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Abstract: Many industrial control systems such as compressors, magnetic synchronous motors,
etc. generate periodic disturbances, and it makes strict control difficult. Model-based control
methods using disturbance observers can suppress these disturbances but have some problems
such as modeling errors, system fluctuations, and noise effects. Proportional-Integral-Sinusoidal
(PIS) control is another method with a simple structure, and its effectiveness is guaranteed by
the internal model principle. However, PIS controller is required to estimate a disturbance fre-
quency. This study proposes a model-free frequency estimation mechanism based on extremum
seeking control and suppresses periodic disturbances by PIS control using the estimated results.
The effectiveness is verified through the numerical example of the two inertia model.
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1. INTRODUCTION

　 Mechanical systems such as compressors and mag-
netic synchronous motors generate periodic disturbances.
Typical methods to suppress periodic disturbances are
model-based control using a disturbance observer and
Proportional-Integral-Sinusoidal (PIS) control etc.. Dis-
turbance observer is generally designed using a controlled
object model and used to generate the input that cancels
out the disturbance. Therefore, there are problems such as
worsening of estimation accuracy due to modeling errors
and system fluctuations, and enhancement of the high-
frequency noise. Although adaptive methods to update
model parameters are effective for system fluctuations,
higher-order dynamics not included in the model may
make the system destabilize (C. Rohrs et al. (1985); M.
Bodson (2004)).
　 In contrast, PIS control has a simple structure with a
S compensator and a PI controller. The internal model
principle guarantees the convergence of control error to
zero even if a periodic disturbance is included in the
control system (S. Fukuda et al. (2001),Y. Nakamura
et al. (2020)). However, the internal model requires the
frequency information of the periodic disturbance, and
if there is an error, the effectiveness of the S compen-
sator is reduced. Therefore, it is necessary to estimate
the frequency of periodic disturbances. S. Takagi et al.
(2019) proposed PIS control with an automatic frequency
estimation mechanism for a pneumatic vibration isolator.
However, since the periodic disturbance is shaped into a
square wave by a schmitt trigger, the amplitude of the
disturbance must be known and constant. This makes it
difficult to apply to general applications.
　 For the periodic disturbance identification, Q. Liu et
al. (2023) proposed an extremum seeking control (K. B.
Ariyur et al. (2003); M. Krstic et al. (2000)) based param-
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Fig. 1. Control system with periodic disturbance

eter identification method. The extremum seeking control
is a gradient method that extracts gradient information of
an unknown function without using a mathematical model
and adaptively searches for and maintains an extreme
value. Q. Liu et al. estimated the frequency and amplitude
of a periodic disturbance without using a model of the
controlled object and periodic disturbance.
　 This study proposes an automatic frequency estima-
tion PIS control based on extremum seeking control. The
proposed method estimates the frequency of the periodic
disturbance without using any model of the controlled ob-
ject and the periodic disturbance. The estimated frequency
is used in the sinusoidal internal model of PIS control to
suppress the periodic disturbance. The effectiveness of this
method is verified through numerical simulation of the
two-inertia system model.

2. PROBLEM SETTING

　 The control system with periodic disturbance is shown
in Fig. 1. Assume that a controlled object is a SISO
system, and r(t), u(t), y(t) and d(t) are the reference value,
the control input, the plant output, and the periodic
disturbance, respectively. C(s) and G(s) are the controller
and the controlled object, and s is the Laplace operator.
In this case, the output Y (s) becomes
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Y (s) =
G(s)C(s)

1 +G(s)C(s)
R(s) +

G(s)

1 +G(s)C(s)
D(s), (1)

where Y (s) = L[y(t)], R(s) = L[r(t)] and D(s) = L[d(t)].
In this paper, it is assumed that the amplitude and
frequency information of the periodic disturbance are
unknown.

