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Abstract: This paper compares two strategies, namely, feedback linearization (FBL) and
classical proportional-integral-derivative (PID) controller, as well as their fractional versions,
for the control of a simulator of the human cardiovascular circulatory system (CVS) in the
Matlab/Simulink environment. The simulator is based on a hydraulic model of the system,
realizable in practice, in which muscular contraction of the left ventricle is modelled by a pump
with piston (tank of variable volume depending on the position of the piston), so that a control
strategy is needed to control the velocity of the piston in order to emulate the behaviour of
the heart. Simulations are given to demonstrate, on the one hand, that all strategies have good
tracking and hemodynamic performance and, on the other, that dysfunctions in the CVS can
be emulated applying an appropriate control strategy that allows tracking the desired reference
waveform. The final objective of this work is the construction of an experimental platform
based on this simulator to test swimming robots of small dimensions that allows to emulate the
conditions in which these robots would navigate in the human circulatory system.
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1. INTRODUCTION

Cardiovascular diseases are the first cause of death in
the world (World Health Organization (2018)). This fact
exposes the severe of the situation and the need to research
and develop tools that allow to evaluate and enhance its
treatment. They are numerous and popular the attempts,
from both the medical and the engineering community,
to develop models and simulators, on the one hand, to
design, evaluate and improve the working operation of
ventricular assist devices and cardiac prostheses (Dasi
et al. (2009)), and, on the other, to learn and evaluate
about catheterization tools.

Despite the cardiovascular system (CVS) is complex, a
huge amount of information can be found in the literature
about its modelling (see e.g. Simaan (2009); Liu et al.
(2006); Gwak et al. (2015); Yu et al. (1998)). However,
there is a lack of information about how to model the
arteriosclerosis disease, and especially the occlusion of
arteries (stenosis) due to their thickening. This is moti-
vated mainly for three reasons: 1) current methods, i.e.,
stabilization devices (stents) or bypass surgery, are focused
on decreasing or removing the local pain of disease, but not
removing it completely and its origin factor; 2) recent stud-
ies support greater efficacy of pharmaceutical treatments
compared to invasive treatment techniques, in addition to
offering a systemic treatment (Nichols et al. (2011)); and
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3) the absence of devices capable of treating the disease
systemically. Nevertheless, the technological advances of
the last decade in the field of nano and microrobotics open
up a hope of application in this branch of medicine.

In this context, this paper collects the theoretical princi-
ples that govern the dynamics of the CVS so as to develop
a hydraulic simulator of this system that allows to build
a experimental platform to test swimming robots of small
dimensions, i.e., to emulate the conditions in which these
robots would navigate in the human circulatory system. As
will be shown, this simulator is based on a hydraulic model
of the system, realizable in practice, in which muscular
contraction of the left ventricle is modelled by a pump with
piston (tank of variable volume depending on the position
of the piston), so that a control strategy is need to control
the velocity of the piston in order to emulate the behaviour
of the heart and, consequently, obtain normal conditions of
a cardiac cycle. For that purpose, both the integer and the
fractional versions of two different control alternatives are
compared: feedback linearization (FBL) and proportional-
integral-derivative (PID) controller. Simulations are given
to demonstrate, on the one hand, that all strategies have
good tracking and hemodynamic performance and, on the
other, that dysfunctions in the CVS can be emulated ap-
plying an appropriate control strategy that allows tracking
the desired reference waveform.

The remainder of the paper is organized as follows. The
functioning of the CVS is briefly explained in Section 2.
Section 3 describes the simulator developed for the CVS
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based on an equivalent hydraulic model. Section 4 is
devoted to the control of the hydraulic model to emulate
the contraction of the left ventricle. Finally, conclusions
and future works are drawn in Section 5.

2. DESCRIPTION OF THE CARDIOVASCULAR
SYSTEM

In order to model the CVS, this section presents a brief
review of the working principle of human heart and the
importance of its distribution network, as well as its
hemodynamics.

In simple terms, the CVS can be understood as a distri-
bution network (blood vessels) that supplies fluid (blood)
to human body through a pump (heart).

