
Comparison of PI/PID/PIDD2 Controllers
for Higher Order Processes ?

Zhijun Li, Hangwei Zhang, Wen Tan ∗

∗North China University of Technology, Beijing, China (e-mail:
wtan@ieee.org).

Abstract: PI, PID and PIDD2 controllers are compared for higher order processes. Tuning rules
with robustness constraints are first proposed in this paper for PI, PID and PIDD2 controllers.
Then the tuned rules are applied to the benchmark higher order processes and a three-tank
system. It is shown that higher order derivatives can improve the control performance for
processes with small time delays, while it is of no significant performance improvement for
processes with large delays.
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1. INTRODUCTION

Proportional-Integral-Derivative (PID) loops are by far
the most common feedback control mechanism for indus-
trial processes (Astrom and Hagglund, 1995; Ang et al.,
2005; Vilanova and Visioli, 2012). The three parameters
of a PID controller have a very clear connection with the
performance of the system, so it can be easily tuned on-
line. However, with the increasing complexity of industrial
processes and the increase of various uncertainties in the
plants, the control performance of traditional PID control
may not be satisfactory due to its specific structure (Sung
and Lee, 1996).

On the other hand, many modern control techniques were
tried to replace the PID control. Although the advanced
control techniques have contributed to the improvement of
the control performance, they are seldom found in practice
due to the implementation, tuning and maintenance issues.
When a process is already up and running, the trial-and-
error design can be more convenient than the advanced
control alternatives that require taking the process offline
for tests. And even when the advanced control technique
theoretically would provide improved performance, the
extra effort and expense required may not be worth it.
Therefore, more than 90% of the controllers in feedback
control are still of PID type (Astrom and Hagglund, 1995,
2001).

To improve the performance of conventional PID con-
trollers with minimal control structure modification, PID
plus second-order derivative (PIDD2) or Proportional In-
tegral Derivative Accelerated (PIDA) controllers are in-
vestigated (Anwar et al., 2018; Jitwang et al., 2019; Huba
et al., 2020). It is shown that PIDD2/PIDA controllers
can provide better performance in automatic voltage reg-
ulation (AVR) and automatic generation control (AGC)
systems than conventional PID controllers (Khakpour and
Mirabbasi, 2015; Zhao et al., 2019; Mokeddem and Mir-
jalili, 2020; sai Kalyan and Suresh, 2021; Izci et al., 2023).
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Higher order PIDD2D3 (Simanenkov et al., 2017) and
PID with higher order filter (Divakar and Kumar, 2022)
are also proposed to improve the control performance of
conventional PID controllers.

Though a PIDD2 controller can provide better perfor-
mance than a conventional PID controller, the tuning of its
parameters becomes more complex, and it is more sensitive
to noisy environment. This paper will propose tuning
formulae for PI, PID and PIDD2 controllers for high-
order processes with robustness constraint. The tuning
rules can make sure that PI, PID and PIDD2 controllers
have the same robustness measure so that fair comparison
can be made. It is shown that higher order derivatives
can improve the control performance for processes with
small time delays, while it is of no significant performance
improvement for processes with large delays.

2. TUNING CRITERIA

For a general higher order process

P (s) =
N(s)

D(s)
e−θs (1)

The following controllers will be discussed in the paper.

PI controller:

K(s) = Kp +Ki/s (2)

PID controller:

K(s) = Kp +Ki/s+Kds (3)

PIDD2 controller:

K(s) = Kp +Ki/s+Kds+Kd2s
2 (4)

2.1 Performance index

To evaluate the closed-loop load disturbance attenuation
performance, the integral of time absolute error (ITAE) is
considered, which is defined as:
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ITAE =

∞∫
0

t|e(t)|dt (5)

where e(t) = r(t)− y(t). In this paper, we will investigate
the case when the disturbance enters at the process input
(load disturbance).

