panchal, 2015). The application of genetic
algorithms for PI and PID control tuning is significant
for several reasons: 1) it is cost-effective in that the same
evolutionary optimization framework can be reused for
plants of different complexity (Borase et al., 2021), 2)
the genetic algorithm can easily assimilate different opti-
mization criteria (Joseph et al., May 2022), 3) the tuning
task can be approached as a multi-objective optimization
complying with a Pareto front (Guenounou et al., 2012)
and 4) it allows circumscribing validity zones for standard
structures, as is the case for tuning tables (Visioli, 2001).
In the literature on genetic tuning of PID controllers, error
criteria such as Integral of the Squared Error(ISE), Inte-
gral of the Absolute magnitude of the Error(IAE), or Inte-
gral of Time multiplied by Absolute Error (ITAE) (Borase
et al., 2021) are frequently used. These have the advantage
of directly using the tracking error with respect to the
setpoint given during the control. However, a disadvantage
is that the desired closed-loop performance cannot be
precisely established beyond the error minimization itself.
For example, with ITAE, the genetic algorithm will aim to
make the control response as fast as possible. In practice,
however, other considerations such as actuation saturation
must be taken into consideration. Tuning PI controllers
by pole assignment can be useful for establishing specific
closed-loop responses, but even the additive dynamics of
zeros can slightly change the closed-loop response from an
originally desired one.

This article presents a proposal to tune PI and PID con-
trollers with genetic algorithms. It applies an optimization
criterion to obtain a specific closed-loop response as in tun-
ing by pole assignment, but implicitly mitigates the effects
of the additive dynamics of zeros and of discretization.

2. POLE ASSIGNMENT DESIGN

PI tuning by pole assignment is well understood (Aström
and Hägglund, 1995). This section deals with the approach
to transfer functions discussed in (Paz et al., 2017). As-
sume we have a first-order plant of the form

G1(s) =
K

τs+ 1
(1)

where K is the open loop gain and τ is the time constant.
Now we close the loop with a PI controller (Aström and
Hägglund, 1995) of the form

Gc(s) =
KcTis+Kc

Tis
(2)

where Kc is the proportional gain of the controller and Ti

is the integral time. With negative feedback, the following
closed-loop transfer function is obtained

GCL1(s) =
KKc

Tiτ
(Tis+ 1)

s2 + 1
τ (1 +KKcs) +

KKc

Tiτ

, (3)

which is similar to the canonical form of a second-order
transfer function, but differs by the presence of a zero in
the numerator

GSO(s) =
ω2
n

s2 + 2ξωns+ ω2
n

. (4)

Here, ξ is the damping coefficient and ωn is the undamped
natural frequency. From the denominator, we can calculate
the approximate maximum overshoot Mp when ξ is in the
range between 0 and 1

Mp ≈ e
−πξ√
1−ξ2 (5)

and the settling time ts defined within an error band of
1%, (Franklin et al., 1998)

ts ≈
4.6

ξωn
. (6)

If Kc and Ti are known, we can calculate the settling time
ts and the maximum overshootMp for the closed loop from
(5) and (6).

To tune the controller gains, we specify a desired closed-
loop settling time tsd and maximum overshoot Mpd, and
solve (5) and (6) for the desired damping coefficient ξd and
undamped natural frequency ωnd:

ξd ≈

√
ln2(Mpd)

π2 + ln2(Mpd)
, ωnd ≈ 4.6

ξdtsd
. (7)

Finally, by comparing the denominators of equations (3)
and (4) we get

Kc =
2τξdωnd − 1

K
, Ti =

KKc

τ(ωnd)2
(8)

for the parameters of the PI controller.