The heart, which has the function of generating the
necessary gradient of pressure to pump blood through the
set of blood vessels that run through the cells of the human
body, is formed by a double chamber atria-ventricle, where
the atria is as pre-loaded chamber and the ventricle is,
strictly speaking, the pump. The ability of the heart to
generate the necessary pressure gradient lies in its ability
to contract and the succession of electrical and mechanical
phenomena that occur during a heartbeat, known as the
cardiac cycle (Martini et al. (2015)).

The cardiac cycle is divided into two stages clearly differ-
entiated that occur alternately: diastole (dilation period)
and systole (contraction period). The change of pressure
and volume that occur in the left atria and ventricle during
each stage is illustrated in Fig. 1. As can be observed,
the dynamics is not preserved throughout all the circu-
latory system, due to its diversity in morphologies, sizes
and compositions. Therefore, the opposition to blood flow
is also variable. Vascular resistance, understood as the
friction between blood and vessel walls, depends mainly
on two factors: the length and diameter of the vessel.
This resistance is lower in the vascular zones (capillaries)
because their total section is higher than the areas adjacent
to the heart (arteries and veins).

Fig. 1. Pressure and volume relationships of left atria and
ventricle in the cardiac cycle. Major features of the
cardiac cycle are shown for a heart rate of 75 beats
per minute (bpm). Image extracted from Martini et al.
(2015).

Regarding the carotid pressure, it presents slight differ-
ences in comparison with that illustrated in Fig. 1: 1)
there is a time lag with respect to the systolic pressure;
2) the pressure undergoes a slight increase as a result
of the reflected pressure waves; and 3) the dicrotic wave
intensifies. In what the carotid flow is concerned, different
behaviors can occur depending on the physiological con-
ditions. However, its main behavior is characterized by a
positive flow in a shorter period of time, followed by a
negative flow caused by the closure of the aortic valve,
which may even produce a second blood impulse during
the ventricular diastole caused by the recoil of the blood
in the descending aorta.

The repercussions of arteriosclerosis on the cardiovas-
cular behavior are mainly two: the loss of elasticity of
artery walls and artery narrowing (stenosis). The former
produces an increase in the maximum pressures reached
(Nichols et al. (2011)), as well as the modification of the
dicrotic notch wave since the reflection of the waves occurs
more quickly. On the other hand, stenosis reduces the
blood flow.

3. SIMULATOR OF THE CARDIOVASCULAR
SYSTEM

This section describes the simulator developed for the
CVS. Firstly, an electrical model is presented. Then,
considering equivalencies between domains, a hydraulic
model of the CVS, realizable in practice, is presented.
The latter, unlike the previous one, requires a control
strategy to emulate the contraction of the left ventricle.
It is important to remark that the electrical model of the
CVS is given only to understand the hydraulic model,
which will be the one used in simulations. The whole
description of the simulator can be found in Traver et al.
(2017).

3.1 Electrical model

The electrical model equivalent to the CVS is based on the
Windkessel model proposed in Westerhof et al. (2009) and
the corrections suggested in Yu et al. (1998). It is shown on
the left part (orange shading) in Fig. 2 (Simaan (2009)).
In this model, the systemic and pulmonary circulation
are reduced to a total peripheral resistance (denoted as
Rs), that considers the opposition to blood flow of all the
arteries and veins, and a capacitance that represents the
elasticity of vessels (Cs). The resistance Rc symbolises
the noticeable morphology of the aortic arch, whereas
L represents the inertial forces that are experimented
by the blood flow due to its pulsatile nature. Likewise,
heart’s dynamics is solely reduced to the left side and the
contraction capacity of the left ventricle (it is assumed that
the right ventricle and pulmonary circulation are healthy
and normal and, as a result, their effect can be neglected).
The behaviour of the left ventricle is then modelled by
means of a time-varying capacitance (C(t)) according to
Frank-Starling’s law (see e.g. Simaan (2009); Stergiopulos
et al. (1996)), while the left atria is interpreted as a
passive element of accumulation. Furthermore, valves are
considered as non ideal diodes. The elasticity of the
aortic valve is characterised by a capacitance (CA), which
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Fig. 2. Electrical model equivalent to the CVS (orange
shading on the left) extended to left common carotid
artery (green shading on the right).

describes the dicrotic notch wave. The cyclic nature of the
CVS is achieved with a feedback in the circuit.