2.2 Robustness index

The robustness of a control system is one of the most
important issues in controller design, because a model is
always inaccurate in some sense. Two well-known measures
for robustness measure are:

Ms = ‖S‖∞ = max
ω

∣∣∣∣ 1

1 + L(jω)

∣∣∣∣ (6)

Mp = ‖T‖∞ = max
ω

∣∣∣∣ L(jω)

1 + L(jω)

∣∣∣∣ (7)

where L(s) = P (s)K(s) is the open-loop transfer function.
Ms is a good measure of system robustness against the
low and mid-frequency uncertainties, and Mp is a good
measure of system robustness against the mid- and high
frequency uncertainties.

A combination of Ms and Mp is more appropriate (Tan
et al., 2006). Define

M :=

[
(I + PK)−1 (I + PK)−1P
K(I + PK)−1 K(I + PK)−1P

]
. (8)

and

∆ :=

[
∆1 0
0 ∆2

]
. (9)

where ∆1 and ∆2 are uncertainties with compatible di-
mension. Then µ∆(M) is a measure of system robustness
(Tan et al., 2006). It is shown that for a single-loop control
system

ε := µ∆(M) = sup
ω

(‖S‖∞ + ‖T‖∞) (10)

thus ε is a combination of Ms and Mp, and is a good
robustness measure for a single-loop control system. The
larger ε is, the weaker the robustness is.

So the parameters of the PI,PID,PIDD2 controllers can be
found by solving the following optimization problem:{

min
K

ITAE

s.t. ε < γ
(11)

where γ is a given robustness requirement, and ITAE is
computed for load disturbance.

3. APPROXIMATION OF HIGHER ORDER MODELS

First-order processes with deadtime (FOPDT) models are
usually used to tune PI and PID controllers.

P1(s) =
k

Ts+ 1
e−τs (12)

There are many methods to approximate a higher order
process with FOPDT models, e.g, half-rule method (Sko-
gestad and Grimholt, 2012). Any of them can be used

to obtain the FOPDT model. In this paper, a simple
and effective frequency domain approximation method is
proposed. The main idea of this method is to approximate
the actual plant P (s) with the FOPDT model P1(s) at the
bandwidth.

The procedure to find an FOPDT model via the band-
width method is as follows.

• Compute the steady-state gain of the process P (0).
The process gain can be obtained as

k = P (0) (13)

• Compute the bandwidth ωB of P (s), which is the
frequency that the magnitude of the P (jω) equals

to 1/
√

2P (0). Then the constant T can be obtained
as

T = 1/ωB (14)

• The time delay can be estimated as

τ = (6 P (jωB)− π/4)/ωB (15)

where 6 P (jωB) is the phase of P (s) at the band-
width, and π/4 is the phase of 1

Ts+1 at the bandwidth
ωB .

Making the FOPDT model approximate the original
higher order system at the bandwidth will guarantee the
robustness measure below the bandwidth frequency, while
other methods have no such property.

To tune PIDD2 controllers, we will consider second-order
processes with deadtime (SOPDT) models.

P2(s) =
k

(T1s+ 1)(T2s+ 1)
e−τs (16)

To obtain a SOPDT model P2(s) (16), choose the inverse
of the smallest pole of P (s) as T1, and then approximate
P (s)(T1s+ 1) with a FOPDT model k/(T2s+ 1)e−τs.

4. TUNING RULES WITH ROBUSTNESS
CONSTRAINT

Any algorithm (e.g. genetic algorithm (GA), particle swam
optimization (PSO), etc.) can be used to solve the opti-
mization problem (11). But it is hard to find a tuning rule
for FOPDT or SOPDT models for any given robustness
measure. However, the tuning rules can be found for some
special models, and tuning rules can thus be obtained for
the given robustness measure.

