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Abstract: In this paper we evaluate the performance achieved by a tuning methodology based on Internal
Model Control for a Proportional-Integral-Derivative-Acceleration (PIDA) controller. In particular, we
compare the results obtained for the set-point and load disturbance step responses with those achieved
with a Proportional-Integral-Derivative (PID) controller tuned by applying the well-known SIMC and
AMIGO tuning rules. Different high-order processes are considered: self-regulating, distributed lag and
non self-regulating. It is shown that, in general, the use of the double derivative (acceleration) action
allows the integrated absolute error to be decreased without a decrement of the robustness and with a
moderate increment of the control effort.
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1. INTRODUCTION

The great success of Proportional-Integral-Derivative (PID)
controllers in industry is motivated by their relative simplicity
and, at the same time, by the satisfactory performance they are
able to provide for a wide variety of applications. Further, the
availability of many effective tuning rules (O’Dwyer, 2006), of
automatic tuning procedures and of well-established additional
functionalities (Visioli, 2006) makes their design easier and,
therefore, their overall cost/benefit ratio is difficult to improve
by other advanced controllers.
However, it is also recognized that, because of their simple
structures, PID controllers might fail to achieve the required
performance when there are tight control requirements in a
given application and the process has a high-order dynam-
ics. For this reason, there is an interest in investigating con-
trollers with a (slightly) more complex structure in order to
deal with higher-order dynamics more effectively, but with
the same design simplicity in order to keep the advantageous
cost/benefit ratio. In this context, the first choice is to add to
the PID controller a second derivative control action, yielding
a Proportional-Integral-Derivative-Acceleration (PIDA) con-
troller, also known as Proportional-Integral-Double-Derivative
controller (PIDD or PIDD2) (Huba and Vrancic, 2018; Huba,
2019; Kumar and Hote, 2018, 2019; Huba et al., 2021). In fact,
the PIDA controller has three zeros instead of two and therefore
it can provide a better performance for high-order process as it
allows an increment of the control system bandwidth without
a decrement of the robustness (for example, in terms of the
maximum sensitivity) (Milanesi et al., 2022).
With the aim of keeping the design of a PIDA controller as
simple as that of a PID controller, an automatic tuning method-
ology for this controller has been proposed in (Visioli and
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Sánchez-Moreno, 2024). It is based on the estimation of a high-
order process by means of the n-shifting technique proposed
in (Sánchez et al., 2021), which exploits a relay-feedback ex-
periment (Yu, 1999; Wang et al., 2003; Liu and Gao, 2011;
Liu et al., 2013; Chidambaram and Sathe, 2014). Then, the
PIDA parameters are determined by applying an Internal Model
Control (IMC) strategy and by reducing the resulting (high-
order) controllers to a PIDA controller by suitably truncating
its Mclaurin series expansion. The method has then been ex-
tended to integral (non self-regulating) processes in (Visioli and
Sánchez-Moreno, 2023), where both cases of PIDA and PDA
controllers have been addressed.
In this paper we compare the performance achieved with this
methodology with those obtained by a PID controller tuned
with well-known effective rules, namely, the SIMC (Skogestad,
2003) and AMIGO (Åström and Hägglund, 2002, 2004) ones.
The aim is to better evaluate the advantages provided by adding
the acceleration action with respect to classic PID method-
ologies. In the performed analysis, different (high-order) pro-
cesses, which are representative of typical industrial applica-
tions, are considered. In particular, a dead-time dominant self-
regulating process with multiple lags, a distributed-lag process,
and a non self-regulating (integral) process with multiple lags
are selected. Further, measurement noise is taken into account
because this might yield a serious detrimental effect on the con-
trol variable when a (double) derivative computation is applied.
The paper is organized as follows. The PIDA tuning procedure
is briefly reviewed in Section 2, together with the SIMC and
AMIGO tuning rules. The simulation results that have been
obtained for the different considered processes are presented
in Section 3 and discussed in Section 4. Conclusions are given
in Section 5.
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2. PIDA TUNING

The standard unity-feedback control scheme of Figure 1 is
considered, where P is the process, C is the controller, ysp is the
set-point signal, d is the load disturbance signal, y is the process
variable, n is the measurement noise signal, yn is the feedback
signal, e is the control error, and u is the control variable.
The process model can be expressed as

P(s) = pm(s)e−Ls, (1)
where L is the (apparent) dead time and pm(s) is the minimum-
phase part, which can be expressed as

pm(s) =
K

ansn +an−1sn−1 + · · ·+1
(2)

if the process is self-regulating (namely, it is asymptotically
stable) and

pm(s) =
K

s(ansn +an−1sn−1 + · · ·+a1s+1)
(3)

if the process is non self-regulating (namely, it is an integral
process). The PIDA controller transfer function is expressed as