If the process can be approximated as an overdamped
second-order system (ξ > 1)

G2(s) =
K

(τ1s+ 1)(τ2s+ 1)
, (9)

when the PI control of equation (2) is applied to the plant
of (9), the closed-loop transfer function becomes

GCL2(s) =
KcK
τ1τ2

s+ KcK
Tiτ1τ2

s3 + ( τ1+τ2
τ1τ2

)s2 + (KcK+1
τ1τ2

)s+ KcK
Tiτ1τ2

. (10)

Following the same scheme of equalizing denominators of
the controlled plant and the desired plant, it is necessary
to add a third pole to the desired denominator of the form

D(s) = (s+ p1)(s
2 + 2ξdωnds+ ω2

nd). (11)

As in the design for the first-order plant, the desired
second-order closed-loop component can be constructed by
choosing the desired settling time tsd and the desired max-
imum closed-loop overshoot Mpd. Term-by-term matching
of (11) and the denominator of (10) yields

p1 =
τ1 + τ2
τ1τ2

− 2ξdωnd. (12)

However, it is not sufficient to arbitrarily choose the value
for the desired settling time tsd to construct the second-
order component of the desired polynomial as this may
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lead to a polynomial D(s) that is not asymptotically
stable. To avoid this, the following necessary and sufficient
condition for the settling time must be fulfilled (Paz et al.,
2017):

tsd >
9.2(τ1τ2)

τ1 + τ2
. (13)

Following the same equalization process as above, the
controller gains for this case can be obtained as

Kc =
ω2
ndτ1τ2 + 2p1ξdωndτ1τ2 − 1

K
, (14)

Ti =
KcK

τ1τ2ω2
ndp1

. (15)

3. GENETIC ALGORITHMS

Evolutionary computation is a family of computational
optimization techniques inspired by natural evolution
(Eiben and Smith, 2015). Examples include genetic algo-
rithms, evolutionary programming, genetic programming,
memetic algorithms, or ant systems.

Genetic algorithms are probably the most representative
technique of evolutionary computation and have been
adopted in the field of automatic control for a long time
(Wang et al., 2003). Genetic algorithms are inspired by
the exchange of genetic information in evolution in na-
ture. Although optimization techniques based on gradi-
ent descent are very popular in machine learning due to
their efficiency, in some optimization problems where a
balance between exploration and exploitation is required,
evolutionary optimizers can be more effective and have
multiple advantages: Genetic algorithms are an inherently
parallel method (Goldberg, 1988), which can maintain
a population of possible solutions at a given time and
whose final population is part of the Pareto front (Wei
and Söffker, 2015). The use of genetic algorithms is viable
when performing exploration can contribute to the search
for a better result. Furthermore, genetic algorithms can
support cost functions with complex rules and restrictions
since they are related to an execution approach rather than
a specific calculation. Finally, genetic algorithms are good
when the objective function has high modality, i.e., many
local optima (Mirjalili, 2019).

The optimization of PID gains in a discrete space can be
understood as an NP-hard problem. Depending on the
requirements, there may be several acceptable solutions
for tuning a controller; i.e., the tuning problem can then
be interpreted as a combinatorial one. This makes it
appropriate to use a genetic algorithm, which beyond
the search for a valley or crest, searches for various
combinations that may be viable for the joint satisfaction
of a set of restrictions.

4. GENETIC PID WITH EMULATION OF POLE
ASSIGNMENT

Genetic algorithms can be applied to the tuning of PID
controllers in different ways. In this work, a parametric
optimization architecture is proposed in which a genetic
algorithm incorporates a black-box model that abstracts
the dynamics of a given process. Controller tuning is

approached as a combinatorial optimization problem with
the objective of choosing the controller parameters in such
a way that the desired response of the internal model is
achieved. Fig. 1 shows the architecture of the proposed
emulative pole assignment scheme for PID controllers.

Fig. 1. Architecture of the proposed emulative pole assign-
ment scheme.

The individual steps in the diagram are explained below.

1) A table is generated with random candidate values of
the controller gains. In the terminology of evolutionary
computation, this first set of potential solutions is called
a population and each ordered triad of parameters

Ck,n = [Kcn , Tin , Tdn
] (16)

is called an individual or chromosome where k is the
generation and n is the number of individuals in a given
population.

2) The parameters of this intial population are applied to
a dependent PID in velocity form (Aström and Hägglund,
1995), which is common in industrial digital controllers

u(t) = u(t− 1) +Kc[e(t)− e(t− 1)] +
T

Ti
e(t)

+
Td

T
(e(t)− 2e(t− 1) + e(t− 2))

(17)

where u is the control signal, e is the error, T is the
sampling period and Td it is the derivative time. Each
element of the population is evaluated sequentially.

