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Abstract: This paper presents a data-driven method to automatically tune gain-scheduled
PI controllers for linear parameter-varying (LPV) systems. First, input-output data from a
system is used to train a neural network (NN) based simplified additive nonlinear autoregressive
exogenous (SANARX) model. After reformulating this into a state space representation, an H∞
method is used to obtain the PI parameters for any sampled working point. Throughout the
entire pipeline, this work uses data from a real-world hydraulic test rig, which also serves as the
system where the resulting gain-scheduled controller is evaluated on. Overall, no prior system
knowledge is necessary to utilize this method.
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1. INTRODUCTION

While PID controllers are a standard for controlling in-
dustrial processes, they also have some shortcomings. As
linear controllers, they are not necessarily the ideal choice
for the control of nonlinear systems. Additionally, the
quality of the parameters may depend on the experience
of the person performing the tuning process. The ideal set
of parameters might also change over time, e.g. when the
working point of the system changes due to temperature
or other external influences.

As shown in Veselý and Ilka (2013), gain scheduling
is a widely used option to overcome those challenges.
Hereby, a set of PID parameters is designed for each
working point of a linear parameter-varying (LPV) system.
This approach comes with a greater complexity during
the system modeling and controller design process. Most
notably, many LPV models contain some uncertainty that
need to be recognized during the controller synthesis. An
H∞-based method for this is introduced in Veselý and
Ilka (2015) by using linear matrix inequalities (LMIs). The
practical applicability of an LMI-based approach is verified
in Weiser et al. (2020), where a robust gain-scheduled
controller is designed for the purpose of flight control.
Furthermore, Yavari et al. (2022) propose a method based
on an H2 approach. A different direction is shown in
Rosinová et al. (2022), where a pole placement approach
is used to design robust gain-scheduled PID controllers for
LPV systems.

However, while all of the mentioned design methods show
good results, a common shortcoming is the necessity of
having a proper model of the LPV system. Especially
when working with real-world systems, e.g. in the field
of hydraulics, this is a tough requirement. Very often,
analytical descriptions of processes such as friction or

magnetic hysteresis are hardly available. Furthermore,
hydraulic systems among others often suffer from sparse
sensor information in order to reduce costs.

Thus, this work aims to combine an H∞-based control
design method in combination with a data-efficient iden-
tification method for LPV systems. In this context, the
capabilities of neural networks (NNs) are utilized because
they can identify any nonlinear function according to the
universal approximation theorem, introduced by Cybenko
(1989). Overall, the main efforts of this work are:

• The introduction of simplified additive nonlinear au-
toregressive exogenous (SANARX) models.

• A formalism to reformulate NN-based SANARX
models into an LPV structure.

• The synthesis of robust gain-scheduled PI controllers
for those LPV systems by using an H∞ method.

In order to demonstrate the capabilities of the proposed
method, it is evaluated on a hydraulic test rig. Throughout
this process, no more than the available input-output data
is used to perform both the system identification and the
controller synthesis task.

2. SYSTEM IDENTIFICATION

This section describes the used system identification pro-
cedure. In the first step, the NN-based SANARX is in-
troduced. In the second step, it is brought into an LPV
structure, which is the basis for the controller design.

2.1 SANARX Model

The baseline of the SANARX model is the class of NARX
models. These are widely used to identify nonlinear sys-
tems and processes by just using previously sampled input-
output data. In mathematical terms, this is written as:
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ŷt = F
(
yt−1, yt−2, . . . , yt−n,

ut−1, ut−2, . . . , ut−n

)
.

(1)

Here, ŷt denotes the predicted value, yt−1, . . . , yt−n denote
the past output measurements, ut−1, . . . , ut−n denote the
past input measurements, F (.) is a nonlinear function
approximator, and n is the number timesteps that are fed
into the model. To capture all of the relevant dynamics,
n should be chosen greater than or equal to the assumed
order of the system to be identified.

Through inspection of (1), it becomes evident that the
result of the identification process is a highly nonlinear
function. This makes it harder to further analyze the
system dynamics or even to design a robust controller. As
proposed in Kreutmayr and Ament (2023a,b), the more
structured SANARX model overcomes this problem:

ŷt = f1 (yt−1) + f2 (yt−2) + · · ·+ fd−1

(
yt−(d−1)

)
+ flin,d (yt−d, ut−d) + · · ·+ flin,n (yt−n, ut−n)

=

d−1∑
i=1

fi (yt−i) +

n∑
i=d

flin,i (yt−i, ut−i) .