C(s) = Kp

(
1+

1
Tis

+
Tds

Td
N s+1

+
Tas2(Ta

M s+1
)2

)
, (4)

where Kp is the proportional gain, Ti is the integral time con-
stant, Td is the derivative time constant, and Ta is the acceler-
ation time constant. The parameters M and N of the low-pass
filters are essential to have a proper transfer function and to
appropriately filter the measurement noise.
The design of the controller can be done by applying an IMC-
based technique, that is, by selecting the desired closed-loop
transfer function as

F(s) =
Y (s)
R(s)

=
e−Ls

(λ s+1)r (5)

for a self-regulating process and as

F(s) =
Y (s)
R(s)

=
(L+λ r)s+1
(λ s+1)r e−Ls (6)

for a non self-regulating process. Based on (5), the controller
transfer function can then be calculated as determined as

C(s) =
p−1

m (s)
(λ s+1)r − e−Ls (7)

while, based on (6), the controller transfer function is calculated
as

C(s) =
((rλ +L)s+1)p−1

m (s)
(λ s+1)r − ((rλ +L)s+1)e−Ls . (8)

In both cases, the resulting controller transfer function can be
expanded as a truncated Maclaurin series:

C(s) = f (s)
s

∼=
1
s

[
f (0)+ f (1)(0)s+

f (2)(0)
2

s2 +
f (3)(0)

6
s3 +

f (4)(0)
24

s4

]
.

(9)
On the other side, by selecting M = N in (4), the controller
transfer function can also be expressed as

C(s)∼=
1
s

[
Kp

Ti
+Kps+KpTds2

+Kp

(
Ta −

T 2
d

N

)
s3 −Kp

(
2T 2

a

N
−

T 3
d

N2

)
s4
] (10)

so that the PIDA parameters can be determined by equating (10)
and (9).

The choice M = N allow us, if a fourth-order process model
is selected (that is, n = 4 in (2) and n = 3 in (3)), to obtain a
closed-form expression of the controller parameters. In other
words, tuning rules are available. This allows the user to easily
select λ in a range for which all the controller parameters are
real and positive (see subsection 3.3), by taking into account
that λ is the closed-loop time constant and determines the trade-
off between speed of response and robustness (and control
effort).
The (high-order) process model can be estimated by apply-
ing advanced identification techniques. However, in industrial
settings, it is more convenient to perform simple experiments
and, in this context, a suitable technique is the so-called n-
shifting technique (Sánchez et al., 2021), which exploits a
relay-feedback experiment.
In this paper, the PIDA controller is compared with a PID con-
troller tuned with the well-known SIMC and AMIGO rules. The
former are based on an IMC approach, while the latter are based
on an optimization approach. In case the SIMC tuning rules
are employed, the PID controller transfer function is written in
series form as

C(s) = Kp
Tis+1

Tis
Tds+1
Td
N s+1

. (11)

Then, for self-regulating processes, the process model is a
second-order-plus-dead-time (SOPDT) transfer function

P(s) =
K

(T1s+1)(T2s+1)
e−Ls, (12)

which can be obtained, starting from a high-order process
model, through the so-called “half rule” (Skogestad, 2003).
Then, the PID parameters are determined as

Kp =
1

2KL
Ti = min{T1,8L} Td = T2. (13)

The filter parameter N is then set to 10, as it is typically done
in industrial practice (Visioli, 2006). For non self-regulating
processes, the process model is

P(s) =
K

s(T s+1)
e−Ls (14)

and the tuning rules are

Kp =
1

2KL
Ti = 8L Td = T (15)

Regarding the AMIGO rules, they are applied to a PID con-
troller in ideal form, that is, (4) with Ta = 0 and they consider a
first-order-plus-dead-time (FOPDT) process model (which can
be obtained, for example, by applying the tangent method to the
open-loop step response (Visioli, 2006)), that is,

P(s) =
K

T s+1
e−Ls (16)

for a self-regulating process and

P(s) =
K
s

e−Ls (17)

if process is non self-regulating. The tuning rules are

Kp =
1
K

(
0.2+0.45

T
L

)
Ti =

0.4L+0.8T
L+0.1T

L Td =
0.5LT

0.3L+T
(18)

for self-regulating processes and

Kp =
0.35
KL

Ti = 7L Td = 0 (19)

for non self-regulating processes (note that this is actually a PI
controller).
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Fig. 1. The considered control scheme.

