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Abstract: In this work, a method is proposed for retuning decentralized proportional-integral-
derivative controllers. It consists in applying the internal model control approach in order to fit
the closed-loop frequency response to that of a desired reference model. Then, an optimization
problem is solved to adjust the increments on the controller parameters in order to meet the
closed-loop requirements. To guarantee stability and robustness, linear margin constraints are
applied to each loop, using the concept of effective loop transfer functions to take the coupling
into account. The procedure is validated through simulations studies, by comparing it with other
decentralized and centralized tuning methods.
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1. INTRODUCTION

Many industrial processes are multi-input and multi-
output (MIMO). The coupling between loops is a major
issue for achieve stability and performance requirements
during the control design of this process. In literature,
several control strategies are proposed, to tune controllers
with centralized or decentralized structures. The simplest
consists in the decentralized proportional-integral (PI) or
proportional-integral-derivative (PID) structures, which
are easy to implement and leads to good solutions in most
applications (Nisi et al., 2019).

To address the issues caused by loops interactions in
decentralized control, different approaches can be taken.
One consists in use MIMO stability criteria during design,
such as the Nyquist criterion or Gershgorin bands. The
latter is used in Euzébio et al. (2020), where it is presented
the design of decentralized PID controllers, by solving a
linear programming problem. The main disadvantage was
that this approach is too conservative, being applicable
only to diagonal dominant process.

Other approach is to divide the MIMO system into sev-
eral single-input and single-output (SISO) subsystems,
and take the loop interactions into account by using the
concept of effective transfer function (ETF). In Silva and
Barros (2020) and Garrido et al. (2022), the ETF and the
effective loop transfer function (ELTF) are applied, respec-
tively, to design decentralized and centralized controllers.
The stability and robustness of each subsystem is assured
by applying constraints in the Nyquist diagrams, using a
method proposed by Karimi et al. (2007).

⋆ This work was supported by CAPES, Brazil.

Methods based on internal model control (IMC) are also
used to specify the closed-loop desired responses. This
approach is applied in Jeng and Lee (2023), where a
diagonal reference model is defined to specify the desired
performance. Then the specifications of the off-diagonal
terms are chosen in order to make the controller matrix
diagonal. Frequency domain data is used to formulate a
least square problem to approximate the controller desired
frequency response by a decentralized PID structure.

In Gao et al. (2017), it is said that around 60% of industrial
controllers suffer from certain types of malfunctions. The
main causes of this malfunctions are the poorly tuned con-
troller parameters and the changes in the plant structure.
Then, it is proposed a data-driven method for performance
assessment and retuning of PID controllers.

In Silva Moreira et al. (2021), an internal model con-
trol (IMC) returning method for PID controllers is pre-
sented. It uses only process frequency domain data, and
is restricted to SISO systems. The method is extended
to square MIMO processes in Aguiar et al. (2021). The
resulting controllers are centralized.

In this paper, a method for retuning decentralized PID
controllers is proposed. Given the initial controller gains
and the frequency response of the process, the aim is
to obtain the gains increments based on a closed-loop
desired specification. To ensure stability and robustness,
margin constraints are imposed to each loop, by taking
into account the interactions using the ETF approach.
Then, a convex optimization problem is stated to solve
the problem with the constraints.
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This paper is organized as follows. In Section 2 the control
problem is defined. The proposed method is presented
in Section 3. Simulation studies are shown in Section 4.
Conclusions are discussed in Section 5.

2. PROBLEM STATEMENT

Consider the closed-loop system block diagram presented
in Fig. 1. It is a n× n MIMO process where:

G(s) =


G11(s) G12(s) · · · G1n(s)
G21(s) G22(s) · · · G2n(s)

...
...

. . .
...

Gn1(s) Gn2(s) · · · Gnn(s)

 . (1)

Here, Gij(s) is the transfer function between jth input and
ith output. The system is in closed-loop with an initial
decentralized controller:

C0(s) = diag
[
C0

1 (s), C
0
2 (s), · · · , C0

n(s)
]
. (2)

The jth loop term of the controller has the following
parallel PID form:

C0
j (s) = k0Pj

+
k0Ij
s

+
k0Dj

s

Tfjs+ 1
, (3)

where k0Pj
, k0Ij and k0Dj

are the jth loop proportional, inte-

gral and derivative gains, respectively. Tfj is the derivative
filter time constant, which is assumed to be known.