(2)

Hereby, fi is a nonlinear function approximator, while
flin,i is a linear function approximator.

Equation (2) shows that the timesteps in the SANARX
model are separated into sublayers, which are eventually
added up in the output. Thus, each function approximator
is only fed with data from the same timestep. Additionally,
sublayers 1 to d − 1 are only fed with output data and
sublayers d to n are fed with input and output data. With
this, the influence of the system’s relative degree is taken
into consideration. Moreover, only feeding input data into
linear function approximators ensures that the identified
system is input affine. While this exact structure is already
used in Kreutmayr and Ament (2023a,b), slightly different
applications can be found e.g. in Petlenkov (2007); Belikov
et al. (2013); Belikov and Petlenkov (2009).

Without any further calculation, the special characteristic
of the SANARX model allows to reformulate (2) into a
state space model:

x
(1)
t+1 = x

(2)
t + f1

(
x
(1)
t

)
· · ·

x
(d−1)
t+1 = x

(d)
t + fd−1

(
x
(1)
t

)
x
(d)
t+1 = x

(d+1)
t + fd

(
x
(1)
t , ut

)
· · ·

x
(n)
t+1 = fn

(
x
(1)
t , ut

)
.

(3)

Here, x
(n)
t refers to the current states and x

(1)
t+1 = ŷt+1

refers to the predicted value for the next timestep.

In the course of this work, it is assumed that the function
approximator will always take the form of an NN. How-
ever, it should be noted that the SANARX model can be
combined with any function approximator that follows the
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Fig. 1. Example of an NN in SANARX-structure.

introduced design rules. In the case of NNs, (3) is expressed
as follows:

x
(1)
t+1 = x

(2)
t + C1ϕ1

(
W1x

(1)
t

)
· · ·

x
(d−1)
t+1 = x

(d)
t + Cd−1ϕd−1

(
Wd−1x

(1)
t

)
x
(d)
t+1 = x

(d+1)
t + Cdϕd

(
Wd[x

(1)
t , ut]

⊤
)

· · ·

x
(n)
t+1 = Cnϕn(Wn

[
x
(1)
t , ut

]⊤
).

(4)

Hereby, ϕn (.) denotes an activation function, Wn is the
input weight matrix, and Cn is the output weight matrix.
In order to ensure clarity and readability, no biases are
used throughout this work. However, biases can be added
without changing the functional principle of this method,
as they are just linear additives. Figure 1 displays a
visualization of the proposed SANARX structure.

2.2 LPV Model

In order to model systems with changing parameters, LPV
models are used to maintain a linear structure. The vari-
able parameters are dependent on the scheduling variable
p. Through this, the often nonlinear behavior is embed-
ded into p, while the system itself can be seen as linear
in its current working point (see Shamma (2012)). This
approach allows to use e.g. a gain-scheduling approach for
a proper control of such nonlinear models.
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Mathematically, the definition of an LPV model is:

xt+1 = A (pt)xt +B (pt)ut

yt+1 = C (pt)xt +D (pt)ut.
(5)

Here, pt is the scheduling variable, A (pt) is the system
matrix, B (pt) is the input matrix, C (pt) is the output
matrix and D (pt) is the feedthrough matrix.

As explained in Kreutmayr and Ament (2023a), the SA-
NARX structure can be brought into the LPV form. For
this, the elliot sigmoid activation function, which is intro-
duced in Elliott (1993), is used:

σ (x) =
1

2

(
1 +

x

1 + |x|

)
. (6)

Hereby, σ (x) denotes the output of the function, which is
normalized between [0, 1]. It is noteworthy that the usage
of this sigmoidal-type activation adheres to the already
mentioned universal approximation theorem. Additionally,
the scheduling variable is defined as follows:

pt = 2
∣∣∣x(1)

t

∣∣∣ . (7)

By combining (4) with (6) and (7), one obtains:

xt+1 =



C1W1

2
(
1 + |W1| pt

2

) 1 0 . . . . . . 0

... 0
. . .

. . .
. . .

...
Cd−1Wd−1

2
(
1 + |Wd−1| pt

2

) ...
. . .