3. RESULTS

Simulation results related to different processes are shown
hereafter. In all the cases, both a set-point unit step signal r and
a unit step load disturbance signal d are applied. Then, it has
to be remarked that, in all the simulations, measurement noise
has been added by applying a random signal n whose values
are in the range [−0.1,0.1]. In order to avoid an excessive
amplification of the noise in the control signal because of the
double derivative (acceleration) action, a first-order low-pass
filter

H(s) =
1

Tf s+1
(20)

has been placed in series with the PIDA controller. The value
of Tf can be calculated straightforwardly by dividing by 10
the inverse of the gain crossover frequency of the loop transfer
function C(s)P(s). In this way the measurement noise is effec-
tively filtered without significantly affecting the dynamics of
the control system.
Finally, in order to evaluate the performance of the controller,
two indices are calculated. The first one is the integrated abso-
lute error defined as

IAE =
∫

∞

0
|e(t)|dt, (21)

while the second one, which is a robustness measure, is the
maximum sensitivity, defined as

Ms = max
ω∈[0,+∞)

∣∣∣∣ 1
1+C( jω)P( jω)

∣∣∣∣ . (22)

3.1 Self-regulating multiple lag process

As a first example, we consider a self-regulating multiple lag
process

P1(s) =
1

(s+1)8 . (23)

If we design the PIDA controller, by applying the n-shifting
identification procedure, we obtain the following process
model:

P̃1(s) =
1

14.52s4 +21.96s3 +17.17s2 +6.5s+1
e−1.5s. (24)

If we select r = 6 and λ = 0.675, the tuning procedure yields
Kp = 0.985, Ti = 5.473, Td = 1.889, Ta = 1.667, and N = M =
3.968. The resulting value of the low-pass filter time constant
is then Tf = 0.186. The corresponding value of the maximum
sensitivity is Ms = 1.82. If we design a more robust controller
by increasing the value of λ to 0.9, we have Kp = 0.710, Ti =
4.904, Td = 1.458, Ta = 1.419, N =M = 1.217, and Tf = 0.224,
which yields Ms = 1.76.
Regarding the PID tuned with the SIMC tuning rules, by
applying the half rule to the nominal process model (although
this is rather unrealistic, we assume to know the nominal model
in order to evaluate the full potentialities of the SIMC rules),
we obtain
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Fig. 2. Set-point step response for process P1. Solid line: PIDA
controller with λ = 0.675. Dashed line: PIDA controller
with λ = 0.9. Dash-dot line: PID controller tuned with the
SIMC tuning rules. Dashed line: PID controller tuned with
the AMIGO tuning rules.

P̃1(s) =
1

(s+1)(1.5s+1)
e−5.5s. (25)

By applying the tuning rules (13), the PID (in series form)
parameters results Kp = 0.091, Ti = 1, Td = 1.5 (N = 10), which
yields Ms = 1.81.
Finally, regarding the AMIGO tuning rules, by applying the
tangent method to the process open-loop step response, we
obtain

P̃1(s) =
1

3.035s+1
e−4.966s (26)

(note that it clearly appears that the process is dead time
dominant). The tuning rules (18) yields Kp = 0.475, Ti =
4.16, Td = 1.67 (N = 10) and the corresponding value of the
maximum sensitivity is Ms = 1.43 (indeed, this controller is
slightly more robust than the previous ones).
Results related to the set-point step response are shown in
Figure 2. Note that the time scale of the plot of the control
variables has been reduced in order to highlight the initial part
of the transients, which is more interesting.
The resulting values of the integrated absolute errors are IAE =
10.4 for the PIDA controller with λ = 0.675, IAE = 11.6 for
the PIDA controller with λ = 0.9, IAE = 16.1 for the PID
controller tuned with the SIMC rules, and IAE = 13.1 for the
PID controller tuned with the AMIGO rules.
Process and control variables related to the load disturbance
step response are shown in Figure 3. In this case, the integrated
absolute errors are IAE = 9.75 for the PIDA controller with
λ = 0.675, IAE = 11.0 for the PIDA controller with λ = 0.9,
IAE = 15.7 for the PID controller tuned with the SIMC rules,
and IAE = 12.8 for the PID controller tuned with the AMIGO
rules.