3. AUTOMATIC FREQUENCY ESTIMATION PIS
CONTROL

　 This chapter describes the principle of PIS control and
the automatic estimation mechanism of the disturbance
frequency based on the extremum seeking control.

3.1 PIS Control

　 PIS control is the method consisting of a PI controller,
which is commonly used in servo systems, and the S
(Sinusoidal) compensator. Let each transfer functions in

Fig. 1 C(s) = NC(s)
DC(s) , G(s) = NG(s)

DG(s) , R(s) = NR(s)
DR(s) and

D(s) = ND(s)
DD(s) . From the final value theorem, the steady-

state error of the control system is given as

lim
s→0

sE(s) = lim
s→0

s(R(s)− Y (s))

= lim
s→0

s

(
R(s)

1 +G(s)C(s)
− G(s)D(s)

1 +G(s)C(s)

)

= lim
s→0

s

Δ(s)

(
DG(s)DC(s)NR(s)

DR(s)

− NG(s)DC(s)ND(s)

DD(s)

)
,

(2)

(Δ(s) = DG(s)DC(s) +NG(s)NC(s)).
1

Δ(s) is represented as equation (3), which satisfies the

following Assumption 1,

1

Δ(s)
=

1

(s− μ1)(s− μ1)...(s− μm)
. (3)

Assumption 1. The control system is stable and satisfies

Re(μi) < 0, (i = 1, 2, ...,m). (4)

Let the denominator polynomial DC(s) of the controller
have common factors with DR(s) and DD(s) as

DC(s) = D′
C(s)DR(s)DD(s). (5)

Substituting equation (5) into equation (2) gives

lim
s→0

sE(s) = lim
s→0

s

Δ(s)

(
DG(s)D

′
C(s)DD(s)NR(s)

−NG(s)D
′
C(s)DR(s)ND(s)

)
. (6)

As known as the internal model principle (B. A. Francis et
al. (1976)), equation (6) guarantees that the steady-state
error is reduced to zero.
　 For example, if the reference value r(t) is a step
signal and the periodic disturbance is a sine wave d(t) =
Am sin(ωdt), the controller is designed to make the steady-
state error zero as

C(s) = KP +
KI

s
+KS

s

s2 + ω2
d

, (7)

where KP , KI , and KS are proportional gain, integral
gain, and sine wave gain, respectively.
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Fig. 2. Automatic frequency estimation mechanism
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Fig. 3. Block diagram of extremum seeking controller

　On the other hand, according to equation (7), the sinu-
soidal internal model requires the frequency information
ωd of periodic disturbances. In general, the pre-estimated
frequency value ω̂d is used for the internal model. If the
error between ω̂d and ωd is large, the effectiveness of the
S compensator decreases.

3.2 Disturbance frequency estimation based on extremum
seeking control

　 This paper proposes the new automatic frequency esti-
mation mechanism shown in Fig. 2 based on the method
which Q. Liu et al. (2023) proposed. In Fig. 2, F (s) is a
bandpass filter given as

F (s) =
2ζωas

s2 + 2ζωas+ ω2
a

, (8)

where ζ is the damping ratio and ωa is the center fre-
quency. The smoothing filter is a full-wave rectification
type. The difference z(t) between the control error e(t)
and the bandpass filter output is taken absolute value as
|z(t)|. |z(t)| is fed into the following low pass filter

Fs(s) =
1

Tls+ 1
, (9)

where Tl is the time constant of the low-pass filter. At the
center frequency ωa = ωd, the gain and phase of the control
error e(t) matches those of the bandpass filter output, so
ν(t) is minimized. The extremum seeking control finds the
center frequency ωa of the bandpass filter that minimizes
the smoothed signal ν(t).
　 The basic structure of the extremum seeking controller
is shown in Fig. 3. The extremum seeking controller con-
sists of a high-pass filter, a low-pass filter, an integrator, a
multiplier, and an adder. ωh, ωl are the cutoff frequencies
of the high-pass filter and low-pass filter, respectively,
ki(ki < 0) is the integral gain, sinωt (ω > ωl, ωh) is the
perturbation signal, α(α > 0), β(β > 0) are the gains of
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the perturbation signal.
　 Let ν(t) in the equation (9) be obtained from the
following function