. . .
. . .

...

CdWd

...
. . .

. . .
. . . 0

...
...
. . .

. . .
. . . 1

CnWn 0 . . . . . . . . . 0


xt

+



0
C1

2
1v,1

...
...

0
Cd−1

2
1v,d−1

CdWd 0
...

...
CnWn 0


[
ut

1

]
.

(8)

Hereby, v obtains the number of neurons in a certain
sublayer and 1 is a vector of ones. Because pt only depends

on the endogenous state variable x
(1)
t , (8) describes a

quasi-LPV system as stated in Kwiatkowski et al. (2006).

3. CONTROLLER DESIGN

A formalism to synthesize a gain-scheduled controller for a
SANARX-based LPV system is introduced in the following
section. For this purpose, the H∞ method is combined
with a standard PI structure, as it is shown in Kreutmayr
and Ament (2023b).

3.1 Structured H∞ Control

In order to control linear systems, H∞ controllers are
widely used since they guarantee broader stability margins
then classical linear quadratic regulators (see Sagliano
et al. (2021)). This property is important in cases where
systems are not perfectly modeled and when disturbance
inputs are not measurable. Even under those circum-
stances, theH∞ method ensures a good and robust control
performance. Moreover, H∞ controllers do not require full
state feedback, but solely need information from the signal
to be controlled.

SANARX
LPV

-yt W1
z1,t

W3
z3,t

W2
z2,t

rt

ut

et

Augmented Plant P

zt

Fig. 2. Block diagram of the augmented plant P used in
this work.

As already stated, H∞ synthesis is a proper way of
designing controllers for LPV systems. Furthermore, in
Kreutmayr and Ament (2023b), combining H∞ with a
SANARX-based LPV system leads to well-performing
controllers. In order to apply the method, the LPV system
in (8) is reformulated into the form of an augmented plant
P, such that: [

z
e

]
= P

[
r
u

]
, (9)

with z as the error outputs, e as the errors that are
provided to the controller, r as the reference signal, and
u as the control inputs. A block diagram of the system
used in this work is shown in Fig. 2. Here, P contains the
weighting functions W1, W2, and W3. They influence the
system as follows:

• W1 is the sensitivity function that affects the refer-
ence tracking and disturbance rejection.

• W2 limits the control effort.
• W3 is the sensitivity function that affects the robust-

ness and noise attenuation.

When the H∞ method is applied on the augmented plant
P , the result is in the so-called PK structure. A block
diagram of this is shown in Fig. 3. Here, controller K can
be of any form that is capable of solving the H∞ control
problem for P . On the one hand, this leads to a wide
solution space while on the other hand there is a high
risk of getting controllers of high order. Those might be
hard to implement in a practical application. Moreover,
the orders may vary in different working points, when
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P

rt zt

K

etut

Fig. 3. Block diagram of the PK structure of the H∞
method.

applying the H∞ method to an LPV system. Therefore, a
gain-scheduling approach could not be used.

Consequently, the H∞ problem is solved for a fixed con-
trol structure in this work. By using the well-known PI
controller, the result is expected to be robust and easy to
implement.

3.2 PI Controller

Due to its slim structure, good interpretability, and easy-
to-implement nature, the PI controller is widely used
in academia as well as in industrial applications. In its
discrete time form, a PI controller is denoted as:

ut = KP et +KI

t∑
n=0

enTs, (10)

with KP as the proportional gain, KI as the integral gain,
and Ts as the sampling time. Furthermore, the control
error et is defined as:

et = yt,ref − yt, (11)

with yt,ref as the reference signal. As mentioned above,
a gain-scheduled PI controller is necessary to control an
LPV system. As a result, the gains in (10) depend on the
scheduling variable (7):

ut = KP (pt) et +KI (pt)

t∑
n=0

enTs. (12)

As proposed in Gahinet and Apkarian (2011), MATLAB’s
hinfstruct is used to calculate the optimal controller pa-
rameters for each of i sampling points. The resulting set
of parameters builds the foundation for the gain-scheduled
controller, which linearly interpolates between the discrete
values to ensure smooth transitions.

4. EXPERIMENTAL EVALUATION

In this section, the experimental evaluation of the pro-
posed method is presented. In a first step, the hydraulic
system is introduced briefly. Subsequently, the setup of
the augmented plant and the experimental setting is ex-
plained. Conclusively, the results of the experiments are
shown.