3) Using equation (7) from a desired overshoot Mpd

and desired settling time tsd, a transfer function of the
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desired dynamics is calculated. This transfer function is
discretized using a sampling period T , then transformed
from a differential equation to a difference equation that
synthesizes the expected response. From this, the expected
step response is vectorized within a time window that
contains at least the desired settling period tsd.

4) Each chromosome of the population of generation k is
evaluated within a time window that contains the desired
settling time tsd and the response of the controlled plant is
vectorized. The black box model, depending on the case,
corresponds to a discretized model with a zero-order hold
(ZOH) of equations (1) or (12), which is implemented as
a recursive difference equation (Franklin et al., 1998).

5) In genetic algorithms, the objective function is referred
to as the “fitness function”. Here it is the absolute error of
the standard response of the desired pole assignment and
the response obtained with the nth test chromosome

ffn =
∑

|yd − yg| (18)

where ffn is the fitness function of an individual n, yd is
the vector of the desired output of the controlled plant, and
yg is the output using the nth test chromosome. We have
chosen the absolute error as opposed to a squared error, as
the squared error tends to focus too much on small time
intervals with the largest error, while the absolute error
tends to lead to an overall closer approximation of the
desired closed-loop response.

6) Once all chromosomes in a population k have been
labeled with their corresponding fitness functions, we
proceed to a “tournament” (Goldberg and Sastry, 2007;
Kramer, 2017), the size of which is determined as a
percentage of the population size (10% of the population
size is used for this design to promote genetic diversity).
Through the tournament, pairs of potential parents are
selected to carry out the reproductive process.

7) With the selected parents, a bit-level crossover is
performed (Goldberg and Sastry, 2007; Kramer, 2017).
A random cutoff point is chosen along the chromosomes,
where each of the parents’ chromosomes is separated into
two parts. The resulting sections are now recombined in
such a way that the lower part of one parent joins the
upper part of the other to form a place for a child, while
the complementary parts form the other. In this case, each
pair of parents begets a pair of children, which are partially
different from their parents and will become part of the
k + 1st population.

8) Once the same number of offspring as parents have been
assembled in a new population (to maintain ecological
stability), mutations are made in a small percentage of
individuals (Goldberg and Sastry, 2007; Kramer, 2017),
i.e., a randomly chosen bit of a given chromosome is
inverted. Mutation is an important operator to maintain
genetic diversity on a generational scale.

9) Finally, the population obtained in the k+1st generation
will entirely replace the previous generation.

10) The Holland’s Schema Theorem (Holland, 1992) states
that segments of the chromosome more fit than average
will generate copies on an exponential scale in subsequent
generations. Therefore, the fittest individual of each gen-

eration will provide a closed-loop performance yg increas-
ingly similar to the desired yd and the error will decrease
over the generations as far as possible, respecting the
closed-loop structural capacity.

5. PI CONTROLLER GENETIC TUNING TESTS

This section presents some examples to compare the per-
formance of the pole assignment method described in
Section 2 with the genetic tuning algorithm. We assess
how similar the closed-loop temporal response for both
methods is to an ideal closed-loop response that meets a
desired settling time tsd and a maximum overshoot Mpd

according to (4) and (11). The difference with respect to
the reference curve is quantified by the sum of the absolute
errors, described as the fitness function ffn of equation
(18). For all test cases, the genetic algorithm used was
configured to compute 50 generations with a population
size of 500, a chromosome size equal to 2 (Kc, Ti), and
a mutation index of 6%. The resolution of each gene is
53 bits as before the decoding process, integers are used in
significand IEEE double precision (IEEE 754-2019). These
hyperparameters were chosen heuristically as a compro-
mise between convergence and applicability for the set of
cases presented in this section.

Fig. 2 shows an example of the step responses for a first-
order plant of the form (1) with an open-loop gain of 1.2
and a time constant of 6.9. For this case, tsd = 3τ and a
Mpd = 0.1 have been used, so from (8) we get Kc = 1.722
and Ti = 2.1195. The tuning of the genetic algorithm
yields gains Kc = 0.9766 and Ti = 2.8253. The sampling
period is T = 1 for both tuning methods. It can be seen
that the tracking of the target pole assignment curve is
closer with the genetic tuning method.

Fig. 2. Discrete PI performance tuned by a genetic algo-
rithm to emulate a non-zero dynamic pole assignment
for a first-order plant (ZOH, T=1).