This model is extended to the left common carotid artery
in accordance with Yu et al. (1998); Simaan (2009) (see
green shading on the right in Fig. 2). The choice of this
kind of artery is motivated by its high recurrence of
atheroma plates Nichols et al. (2011).

It should be said that the whole model has been defined
based on the anatomic structure of the circulatory system
and criteria used in Westerhof et al. (2009) to develop
the Windkessel model of four elements. Therefore, the
resistance RCLC represents the friction of flow and the
bifurcation of the artery, RSLC is the resistance of the
blood return, LLC is the inertial force due to mainly
the aorta’s blood flow, and the capacitance CSLC is the
elasticity of artery.

The differential equations that describe the dynamics of
the whole system are obtained choosing the variables listed
in Table 1, and applying Kirchhoff’s laws to the electric
circuit, except for the state x1, which depends on the
diodes and the capacitance C(t), as will be shown next.

The differentiation of state x1 results in

ẋ1 =
1

C(t)

(
−Ċ(t)x1 +

1

RM
r(x2 − x1)− 1

RA
r(x1 − x4)

)
(1)

where the function r is derived from diodes operation as

r(ξ) =

{
ξ, if ξ ≥ 0

0, if ξ < 0
(2)

while C(t) is defined as the inverse of the elastance E(t)
(Simaan (2009)), i.e.,

E(t) =
LVP(t)

LVV(t)− V0
, (3)

where LVP(t) and LVV(t) are the pressure and volume of
the left ventricle (the latter depends on the integration of
the currents that flow through the diodes DM and DA),
respectively, and V0 is a reference volume (the theoretical
volume in the ventricle at zero pressure). Further details

Table 1. Variables of the CVS model.

Variables Name Physiological meaning (unit)

x1(t) LVP(t) Left ventricle pressure (mmHg)
x2(t) LAP(t) Left atrial pressure (mmHg)
x3(t) AP(t) Arterial pressure (mmHg)
x4(t) AoP(t) Aortic pressure (mmHg)
x5(t) F(t) Total blood flow (ml/s)
x6(t) LCP(t) Left common carotid pressure (mmHg)
x7(t) LCF(t) Blood flow of left common carotid (ml/s)

about the description used in this work for E(t) can be
found in Stergiopulos et al. (1996) or in our previous work
Traver et al. (2017).

The derivatives of the rest of states are obtained by
applying directly Kirchhoff’s laws:

ẋ2 =
1

CR

(
−
(

1

RS
+

1

RSLC

)
x2+ (4)

1

RS
x3 +

1

RSLC
x6 −

1

RM
r(x2 − x1)

)
ẋ3 =

1

CS

(
1

RS
x2 −

1

RS
x3 + x5 − x7

)
(5)

ẋ4 =
1

CA

(
−x5 +

1

RA
r(x1 − x4)

)
(6)

ẋ5 =
1

L
(−x3 + x4 − RCx5) (7)

ẋ6 =
1

CSLC

(
1

RSLC
x2 −

1

RSLC
x6 + x7

)
(8)

ẋ7 =
1

LLC
(x3 − x6 − RLCx7) (9)

The set of equations (1) and (4)–(9) defines an autonomous
switched time-varying system over different phases within
the cardiac cycle. Moreover, it has a strongly non linear
cyclic nature because of the terms Ċ(t) and 1/C(t) are
strongly non-linearity. That ensures a continuous dynam-
ics.

3.2 Hydraulic model

With the purpose to obtain a physically realizable hy-
draulic model of the CVS which will allow testing swim-
ming robots of small dimensions, the following set of
equivalencies between the electric and hydraulic domains,
among other considerations, was defined (Chaturvedi
(2009)): electric resistors, capacitances and inductances
are replaced by hydraulic resistors (denoted as RHi, where
the subscript i refers to the name used in the electric
model), tanks with constant sections (CHi = A

ρg , where

A is the tank section, ρ is the density of fluid and g, the
gravity) and long pipes (LHi = lρ

A , where l is the length of
the pipe), respectively. The diodes are changed by one-way
valves. The hydraulic model of the CVS is illustrated in
Fig. 3 and all their parameters are given in Table 2.