4.1 PI tuning

For pure delay models,

P (s) = e−τs (17)

Integral controller can be computed for the pure delay
model for a given robustness measure ε as

Ki = (1.321− 1.743ε−0.885)/(τk) (18)

thus a PI controller for FOPDT model (12) can be ob-
tained as (Ts + 1)Ki

s for the given robustness measure ε,
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i.e., For FOPDT model, tuning rule for PI controller is as
follows:

Ki = (1.321− 1.743ε−0.885)/(τk)
Kp = TKi

(19)

It is found that when the normalized delay L := τ/T of
the FOPDT model is less than 0.5, the above rule has
sluggish load disturbance rejection ability, thus to improve
the performance, the following rules are found for FOPDT
model with L < 0.5.

Ki = (0.3562 + 0.1426L−1.508)/(Tk)
Kp = (0.145 + 0.2826L−0.9878)/k

(20)

for robustness measure ε = 2.0, and

Ki = (0.5278 + 0.1899L−1.688)/(Tk)
Kp = (0.18 + 0.4184L−0.97711)/k

(21)

for robustness measure ε = 2.5.

4.2 PID tuning

PI controller can be computed for the pure delay model
(17) for a given robustness measure ε as

Ki = (1.133− 1.675ε−1.476)/τ
Kp = (0.1747 + 0.0003069ε6.031)

(22)

thus a PID controller for FOPDT model can be obtained
as (Ts + 1)(Kp + Ki

s ) for the robustness measure ε, i.e.,
for FOPDT model (12), tuning rule for PID controller is
as follows:

Ki = (1.133− 1.675ε−1.476)/(τk)
Kd = (0.1747 + 0.0003069ε6.031)T/k
Kp = Kd/T + TKi

(23)

As for the PI case, it is found that when the normalized
delay of the FOPDT model is less than 1, the above rule
has sluggish load disturbance rejection ability, thus to
improve the performance, the following rules are found for
FOPDT model with L < 1.

Ki = (0.2367 + 0.3898L−1.492)/(Tk)
Kp = (0.2309 + 0.5155/L)/k
Kd = 0.264T/k

(24)

for robustness measure ε = 2.0, and

Ki = (0.1365 + 0.6036L−1.554)/(Tk)
Kp = (0.2981 + 0.6328L−1.019)/k
Kd = 0.32T/k

(25)

for robustness measure ε = 2.5.

4.3 PIDD2 tuning

For SOPDT model (16), PIDD2 controller can be tuned
by first tuning a PID controller K1(s) for FOPDT model
k

T1s+1e
−τs via the above rules, and then form the PIDD2

controller by K1(s)(T2s+ 1).

Ideal PID and PIDD2 controllers are tuned for FOPDT
and SOPDT processes. It is well-known that derivative
action is sensitive to measurement noise, so in practice
filters should be used to implement the ideal PID and

PIDD2 controllers. In this paper the observer-based PID
structure (Tan et al., 2022) will be used to implement the
ideal PID and PIDD2. For simplicity, details are omitted
here.

5. SIMULATION FOR BENCHMARK SYSTEMS

In this section, the benchmark higher order systems (As-
trom and Hagglund, 2000) are used to test the applicability
of the proposed tuning method.

G1(s) =
1

(s+ 1)
n , (n = 4, 8, 20) (26)

G2(s) =
1

(s+ 1)(1 + αs)(1 + α2s)(1 + α3s)
, (27)

(α = 0.2, 0.4, 0.8)

The parameters of PI, PID and PIDD2 controllers are
given in Table 1 and 2 under robustness measure ε = 2.0.

The responses of the benchmark systems under the tuned
PID controllers are shown in Figure 1 and 2 with a
step reference at t = 1s and a step input disturbance
at appropriate time, and the relevant indexes for the
disturbance attenuation are given in Table 1 and 2.