Fig. 1. Decentralized control system block diagram.

For this system, the complementary sensitivity matrix is
defined as:

T0(s) =
(
I+G(s)C0(s)

)−1
G(s)C0(s). (4)

Given T0(s) and C0(s), the problem consists in obtain a
new PID decentralized controller, named C(s), such that
the new closed-loop transfer matrix, T(s), approaches a
specified dynamics given by Tr(s).

Assuming that the elements ofG(s) have no zeros on RHP,
then:

Tr(s) = diag

[
e−L11s

τ1s+ 1
, · · · , e

−Lnns

τns+ 1

]
, (5)

where τj is the specified time constant for jth loop and
Ljj is the time delay of Gjj(s).

3. CONTROLLER RETUNING METHOD

In this section, the proposed procedure to retuning decen-
tralized PID controllers will be presented. An optimization
problem will be formulated to approximate the frequency
response between the complementary sensitivity matrix
and the desired specification.

To guarantee closed-loop stability and robustness, con-
straints on the Nyquist diagram are added to the optimiza-
tion problem. This is done by using the effective transfer
function (ETF) to account for loop interactions, such that
SISO stability margins limits can be imposed for each loop.

3.1 Controller design

Given the initial controller (C0(s)), the designed controller
can be expressed as:

C(s) = C0(s) +C∆(s), (6)

where C∆(s) is the increment transfer matrix.

The problem of PID IMC controller retuning was first
proposed in Silva Moreira et al. (2021). In Aguiar et al.
(2021), the problem was extended to redesign centralized
controllers. Here, the case of PID decentralized control is
treated.

Lemma 1. The increments C∆(s) in order to meet the
specification Tr(s) are given by:

C∆(s) = C0(s)
(
T0(s)

)−1 (
Tr(s)−T0(s)

)
(Sr(s))

−1
.
(7)

Proof. Defining the following sensitivity functions:

S0(s) = I−T0(s) =
(
I+G(s)C0(s)

)−1
,

S(s) = I−T(s) = (I+G(s)C(s))
−1

, and

Sr(s) = I−Tr(s).

(8)

Then:

S0(s) (S(s))
−1

Sr(s) =

=
(
I+G(s)C0(s)

)−1
(I+G(s)C(s))Sr(s).

(9)

Ideally, S(s) = Sr(s), which leads to:

S0(s) =
(
I+G(s)C0(s)

)−1
(I+G(s)C(s))Sr(s). (10)

This equation can be rewritten, using (6) and then (4), as:

S0(s) =
[
I+T0(s)

(
C0(s)

)−1
C∆(s)

]
Sr(s), (11)

that is equivalent to:

S0(s)− Sr(s) = Tr(s)−T0(s) =

= T0(s)
(
C0(s)

)−1
C∆(s)Sr(s).

(12)

Solving for C∆(s) leads to (7).

Equation (7) can be used to compute the frequency re-
sponse of the controller increments by taking the frequency
response over a suitable frequency range [ω1, ωN ].

To retuning the parameters of the PID controller, the fre-
quency response ofC∆(jω) is approximated byC∆

PID(jω),
which has the following form:

C∆
PID(jω) = KP

∆ +
KI

∆

jω
+KD

∆jω, (13)

whereKP
∆,KI

∆ andKD
∆ ∈ Rn×n are the PID controller

increments.

Then, the following convex optimization problem can be
written to obtain the increments:

min
KP

∆,KI
∆,KD

∆

∥∥∥∥[ℜ (
C∆(jω)

)
ℑ
(
C∆(jω)

)]−
[
ℜ
(
C∆

PID(jω)
)

ℑ
(
C∆

PID(jω)
)]∥∥∥∥2

2

∀ω ∈ [ω1, ωN ],

s.t. KP
∆,KI

∆,KD
∆ are diagonal,

(14)
where ℜ(.) and ℑ(.) are the real and imaginary parts,
respectively. The final controller is then obtained by (6).

An issue in this formulations is that there are no stability
constraints. That said, the resulting closed-loop may be
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unstable. This problem will be solved by adding further
constraints on the optimization problem.

3.2 Stability constraints

In order to guarantee stability and robustness of the IMC
redesign procedure, constraints will be added to problem
in (14).