4.1 Hydraulic System

In order to evaluate the method, a hydraulic test system
is used. It consists of a hydraulic pump, an oil tank, a

A

b

V1
a

a

V2

b

B

b

V3
a

a

V4

b

Fig. 4. Diagram of the hydraulic test system.

differential cylinder, four electromagnetically driven 2/2-
way proportional valves, and a combination of hoses and
pipes that connect all elements. The interconnection of the
components is shown in Fig. 4.

The valves can be controlled individually by applying an
electrical current onto their electromagnet. The goal is
to control the pressures in each chamber of the cylinder.
Hereby, V1 and V2 are used to directly influence the
pressure in the bottom side chamber A, while V3 and V4
modify the pressure in the rod side chamber B.

The cylinder can freely be driven backward and forwards.
Moreover, it is possible to force it into a desired position
by mechanically fixing the rod.

Due to effects such as frictions in the cylinder and the
hydraulic valves, electromagnetic hysteresis, and the ca-
pacities of pipes and hoses, the system can be seen as
highly nonlinear. Furthermore, it is assumed that only the
pressures pA and pB in the cylinder chambers and all the
electrical currents applied to the valves are measurable.
This is of practical relevance, since additional sensors like
volume meters are costly and therefore often not used in
applications.

The goal is to control the cylinder’s chamber pressures pA
and pB using valves V2 and V4 respectively. Valves V1 and
V3 provide varying volume flows to the cylinder, which can
be interpreted as a disturbance for the controller.

To complete the control task, both cylinder chambers are
interpreted as independent systems. Consequently, this
results in two different LPV systems that need to be
identified. Thus, only currents IV 1 and IV 2 along with
pA are used to identify the bottom side system. Similarly,
currents IV 3 and IV 4 along with pB serve as the relevant
output data of the rod side system.

4.2 Setup of the Augmented Plant

In order to setup the SANARX model, it is assumed that
both subsystems are of order n = 3 with a relative degree
of d = 3. This results in a system where data from the
input u appears only in the last layer. Hence, (4) becomes:

x
(1)
t+1 = x

(2)
t + C1ϕ1

(
W1x

(1)
t

)
x
(2)
t+1 = x

(3)
t + C2ϕ2

(
W2x

(1)
t

)
x
(3)
t+1 = C3W3

[
x
(1)
t , u1, u2

]⊤
.

(13)

IFAC PID 2024
Almería, Spain | June 12-14, 2024

131



Each of the sublayers contains of five neurons. As a result,
(8) becomes:

xt+1 =


C1W1

2
(
1 + |W1| pt

2

) 1 0

C2W2

2
(
1 + |W2| pt

2

) 0 1

C3W3 0 0

xt

+


0 0

C1

2
15

0 0
C2

2
15

C3,1W3,1 C3,2W3,2 0


[
u1

u2

1

] (14)

For the pressure control of both chambers, this LPV
system serves as the basis for the augmented plant P as
shown in (9). The performance functions for controlling
pA in the bottom side chamber are:

W1,A =
0.015z − 0.0050

z − 0.9997
,

W2,A =
9.995z − 9.995

z − 0.999
,

W3,A = 0,

(15)

with a sampling time Ts of 0.005 s. Furthermore, the
performance functions for controlling pB in the rod side
chamber are:

W1,B =
0.0085z − 0.0065

z − 0.9997
,

W2,B =
9.995z − 9.995

z − 0.999
,

W3,B = 0,

(16)

Performance function W3 is not used in both cases since it
is closely related to W1. As in many practical applications,
it is assumed in this work that W1 is sufficient to also cover
robustness and noise attenuation. The exact parameters of
the performance functions are the result of a systematic
tuning process.

4.3 Experimental Setting

To demonstrate the capabilities of the proposed method,
it is evaluated on the aforementioned system. For the
training of both NN-SANARX models, two training sets,
each consisting of 50,000 data points, are sampled. Hereby,
the sampling rate is set to 0.005 s. The pressure of the
pump is set to be 300 bar, while the tank pressure is 0 bar.
The cylinder is continuously moved back and forth, while
varying currents in the interval [0, 1330] mA are applied
onto the valves. These are sampled by using an amplitude-
modulated pseudo-random binary signal (APRBS). For
the first training set, the focus lies on generating data
for controlling pA in the bottom side chamber, while the
second training set contains the data for controlling pB in
the rod side chamber.