Table 1. Parameters of PID controllers for G1

n = 4 Kp Ki Kd Kd2 ITAE ε Ms

PI 0.441 0.192 – – 39.07 1.99 1.40
PID 0.833 0.317 0.607 – 19.05 1.99 1.35

PIDD2 1.529 0.511 1.519 0.501 10.25 1.97 1.28

n = 8 Kp Ki Kd Kd2 ITAE ε Ms

PI 0.243 0.073 – – 231.58 1.96 1.40
PID 0.537 0.103 0.647 – 144.26 2.02 1.46

PIDD2 0.691 0.123 1.167 0.602 112.07 2.01 1.45

n = 20 Kp Ki Kd Kd2 ITAE ε Ms

PI 0.129 0.024 – – 1927.1 1.95 1.39
PID 0.376 0.034 1.037 – 1181.1 2.00 1.47

PIDD2 0.429 0.037 1.491 1.338 1047.3 2.00 1.48

Table 2. Parameters of PID controllers for G2

α = 0.2 Kp Ki Kd Kd2 ITAE ε Ms

PI 1.424 1.717 – – 0.820 1.95 1.28
PID 2.607 3.894 0.274 – 0.285 2.00 1.19

PIDD2 20.48 41.61 2.712 0.054 0.0124 1.92 1.16

α = 0.4 Kp Ki Kd Kd2 ITAE ε Ms

PI 0.763 0.715 – – 3.43 1.98 1.35
PID 1.368 1.302 0.305 – 1.60 1.97 1.25

PIDD2 5.156 4.961 1.572 0.116 0.25 2.04 1.23

α = 0.8 Kp Ki Kd Kd2 ITAE ε Ms

PI 0.464 0.268 – – 20.30 1.99 1.40
PID 0.865 0.444 0.457 – 9.95 1.98 1.34

PIDD2 1.825 0.800 1.348 0.323 4.48 1.97 1.28

From the relevant indexes in Table 1 and 2, for higher
order process G1, PIDD2 can achieve better disturbance
rejection performance for small n compared with PID.
But as n increases, the benefit of PIDD2 over PID is
not obvious, as shown in Figure 1. For process G2, as α
decreases, the benefit of PIDD2 over PID becomes obvious,
as shown in Figure 2. In all the cases, PID and PIDD2 are
superior to PI controllers.

The parameters of the FOPDT model approximation for
G1 are:
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Fig. 1. Closed-loop responses of G1

T = 2.299, τ = 1.967, L = 0.856, G1(n = 4)

T = 3.324, τ = 5.16, L = 1.552, G1(n = 8) (28)

T = 5.325, τ = 15.6, L = 2.930, G1(n = 20)

and for G2,

T = 1.01, τ = 0.1057, L = 0.1046, G2(α = 0.1)

T = 1.0394, τ = 0.2255, L = 0.217, G2(α = 0.2) (29)

T = 1.7316, τ = 1.4071, L = 0.8126, G2(α = 0.8)

It is clear that higher order derivatives can improve the
control performance for processes with small time delays
(normalized delay L < 1), while it is of no significant
performance improvement for processes with large delays
(normalized delay L > 1), especially if there is measure-
ment noise.
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Fig. 2. Closed-loop responses of G2

Further, consider the following high-order systems dis-
cussed in Visioli (2005).

G3(s) =
(15s+ 1)2(4s+ 1)(2s+ 1)

(20s+ 1)3(10s+ 1)3(5s1)3(0.5s+ 1)3

G4(s) =
(−0.3s+ 1)(0.08s+ 1)

(2s+ 1)(s+ 1)(04s+ 1)(0.2s+ 1)(0.05s+ 1)3

G5(s) =
(−45s+ 1)

(20s+ 1)3(18s+ 1)3(5s+ 1)3
·

· (4s+ 1)

(10s+ 1)2(16s+ 1)(14s+ 1)(12s+ 1)
(30)

The parameters of PI, PID and PIDD2 controllers tuned
for the three systems are given in Table 3 under robustness
measure ε = 2.0. The responses of the three systems under
the tuned PID controllers are shown in Figure 3 with a
step reference at t = 1s and a step input disturbance
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at appropriate time, and the relevant indexes for the
disturbance attenuation are given in Table 3.