To keep the problem convex and of simple implementa-
tion, the procedure presented in Euzébio et al. (2020)
was adopted. It consists in divide the MIMO system in
a set of SISO subsystems, represented by effective transfer
functions to account for loop interactions. Then, the linear
margin constraints approach proposed in Karimi et al.
(2007) can be applied to each subsystem, in order to guar-
antee stability and robustness margins of each individual
loop.

By denoting Gef
j (s) as the ETF of jth loop. It is defined

as the transfer function between jth input and jth output,
by keeping this loop open while the remaining are closed.
A procedure to calculate the ETF is presented in Silva and
Barros (2020).

The effective loop transfer function (ELTF) is defined as:

Lef
j (s) = Gef

j (s)Cj(s). (15)

Considering Cj(s) = C0
j (s)+C∆

j (s) in PID form, as shown
in (3) and (13), then the ELTF can be written as:

Lef
j (s) = ρTj G

ef
j (s)ϕj(s), (16)

where:

ρj =
[
k0pj

+ k∆Pj
, k0Ij + k∆Ij , k

0
Dj

+ k∆Dj

]T
,

ϕj(s) =

[
1,

1

s
,

s

Tfjs+ 1

]T
.

(17)

The Nyquist plot of Lef
j (jω) is presented in Fig. 2. It

should lie in the right side of the line rn, which crosses the
negative real axis between 0 and −1 at a distance l from
the critical point. The angle of slope is α, which varies
between 0◦ and 90◦.

Fig. 2. Nyquist plot of ELTF and linear constraints (Silva
and Barros, 2020).

With the line parameters l and α, the following lower
bounds can be obtained for the gain, phase and modulus
margins of the ETF, respectively:

gm ≥ 1

1− l
,

ϕm ≥ arccos

(
(1− l) sin2 α+ cosα

√
1− (1− l)2 sin2 α

)
,

Mm ≥ l sinα.
(18)

By geometric analysis, the constraints are met if, and only
if:

ρTj

(
cotαℑef

j (jω)−ℜef
j (jω)

)
+ l ≤ 1, (19)

where ℑef
j (jω) and ℜef

j (jω) are, respectively, the imagi-

nary and real parts of Gef
j (jω)ϕj(jω).

3.3 Resulting optimization problem with constraints

By combining the unconstrained optimization problem
in (14) and the linear constraints in (19), the resulting
problem can be written as (21).

In some cases, in order to achieve the specification, some
of the gains can have a change in sign, implying that the
direction of the control action is different than that of
the loop direction. This may cause issues in the controller
implementation because the reset or rate time will be nega-
tive. To avoid this, a restriction is added to guarantee that
the direction of control action is kept during optimization:

djρ
T
j ≥ [0 0 0] ∀ j, (20)

where dj = 1 if the control action of jth loop is direct, and
dj = −1 if it is reverse.

min
KP

∆,KI
∆,KD

∆

∥∥∥∥[ℜ (
C∆(jω)

)
ℑ
(
C∆(jω)

)]− [
ℜ
(
C∆

PID(jω)
)

ℑ
(
C∆

PID(jω)
)]∥∥∥∥2

2

∀ω ∈ [ω1, ωN ],

s.t. ρTj

(
cotαℑef

j (jω)−ℜef
j (jω)

)
+ l ≤ 1

∀ j, ∀ ω ∈ [ω1, ωN ],

djρ
T
j ≥ [0 0 0] ∀ j,

KP
∆,KI

∆,KD
∆ are diagonal.

(21)

The main advantages of (21) is that it is convex and can be
easily implemented in solvers such as MATLAB fmincon
or CVX.

4. SIMULATION RESULTS

In this section, the proposed method is applied to two
MIMO processes: the Wood and Berry (1973) distillation
column and the reactor of a diesel hydrotreating unit
(Aguiar et al., 2023).

The centralized IMC PID retuning method of Aguiar et al.
(2021) and the decentralized IMC PID tuning method
of Jeng and Lee (2023) are used as comparison. In the
first scenario, the objective was to verify the efficacy of
the decentralized structure against the centralized. In the
second scenario, the objective was to compare with other
method of decentralized IMC PID design in frequency
domain.

In order to achieve a fast closed-loop response, the ref-
erence model time constants were chosen as τj = (Tjj +
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Ljj)/3, where Tjj and Ljj are the dominant time constant
and delay of Gjj(s), respectively. In both examples, the
linear margins were set as l = 0.67 and α = 60◦, which
results in MS < 1.7 for each loop.