We performed a set of simulations related to this first-
order example, where we varied the maximum overshoot
Mpd, which is a design requirement, and the time constant
τ , which can be interpreted as a parametric perturbation
or a change in the plant specification. The desired settling
time tsd, was kept three times the time constant τ . The
sum of the absolute errors is shown in Table 1. It can
be seen that the cumulative error is always lower with
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genetic tuning than with pole assignment, which shows
a better capability of the proposed method to meet the
design requirement. On average, the cumulative absolute
error of the genetic algorithm was 74.4% lower than with
pole assignment for these first-order cases. The * symbol in
the table indicates that for the given combination of Mp

and tsd, the closed loop of the pole assignment method
was unstable. While this problem could be easily fixed by
decreasing the sampling period T , the experiment is meant
to demonstrate the limits of both tuning methods. It can
be seen that the genetic algorithm was able to find a viable
solution even in the situations where the conventional pole
assignment yielded an unstable solution.

Table 1. Sum of the absolute difference be-
tween curves, f , first-order plant (1), T = 1,

time window length 35.

Mp=0.05 Mp=0.1 Mp=0.15 Mp=0.2 Mp=0.25

τ p.a. g.t. p.a. g.t. p.a. g.t. p.a. g.t. p.a. g.t.

τ=1.15 * 0.096 * 0.071 * 0.098 * 0.332 * 0.173

τ=2.3 1.276 0.239 1.475 0.243 2.640 0.261 14.463 0.292 * 0.303

τ=3.45 1.783 0.404 1.614 0.408 1.547 0.433 1.650 0.438 1.690 0.500

τ=4.6 2.293 0.593 2.012 0.741 1.885 0.688 1.798 0.613 1.814 0.626

τ=5.75 2.805 0.787 2.415 0.932 2.180 0.871 2.053 0.796 2.006 0.767

τ=6.9 3.321 0.921 2.821 1.114 2.539 1.026 2.348 0.981 2.234 0.936

τ=8.05 3.840 1.129 3.240 1.114 2.872 1.246 2.639 1.143 2.474 1.086

f average 2.553 0.596 2.263 0.660 2.277 0.660 4.158 0.656 2.044 0.627

p.a.: pole assignment; g.t.: genetic tuning; *: pole assignment does not work

with the chosen T.

Fig. 3 shows the time responses for a second-order plant of
the form (9). In this simulation, we chose K = 1.65, τ1 = 5
and τ2 = 14. We have used a value of tsd = 75% for the
approximate settling time 1 and Mpd = 0.25, so from (14)
and (15) we find Kc = 2.2887 and Ti = 11.885 for the pole
assignment design. The tuning of the genetic algorithm
yields Kc = 1.6310 and Ti = 9.999. In this example, the
sampling period is T = 5 for both tuning methods. As
in the previous case, Fig. 3 shows that the tracking to
the target pole assignment curve is closer with the genetic
algorithm tuning method.

Fig. 3. Discrete PI performance tuned by a Genetic Algo-
rithm to emulate a non-zero dynamic pole assignment
for a second-order plant (ZOH, T=5).

As with the first-order example, two parameters were
varied. In this case, the variation on the desired maximum
1 A heuristic way to calculate the approximate settling time in
overdamped systems is to multiply the sum of both time constants
by 3.5.

overshoot Mpd was maintained and τ2 was chosen as the
parameter to be varied. The values of τ1,K and tsd were
maintained from the example above. As in the previous
case, it can be seen from Table 2 that the cumulative
error is always lower for genetic tuning than with pole
assignment (58.4% in average across all cases).

Table 2. Sum of the absolute difference be-
tween curves, f , second-order plant (9), T = 5,

time window length 120.

Mp = 0.05 Mp0.1 Mp = 0.15 Mp = 0.2 Mp = 0.25

τ2 p.a. g.t. p.a. g.t. p.a. g.t. p.a. g.t. p.a. g.t.