Table 3. Parameters of PID controllers for G3,
G4, G5

G3 Kp Ki Kd Kd2 ITAE ε Ms

PI 0.387 0.0103 – – 13105 1.99 1.40
PID 0.759 0.017 9.95 – 6401.9 2.01 1.38

PIDD2 1.368 0.026 24.32 149 3582.8 1.99 1.35

G4 Kp Ki Kd Kd2 ITAE ε Ms

PI 0.545 0.225 – – 30.53 1.99 1.39
PID 0.976 0.376 0.641 – 15.21 1.96 1.32

PIDD2 2.222 0.766 2.043 0.578 5.86 1.97 1.36

G5 Kp Ki Kd Kd2 ITAE ε Ms

PI 0.095 0.0021 – – 24832 2.05 1.44
PID 0.329 0.0030 8.793 – 15225 2.10 1.51

PIDD2 0.393 0.0033 14.34 156.5 12886 2.15 1.54

The parameters of the FOPDT model approximation for
G3, G4 and G5 are:

T = 37.69, τ = 36.76, L = 0.975, (G3)

T = 2.428, τ = 1.679, L = 0.691, (G4) (31)

T = 45.15, τ = 179, L = 3.967, (G5)

thus PIDD2 can improve the performance of PID for G3

and G4, but no significant improvement for G5, as shown
in Figure 3.

6. PRACTICAL VALIDATION

In this section, a three-tank system is utilized as a platform
to validate the proposed method. The inlet flow rate
feeding the upper tank is manipulated by a pump output,
while the liquid drains freely through the bottom of the
upper tank to the middle and lower tank. The liquid drains
freely through the bottom of the lower tank to a pool,
where the pump takes the liquid. The objective is to adjust
the pump output to maintain the liquid level in the lower
tank at set point. The valve position at the middle tank
acts as a disturbance to the tank process.

The three-tank process can be identified as

P (s) =
0.066

(49s+ 1)3
(32)

It can be approximated with FOPDT model

P1(s) =
0.066

96.11s+ 1
e−60.5s (33)

and SOPDT model

P2(s) =
0.066

(73.66s+ 1)(49s+ 1)
e−27.8s (34)

Then according to tuning formula, the following controllers
can be tuned with ε = 2.0. For PI controller, the parame-
ters are

Kp = 9.085,Ki = 0.0945 (35)

For PID controller, the parameters are

Kp = 15.92,Ki = 0.160,Kd = 384.4 (36)

For PIDD2 controller, the parameters are

Kp = 43.43,Ki = 0.392,Kd = 1481,Kd2 = 14440 (37)
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Fig. 3. Closed-loop responses of G3-G5

Observer-based PID (Tan et al., 2022) with b0 = 10−6,
ω̄o = 0.2 and α = 1 are used to implement the ideal PID
and PIDD2 controllers.

Since the FOPDT model has a normalized delay L =
0.63, it is predicted that PIDD2 controller have the best
disturbance rejection performance, which can be verified
with the responses of the three-tank processes under the
tuned controllers shown in Figure 4. It is clear that the
PIDD2 and PID controllers can improve the performance
of the PI controller, but the pump output of the PIDD2 is
not smooth, so in practice, the overall performance of PID
is the best for the three-tank process.

7. CONCLUSION

PI, PID and PIDD2 tuning rules were derived for any
given robustness measure, and the tuned rules were applied
to the benchmark higher order processes and a three-
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Fig. 4. Closed-loop responses of the three-tank process

tank system. It was shown that higher order derivatives
can improve the control performance for processes with
small time delays, while it is of no significant performance
improvement for processes with large delays. In practical
control, filters or observers must be tuned simultaneously
with the higher order PID controller parameters, which
will be investigated in the future.
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