The choice of the frequency ranges was made by consider-
ing the maximum critical frequency among the elements of
the reference model Tr(s), ωc. Then, N log spaced points
were taken as ωk = kωc/N , where k = 1, · · · , N .

To assess the control system performance relative to the
desired reference (Tr(s)), the adopted criterion was the
integral squared error between the output (yj(t)) and the
output of reference model (yrj (t)):

Ej =

t=1∑
∞

(yj(t)− yrj (t))
2. (22)

Also, to measure the control effort, the total variation
(TV) of the manipulated variables is considered. It is
defined as:

TV j =

t=1∑
∞

|uj(t+ 1)− uj(t)|. (23)

To analyze the stability and robustness of the closed-
loop system, the nyquist diagrams of the ELTFs are
showed. The aim is to compare the retuned controller
with the initial controller, and see if the frequency margin
constraints are met.

4.1 Example 1

Consider the Wood and Berry (1973) model for the binary
distillation column:

G(s) =

 12.8e−s

16.7s + 1

−18.9e−3s

21s + 1
6.6e−7s

10.9s + 1

−19.4e−3s

14.4s + 1

, (24)

with the following reference model:

Tr(s) =

 e−1s

5.9s + 1
0

0
e−3s

5.8s + 1

. (25)

The initial controller is:

C
0
(s) =

[
0.5 +

0.1

s
0

0 −0.1 −
0.01

s

]
. (26)

Controllers C(s), C1(s) and C2(s) were obtained using
proposed, Jeng and Lee (2023) and Aguiar et al. (2021)
methods, respectively. The transfer matrices of each one
are:

C(s) =

[
0.206 +

0.023

s
+ 0.003s 0

0 −0.1 −
0.012

s
− 0.002s

]
, (27)

C
1
(s) =

[
0.152 +

0.023

s
+ 0.003s 0

0 −0.078 −
0.012

s
− 0.002s

]
, (28)

C
2
(s) =

[
0.206 +

0.022

s
+ 0.003s −0.025 −

0.017

s
+ 0.001s

0.206 +
0.008

s
− 0.002s −0.101 −

0.012

s
− 0.002s

]
. (29)

Two closed-loop experiment were performed to compare
the performance between designs. An unit step is applied

to the setpoint each loop at different times, in order
to observe the effects of setpoint tracking and coupling
between loops. In Fig. 3, it is shown the comparison
between the proposed and Jeng and Lee (2023) method,
while in Fig. 4 is presented the comparison between the
decentralized and centralized methods. For both cases,
the desired reference response of Tr is plotted, as well as
the response with the initial controller. The error indexes
between the outputs and reference outputs, calculated
using (22), and the total variation of the MVs, calculated
using (23), are shown in Table 1.

In comparison with the (Jeng and Lee, 2023) IMC design,
it is possible to note that the retuned controller leads
to a better closed-loop performance, with a lower error
between the reference response. When compared with the
retuned centralized controlled, the performance was worse,
specially in respect to the decoupling obtained with each
controller. This effect was expected because of the simpler
structure of the proposed controller and the high coupling
between the loops.
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Aguiar et al. (2021)

Fig. 3. closed-loop step response of example 1 with compar-
ison between the centralized and decentralized meth-
ods.
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Fig. 4. manipulated variables of the closed-loop step re-
sponse of example 1.

To assess the robustness of the controller designed with
proposed method, the Nyquist diagrams of the ELTFs
of each loop were plotted. They are shown in Fig.
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Table 1. Error indexes and TVs for example 1.

E1 E2 TV1 TV2

Proposed 1.79 2.04 0.27 0.29
Initial 2.99 4.09 1.46 0.52
Jeng and Lee (2023) 2.02 2.10 0.27 0.28
Aguiar et al. (2021) 0.13 0.52 0.13 0.24

Fig:nyquistwb, in comparison with the initial ELTFs and
the line constraint. For both loops, the poor stability
margins with initial controller were improved by redesign,
and the restrictions were met.
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(a) Loop 1
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(b) Loop 2

Fig. 5. Nyquist diagrams of ELTFs with proposed (solid
line) and initial controller (dashed line) for example
1, in comparison with line constraint (red line).

4.2 Exemple 2

Consider a diesel hydrotreating unit (HDT). The pro-
cess model, reference closed-loop model and designed con-
trollers are all presented in Equation (30).