f(θ(t)) = ν∗ +
f ′′

2
(θ∗ − θ(t))2, (10)

where any C2 class function could be locally regarded as
a quadratic function and approximated to the equation
(10). Also, when f(θ(t)) is a downwardly convex function,
f ′′ > 0. ν∗ is the minimum value of f(θ(t)), and θ∗ is the
unknown frequency of the periodic disturbance. θ(t) is the
input to f(θ(t)) and given as

θ(t) = θ̂(t) + β sinωt. (11)

When f(θ(t)) is minimum, θ(t) = θ∗. Make the following
assumption,

Assumption 2. ν∗, θ∗ are constants.

Under this assumption, the estimation error θ̃(t) is repre-

sented with the estimated value θ̂(t) and θ∗ as

θ̃(t) = θ∗ − θ̂(t). (12)

Substituting equation (12) into equation (11) gives

θ(t)− θ∗ = β sinωt− θ̃(t). (13)

ν(t) is expanded to

ν(t) = ν∗ +
f ′′

2
(θ̃(t)− β sinωt)2

= ν∗ +
β2f ′′

4
− β2f ′′ cos 2ωt

4

− βf ′′θ̃(t) sinωt+
f ′′θ̃2(t)

2
. (14)

The purpose of the extremum seeking control is to find
θ∗ that takes the minimum value of the function f(θ(t)).

This means θ̃(t) → 0 as well. In equation (14), the 4th

and 5th terms include information on θ̃(t). Therefore, the

information of θ̃(t) is extracted by perturbation signal and
filter processing.
　 First, apply a high-pass filter to ν(t) and multiply by
α sinωt to obtain ξ(t) as

ξ(t) = −αβf ′′θ̃(t)
2

− αβ2f ′′

8
sin 3ωt+

αβ2f ′′

8
sinωt

+
αβf ′′

2
cos 2ωt+

αf ′′θ̃2(t)
2

sinωt,

(15)

where θ̃2(t) in the fifth term is ignored as it is sufficiently
small because of the square of the error. High-frequency
components are attenuated by the low-pass filter and the
integrator, and ξ(t) is approximated to

ξ(t) ≈ −αβf ′′

2
θ̃(t). (16)

Since
˙̃
θ(t) = − ˙̂

θ(t),
˙̃
θ(t) and its solution are given as

˙̃
θ(t) =

kiαβf
′′

2
θ̃(t), (17)

θ̃(t) = θ̃0 exp

(
kiαβf

′′

2
t

)
, (18)

where θ̃0 = θ∗ − θ̂0 is the initial estimation error and θ̂0
is the initial estimation value. Therefore, if kiαβf

′′ < 0,

it becomes θ̃(t) → 0. Utilizing θ̂(t) as the estimated
disturbance frequency ω̂d.

Table 1. List of two inertia model parameters

Parameter Notation Unit

Motor torque τM [N ·m]
Motor angular velocity ωM [rad/s]
Motor moment of inertia JM [kg ·m2]
Motor viscous damping coefficient DM [N ·m/(rad/s)]
Load torque τL [N ·m]
Load angular velocity ωL [rad/s]
Load moment of inertia JL [kg ·m2]
Load viscous damping coefficient DL [N ·m/(rad/s)]
Stiffness ks [N ·m/(rad/s)]
Torsion torque τs [N ·m]
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Fig. 4. Block diagram of two inertia model