τ2=14.0 0.524 0.498 0.538 0.141 0.602 0.176 0.670 0.084 0.852 0.057

τ2=16.0 0.730 0.329 0.681 0.203 0.692 0.326 0.786 0.163 0.907 0.119

τ2=18.0 0.943 0.395 0.854 0.363 0.842 0.395 0.876 0.223 0.946 0.184

τ2=20.0 1.152 0.556 1.009 0.446 0.946 0.403 0.956 0.325 1.052 0.254

τ2=22.0 1.354 0.699 1.166 0.576 1.166 0.576 1.080 0.422 1.118 0.339

τ2=24.0 1.555 0.815 1.322 0.699 1.198 0.601 1.159 0.571 1.173 0.426

τ2=26.0 1.748 0.945 1.471 0.821 1.332 0.757 1.265 0.593 1.283 0.472

f average 1.144 0.605 1.006 0.464 0.968 0.462 0.970 0.340 1.047 0.264

p.a.: pole assignment; g.t.: genetic tuning.

The similarity between the pole assignment tuning and
the desired target curve could be increased by adding a
feedforward block for closed-loop zero cancelation, but this
is difficult to implement on commercial off-the-shelf con-
trollers. The proposed genetic tuning approach emulating
pole assignment with zero cancellation does not require
modifications to the standard PID structure.

Note that a direct comparison between our approach and
other genetic tuning algorithms (Borase et al., 2021) that
minimize the error between the process variable and the
setpoint, is difficult. When replacing our error metric (18)
by the IAE against the setpoint, both methods yield
comparable error values. However, when using the error
against the desired step response, the cumulative tracking
error of standard genetic tuning methods would be much
larger (approximately 200% in the first-order example
and 1,000% in the second-order example). However, these
differences strongly depend on the desired response curve
chosen for each case.

Additional factors may not be considered in the practical
deployment of the controller. As mentioned above, devi-
ations due to discretization must be considered during
the design stage, particularly when the dynamics of the
process are in the same order of magnitude as the sampling
period. Other aspects that may influence the practical
performance of the tuning include (a) sensor delays, (b)
noise, (c) losses due to resolution, (d) actuator saturation,
and (e) actuator dynamics, e.g., valve motion. Each of
these aspects can change the performance of the control
loop from the desired behavior. Three of them can be
incorporated directly into the genetic controller tuning
scheme: 1) noise as an observable percentage of the steady-
state response of the plant, 2) actuator saturation (e.g.,
valve limits), and 3) actuator dynamics 2 .

Fig. 4 shows a simulation of a practical case, taking into
account these three aspects. The figure compares the pole
assignment method with the genetic algorithm, which
considers noise, saturation, and actuator dynamics. The
simulation is for a first-order plant with K = 1.5 and
τ = 6.5; the desired response has a Mpd = 0.1 and a

2 As a rule of thumb, a value of one second in the time constant of
the response of the valve per inch of the valve size is often used in
practice.
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tsd = 3.5τ . For both controllers, additive noise is simulated
with zero mean and standard deviation 1x10−3, actuator
limits of 0 and 1 are considered, and an actuator time
constant of 3 is simulated. These effects are taken into
account in the training of the genetic algorithm. While
the use of anti-windup, which temporarily turns off the
accumulation on the integral gain while the actuator is at
a limit, is an industry standard, the inclusion of saturation
in the genetic optimization aims at taking constraints into
account already in the controller design and designing
an intrinsically less aggressive controller if necessary. Fig.
4 shows a similar initial slope of the step response due
to actuator saturation for both approaches. However,
genetic tuning provides weaker oscillations and an overall
error 20% lower compared to that of pole assignment,
underscoring the point that the algorithm can be readily
used to account for non-ideal effects in the plant behavior.

Fig. 4. Comparative case with additive noise, actuator
saturation, and actuator dynamics.

6. CONCLUSION

This study presented a proposal to tune PI controllers
with genetic algorithms. Instead of a cost function based
on the tracking error at the setpoint, we use one based
on the minimization of the error between a desired and
feasible step response (designed to achieve both a certain
settling time and a maximum overshoot) and the actual
closed-loop step response. This emulated pole assignment
approach yields a closed-loop response that is closer to
the target curve than conventional pole assignment. The
method is also capable of accounting for practical aspects,
such as noise or actuator saturation and dynamics. On
the other hand, the method proposed in this work could
encounter limitations if the quality of the approximate
black box model is not adequate. Finally, the proposed
structure can be extended to plants of different types and
even incorporate an operator interface that facilitates the
intuitive choice of performance criteria.
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