Similar to example 1, C(0)(s) is the initial controller,
C(s) the redesigned decentralized controller, C(1)(s) was
obtained by applying Jeng and Lee (2023) method, and
C(2)(s) is the retuned centralized controller that was
obtained by applying Aguiar et al. (2021) method.

Because of the lower triangular structure of G(s), the
centralized PID controller C(2)(s) also is triangular.

The closed-loops step responses are presented in Figs. 6
and 7, to compare both decentralized methods and the
redesigns decentralized and centralized methods, respec-
tively. The error indexes between the outputs and reference
outputs are shown in Table 2. The total variation of each
MV is presented in Table 3.

In this example, because of the lower coupling between
loops, the decentralized redesign method leads to good
results for both setpoint tracking and decoupling. In com-
parison with the centralized controller, it leads to a better
closed-loop performance for loops 1 and 3, even with a
simpler structure.

Table 2. Error indexes for example 2.

Loop 1 Loop 2 Loop 3 Loop 4

Proposed 4.53 26.10 23.15 40.91
Initial 63.06 109.60 82.11 138.55
Jeng and Lee (2023) 6.35 36.44 33.01 46.69
Aguiar et al. (2021) 7.22 9.05 71.12 37.21

In Fig. 8, the Nyquist diagrams of each ELTF are pre-
sented. With the redesigned controller, it was possible to
achieve a faster closed-loop response than initial controller
without violate the margin constraints.

Fig. 6. closed-loop step response of example 2 with compar-
ison between the centralized and decentralized meth-
ods.
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Fig. 7. manipulated variables of the closed-loop step re-
sponse of example 2.

Table 3. TVs for example 2.

Loop 1 Loop 2 Loop 3 Loop 4

Proposed 8.8 153.7 654.4 592.8
Initial 0.8 8.7 28.4 30.2
Jeng and Lee (2023) 9.6 160.7 672.6 617.0
Aguiar et al. (2021) 9.7 156.9 720.3 639.4

5. CONCLUSION

A procedure for retuning decentralized controllers was
proposed. It consists in solve a convex optimization prob-
lem to approximate the frequency response of the new
controller with a PID structure, in order to achieve the
closed-loop specification. To guarantee stability and ro-
bustness, linear margin constraints are applied to shape
the effective loop transfer functions. The method was vali-
date through simulations, where good performance indexes
were achieved when compared with other decentralized
and a centralized controller, while keeping the stability
constraints.
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G(s) =


1.1215e−838s

538.01s + 1
0 0 0

0.8785e−1478s

882.82s + 1

−0.1931e−612.78s

433.16s + 1
0 0

0.8770e−2646.46s

878.77s + 1

−0.1647e−1699.31s

2378.17s + 1

−0.0674e−473.21s

455.03s + 1
0

0.9321e−3568s

1052.2s + 1

−0.1588e−2299.74s

1363.77s + 1

−0.0572e−882.65s

949.36s + 1

−0.0783e−475.87s

693.15s + 1

 , Tr(s) =


e−838s

473.7s + 1
e−613s

348.6s + 1
e−473s

309.4s + 1
e−476s

389.7s + 1



C
(0)

(s) = diag


0.134 +

0.0003

s

−0.829 −
0.002

s

−2.898 −
0.006

s

−3.146 −
0.005

s

 , C(s) = diag


0.43 +

0.0006

s
+ 14.75s

−2.80 −
0.005

s
− 7.52s

−11.02 −
0.019

s
− 56.13s

−11.65 −
0.015

s
− 122.42s

 , C
(1)

(s) = diag


0.72 +

0.0007

s
+ 0.80s

−4.41 −
0.005

s
− 6.88s

−14.60 −
0.019

s
− 29.44s

−14.38 −
0.015

s
− 25.81s

 ,

C
(2)

(s) =


0.73 +

0.0007

s
+ 0.86s 0 0 0

−0.96 +
0.003

s
+ 3.83s −4.41 −

0.005

s
− 6.89s 0 0

3.21 +
0.001

s
+ 15.44s −13.67 −

0.013

s
+ 17.59s −14.56 −

0.019

s
− 29.38s 0

−3.33 +
0.0009

s
+ 3.81s 0.73 +

0.0007

s
+ 0.86s −1.16 +
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Fig. 8. Nyquist diagrams of ELTFs with proposed (solid
line) and initial controller (dashed line) for example
2, in comparison with line constraint (red line).

For future works, the constraints on the optimization prob-
lem may be improved by taking into account multivariable
stability specifications.
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