The Levenberg-Marquardt (LM) algorithm is used for the
training of the NN-SANARX models, which takes 2,500
iterations each. In course of this, a min-max normalization

is applied onto the data to bring all features into the same
range of scale, i.e. [0, 1]. As performance metric serves the
mean squared error (mse):

mse =
1

N

N∑
i=1

(p̂j,i − pj,i)
2
, (17)

with N as the number of data points and j = {A,B}.
Since the training is conducted in an open loop setting,
the predicted values p̂j are not fed back into the network.

After the training process is completed, both LPV systems
are sampled in ten different working points, which are
equidistantly distributed in the interval [0, 300] bar. Af-
terwards, PI parameters are synthesized for each working
point by using MATLAB’s hinfstruct in combination with
the performance functions (15) and (16).
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Fig. 5. Gains calculated using the H∞ procedure.

4.4 Evaluation

Both learning processes end with an mse < 1 × 10−6,
where the calculation is done over the whole dataset
by using normalized values. The low mse indicates that
the models are sufficient to apply the H∞ synthesis.
Figure 5 shows the resulting PI gains for both models.
As mentioned earlier, the controllers are applied to valve
V2 for controlling the bottom side chamber and valve V4
for controlling the rod side chamber. In both cases, the
resulting gains are in the same order of magnitude. The
difference in values might be explained by the serial spread
of the valves and the different capacities in the cylinder
chambers.

To evaluate the performance of the controllers, a test cycle
is defined. Again, the pump pressure is 300 bar, while
the tank pressure is 0 bar. In this case, the cylinder does
not move, but is mechanically fixed in its center position.
Both pressures pA and pB are supposed to follow a given
trajectory through the control of V2 and V4. Moreover,
V1 and V3 change the flow into the chambers, which
acts like a disturbance. In addition, a changing pressure
in one chamber automatically affects the pressure in the
other chamber. This is due to the mechanical coupling of
the two chambers. The resulting behavior can be seen in
Fig. 6. In the bottom graph, the behavior of all of the

IFAC PID 2024
Almería, Spain | June 12-14, 2024

132



0

100

200

300

p
re
ss
u
re

in
b
ar pA,ref pB,ref pA pB

0 50 100 150 200 250
300

400

500

time in s

cu
rr
en
t
in

m
A IV1 IV2 IV3 IV4

Fig. 6. Result of applying the PI controllers to the real
system.

currents in visualized. The upper graph shows that both
controllers are able to maintain a constant pressure as
well as to track a given profile. Note that pB is slightly
more jittery than pA. This is due to the lower volume in
the cylinder’s rod side, which makes this subsystem more
aggressive since changes in volume flow result in a higher
pressure gradient than on the bottom side. The plot also
shows that the pressure changes in the rod side cause more
disturbance in the bottom side than vice versa. Eventually,
the root mean squared error (rmse) is calculated for both
controllers. This is done as follows:

rmse = 2
√
mse, (18)

with mse as the result of (17). For the bottom side, the
rmse is 22.93, while the rmse of the rod side is 29.13. The
slightly higher error value on the rod side can be explained
by the jittery behavior of pB . Overall, this can be seen as
a satisfactory result for this control task.

5. CONCLUSION

In this paper, an end-to-end method for automatically tun-
ing gain-scheduled PI controllers is introduced and applied
to a real-world system. Here, only input-output data is
used to identify an NN-based SANARX model. After re-
formulation into LPV form, H∞ synthesis is performed to
obtain a robust set of PI parameters for different working
points. To illustrate the practicality and robustness of the
method, it is evaluated on a real-world hydraulic test rig.

Despite of the advantages of the method, it should be
noted that the control result depends strongly on the qual-
ity of the identified system and thus the representability of
the training data. Hence, an insufficient dataset may lead
to an unstable controller even though the H∞ synthesis is
successful.

In future work, this drawback could be addressed by
a mechanism that evaluates the quality of the sampled
training dataset. In addition, by incorporating the method
into a reinforcement learning framework, a retraining
process could be introduced. Finally, the use of higher
order control structures could help to further improve the
control performance.
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