3.2 Distributed lag process

Distributed lag processes are often present in industry (Shinskey,
2001). Their dynamics can be modelled as an infinite series of
infinitesimally small interacting lags, that is (Shinskey, 1994),

P(s) =
2K

eτs + e−τs =
K

cosh
√

τs
. (27)
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Fig. 3. Load disturbance step response for process P1. Solid
line: PIDA controller with λ = 0.675. Dashed line: PIDA
controller with λ = 0.9. Dash-dot line: PID controller
tuned with the SIMC tuning rules. Dashed line: PID con-
troller tuned with the AMIGO tuning rules.

The hyperbolic cosine can be expanded into an infinite-product
series, resulting in

P(s) =
K

[1+(2/π)2τs][1+(2/3π)2τs][1+(2/5π)2τs] · · ·
.

(28)
In this paper we consider the following process:

P2(s) =
1

∏
n−1
i=0

[
1+
(

2
(2i+1)π

)2
τs
] , (29)

where τ = 10 and we truncate the series in (28) with n = 20, by
taking into account that the dynamics of the process does not
change significantly for n > 20 (Shinskey, 2001).
For the purpose of designing the PIDA controller, the following
model is first obtained by applying the n-shifting identification
procedure:

P̃2(s) =
1

(4.053s+1)(0.449s+1)(0.139s+1)2 e−0.17s (30)

(note that, on the contrary of P1, this can be considered a
lag-dominant process). Then, by selecting r = 6 and λ = 0.1,
we obtain Kp = 5.984, Ti = 4.605, Td = 0.4898, Ta = 0.2507,
and N = M = 1.019; the resulting value of the low-pass filter
time constant is Tf = 0.027. With the designed controller, the
maximum sensitivity is Ms = 1.99. Another case with λ = 0.2 is
also considered. It results Kp = 3.176, Ti = 4.354, Td = 0.256,
Ta = 0.191, N =M = 0.230, and Tf = 0.044. The corresponding
maximum sensitivity is Ms = 1.64.
The application of the half rule to the process model (29) yields

P̃2(s) =
1

(4.053s+1)(0.531s+1)
e−0.36s, (31)

so that the SIMC tuning rules (13) give the following PID
parameters: Kp = 1.37, Ti = 4.053, Td = 0.531 (N = 10), with
a corresponding value of the maximum sensitivity Ms = 1.13.
The application of the tangent method to the process open-loop
step response yields the following process model:

P̃1(s) =
1

4.05s+1
e−0.88s (32)

0 2 4 6 8 10 12 14 16 18 20

time

0

0.5

1

p
ro

c
e

s
s
 v

a
ri
a

b
le

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time

0

10

20

30

c
o

n
tr

o
l 
v
a

ri
a

b
le

Fig. 4. Set-point step response for process P2. Solid line: PIDA
controller with λ = 0.675. Dashed line: PIDA controller
with λ = 0.9. Dash-dot line: PID controller tuned with the
SIMC tuning rules. Dashed line: PID controller tuned with
the AMIGO tuning rules.

(which indicates that the process is lag dominant). The AMIGO
tuning rules (18) yields Kp = 2.27, Ti = 2.46, Td = 0.41 (N =
10) with a resulting maximum sensitivity Ms = 1.46.
Results related to the set-point response are shown in Figure 4
(note that the time scale of the control variable has been again
reduced in order to highlight the initial part of the transients).
Those related to the load disturbance step response are shown
in Figures 5-6, where the resulting control variables have been
split in four different plots in order to better evaluate the effects
of the measurement noise.
The resulting values of the integrated absolute errors when a
unit set-point step signal is applied are IAE = 3.27 for the PIDA
controller with λ = 0.1, IAE = 3.82 for the PIDA controller
with λ = 0.2, IAE = 4.96 for the PID controller tuned with the
SIMC rules, and IAE = 4.23 for the PID controller tuned with
the AMIGO rules.
On the other hand, when a unit load disturbance step response
is applied, we have IAE = 2.81 for the PIDA controller with
λ = 0.1, IAE = 3.28 for the PIDA controller with λ = 0.2,
IAE = 4.57 for the PID controller tuned with the SIMC rules,
and IAE = 3.29 for the PID controller tuned with the AMIGO
rules.