10 12 14 16 18 20 22 24 26 28
-3

-2

-1

0

1

2

10-4

Fig. 5. Sinusoidal disturbance

4. NUMERICAL SIMULATION

　 The effectiveness of the proposed method is verified
by applying it to a two-inertial system model. The block
diagram of the two-inertia system model is shown in Fig. 4.
The definitions of each symbol are provided in Table 1,
and each model parameter values are set as follows: JM =
8.5 × 10−6, JL = 3.0 × 10−5. Stiffness ks and Viscous
damping coefficient DM , DL have each variation range
that implies a modeling error such that ks = [5.0 ×
10−4, 3.0 × 10−3], DM = [1.0 × 10−5, 3.0 × 10−5], DL =
[1.0× 10−5, 3.0× 10−5].
　 In the following, ωM (t) and τM (t) are denoted as y(t)
and u(t). From Fig. 4, the transfer functions from y(t) to
u(t) and from τL(t) to y(t) are as follows:

Y (s)

U(s)
=

s
(
JLs

2 +DLs+ ks
)

(JMs2 +DMs+ ks) (JLs2 +DLs+ ks)− k2s
= G(s), (19)

Y (s)

TL(s)
= G(s)

ks
(JLs2 +DLs+ ks)

, (20)

where TL(s) = L[τL(t)].
　 In this simulation, constant value control is applied with
the reference value r(t) = 0 rad/s for y(t). The controlled
object is subjected to a sinusoidal load torque with a
frequency of ωd = 6.3 rad/s shown in Fig. 5. Therefore,
G(s) in equation (19) is the controlled object, and from
equation (20), the periodic disturbance transfer function
D(s) is given as
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Table 2. List of design parameters

Parameters Notation

Initial value of θ̂ θ̂0 1.0
Amplitude of perturbation signal α 2.5
Amplitude of perturbation signal β 6.0
Integral gain ki 2.0
Frequency of perturbation signal ω 1.0
Cut-off frequency of high-pass filter ωh 0.3
Cut-off frequency of low-pass filter ωh 0.3
Design parameter of smoothing filter Tl 10
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0
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Fig. 6. Estimation result for disturbance frequency
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Fig. 7. Trajectory of smoothing filter output

D(s) =
ks

(JLs2 +DLs+ ks)
TL(s). (21)

The control parameters in equation (7) are as follows:
KP = −1.7 × 10−3,KI = 1.1 × 10−3,KS = 1.5. The
bandpass filter is given below, and other parameters are
shown in Table 2,

F (s) =
0.2πθs

s2 + 0.2πθs+ θ2
. (22)

　First, the estimation result by the automatic frequency
estimation mechanism is shown in Fig. 6. From Fig. 6, the

estimated value θ̂(t) converges to the true value of the
disturbance frequency ωd. The smoothing filter output ν(t)
is shown in Fig. 7. From Fig. 7, z(t) is oscillatory because
it means the difference between the control error e(t) and
the bandpass filter output. Since extremum seeking control
is a gradient method, it is necessary to smooth z(t). It is

confirmed that ν(t) decreases as θ̂(t) converges.
　 Finally, Control results are compared between PI con-
trol, PI control with disturbance observer and the pro-
posed method. The disturbance observer has nominal pa-
rameters ks = 1.0 × 10−3, DM = 2.3 × 10−5, DL = 1.5 ×
10−5. Fig. 8 shows the control results up to 200 s. From
Fig. 8, both PI control with the disturbance observer and
the proposed method suppresses the effects of the distur-
bance. The disturbance observer is more effective until
the estimated value converges to the true value, but the
proposed method is more effective when the estimated
value converges to the true value. This may be due to the
influence of modeling errors for the disturbance observer.
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Fig. 8. Control result of PI controller and proposed method

5. CONCLUSIONS

　 In this paper, the disturbance frequency estimation
method based on the extremum seeking control is proposed
to construct the sinusoidal internal model for the PIS
controller. Its effectiveness is verified by applying the
proposed method to the two-inertia system model. As
a result, the estimated frequency converged to the true
value, and the influence of disturbances was suppressed.
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