3.3 Non self-regulating process

The final example is related to the high-order non self-
regulating process

P1(s) =
1

s(s+1)8 . (33)

The n-shifting identification procedure yields the process
model:

P̃3(s) =
1

s(5.43s3 +9.27s2 +5.27s+1)
e−2.81s. (34)

The values of the controller parameters for r = 4 and different
values of λ are plotted in Figure 7. The PIDA controller tuning
can therefore be done by selecting λ = 3, which results in Kp =
0.213, Ti = 19.49, Td = 3.83, Ta = 4.79, and N = M = 13.11.
The value of the maximum sensitivity is Ms = 2.49. If the value
of λ is increased to 4, we have Kp = 0.157, Ti = 22.8, Td =
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Fig. 5. Process variable of the load disturbance step response
for process P2. Solid line: PIDA controller with λ = 0.675.
Dashed line: PIDA controller with λ = 0.9. Dash-dot line:
PID controller tuned with the SIMC tuning rules. Dashed
line: PID controller tuned with the AMIGO tuning rules.
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Fig. 6. Control variable of the load disturbance step response
for process P2. Top left: PIDA controller with λ = 0.675.
Top right: PIDA controller with λ = 0.9. Bottom left: PID
controller tuned with the SIMC tuning rules. Bottom right:
PID controller tuned with the AMIGO tuning rules.

3.38, Ta = 3.81, N = M = 4.64, and the maximum sensitivity
decreases to the value of Ms = 2.26.
The application of the half rule to the process model (33) yields

P̃3(s) =
1

s(1.5s+1)
e−6.5s (35)

and the SIMC tuning rules (13) give Kp = 0.077, Ti = 52,
Td = 1.5 (N = 10), with a corresponding value of the maximum
sensitivity Ms = 1.75.
Regarding the AMIGO rules, starting from the following pro-
cess model:

P̃3(s) =
1
s

e−4.97s (36)

by means of (18) we obtain a PI controller with Kp = 0.07
and Ti = 34.762 (Td = 0) with a resulting maximum sensitivity
Ms = 1.52.
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Fig. 7. Values of the PIDA parameters for different values of λ

for process P3; red line: Kp; green line: Ti; blue line: Td ;
black line: Ta; orange line: N = M. Missing values mean
that the parameters are complex.
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Fig. 8. Set-point step response for process P3. Solid line: PIDA
controller with λ = 0.675. Dashed line: PIDA controller
with λ = 0.9. Dash-dot line: PID controller tuned with the
SIMC tuning rules. Dashed line: PID controller tuned with
the AMIGO tuning rules.

The process variable y and the control variable u of the set-point
step responses are shown in Figure 8 (once again, the time axis
of the control variables is appropriately reduced for the sake of
clarity). The resulting values of the integrated absolute error are
IAE = 22.0 for the PIDA controller with λ = 3, IAE = 24.19
for the PIDA controller with λ = 4, IAE = 30.38 for the PID
controller tuned with the SIMC rules and IAE = 35.87 for the
PID controller tuned with the AMIGO rules.
Results related to the load disturbance step responses are shown
in Figures 9. In this case it results IAE = 99.2 for the PIDA
controller with λ = 3, IAE = 152.1 for the PIDA controller with
λ = 3, IAE = 671.6 for the PID controller tuned with the SIMC
rules, and IAE = 502.3 for the PID controller tuned with the
AMIGO rules.
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Fig. 9. Load disturbance step response for process P3. Solid
line: PIDA controller with λ = 0.675. Dashed line: PIDA
controller with λ = 0.9. Dash-dot line: PID controller
tuned with the SIMC tuning rules. Dashed line: PID con-
troller tuned with the AMIGO tuning rules.

4. DISCUSSION

From the presented results, related to processes with different
characteristics, it appears that the additional parameter of the
PIDA controller allows an improvement of the performance
in both the set-point following and load disturbance rejection
tasks. The tuning procedure makes this controller relatively
easy to design and represents therefore a valid alternative option
to the PID controller, where two effective tuning rules have
been applied, for high-order processes. Indeed, a high-order
process model can be usefully exploited. The suitable choice of
λ and the additional first-order low-pass filter enable the user
to prevent the excessive amplification of the measurement noise
and excessively high values of the control variable (namely, the
derivative and double derivative kick). Further, the robustness
of the PIDA control system is comparable with that of the PID
controller.

5. CONCLUSIONS

In this paper we have presented a comparison of the perfor-
mance achieved by a PIDA controller tuned with an IMC-based
methodology with those achieved by a PID controller tuned
with the SIMC and AMIGO tuning rules. In the provided anal-
ysis, a few high-order processes have been selected, with the
aim of representing typical industrial processes. In particular, a
dead-time dominant self-regulating process with multiple lags,
a distributed-lag process, and a non self-regulating process with
multiple lag have been considered.
Although the analysis is clearly not exhaustive, the reported re-
sults indicate that the use of PIDA controllers is really promis-
ing in those applications where tight control requirements are
given and the simplicity of the controller is of concern. This
justify a new research effort for such a kind of controllers in
order to establish new design methodologies as well as the
development of those additional functionalities that are already
well established for PID controllers.
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