Regarding muscular contraction of the left ventricle, in the
hydraulic model C(t) is modelled by a pump with piston
(tank of variable volume depending on the position of the
piston), as shown in Fig. 4, in such a way that a control
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Fig. 3. Hydraulic model of the CVS.
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Table 2. Parameters of the CVS model. Taken
from Simaan (2009); Yu et al. (1998).

Parameter Value Physiological meaning (unit)

Resistors

RHS 133.32 (MPa/(m3/s)) Total peripheral resistance
RHSLC 133.32 (MPa/(m3/s)) Left common carotid peripheral resistance
RHM 0.67 (MPa/(m3/s)) Mitral valve resistance
RHA 0.13 (MPa/(m3/s)) Aortic valve resistance
RHC 5.30 (MPa/(m3/s)) Characteristic resistance
RHCLS 26.67 (MPa/(m3/s)) Left common carotid resistance

Capacitances

CHR 6.933 · 10−2 (m3/MPa) Left atrial compliance
CHS 6 · 10−4 (m3/MPa) Systemic compliance
CHA 9.97 · 10−3 (m3/MPa) Aortic compliance
CHLC 6.75 · 10−4 (m3/MPa) Left common carotid

Inductances

LHS 6.66 · 10−2 (MPa/(m3/s2)) Inertance of blood in aorta
LHSLC 3.99 (MPa/(m3/s2)) Inertance of blood in left common carotid

Left ventricle

Emax 266.64 (MPa/m3) Maximum volume in diastole
Emix 0.79 MPa/m3) Minimum volume in diastole
V0 10 (ml) Reference volume at zero pressure
HR 75 (bpm) Heart rate

strategy is required to emulate the behaviour of the heart
(Gwak et al. (2015)). Thus, the derivative of state x1 in
this case can be expressed as:

ẋ1 =
1

Cp
(Qi −Qo −Apν), (10)

where Cp is the capacitance of piston, Qi and Qo are
the in and out flow, respectively, Ap is the sectional area
of piston, and ν = ẋp is the displacement speed of the
piston (this parameter modifies the pressure of the piston
chamber). Equation (10) can be also written as:

ẋ1 =
1

Cp

(
1

RHM

r(x2 − x1)− 1

RHA

r(x1 − x4)

)
(11)

−Ap
Cp

ν

The other state equations describing the hydraulic model
of the CVS remain inalterable. In contrast to the elec-
tric model, now the system has non autonomous nature.
Therefore, as commented, it is needed to apply a control
strategy to the displacement speed of the piston in order
to emulate the contraction of the left ventricle according
to Frank-Starling’s law.

4. CONTROL

In this section, two strategies will be compared to obtain
normal conditions of a cardiac cycle with the CVS simula-
tor, i.e., FBL and PID. In both cases, fractional dynamics
will be introduced into the controller substituting the
derivative by the fractional order operator.

The control scheme used for all strategies is illustrated
in Fig. 5. It is important to remark that the reference

Motor

xp

Ap

Qi

Qo

Vo

Fig. 4. Hydraulic equivalence of left ventricle (pump with
piston).

Controller
error

LVPd

LVP

ν

Control Strategy System

-

LVV (xp)
             E(t) = ———

LVPd

LVV -V0

Theoretical model

Fig. 5. Block diagram for the control of the CVS simulator.

LVPd is obtained from its relation with the elastance E(t),
i.e., equation (3), once the heart rate and the parameter
V0 have been set and knowing LVV(t) from the piston
position. Thus, it depends on the controller applied.

4.1 Feedback Linearization Controller

The main idea of this approach is to algebraically trans-
form a non linear system dynamics into a (fully or partly)
linear one so that linear control techniques can be applied
(see e.g. Slotine and Li (1991)).

Then, to linearise state variable x1, i.e., equation (11), it
is possible to take the system input ν as follows:

ν =− Cp
Ap

(
u− 1

Cp

(
r(x2 − x1)

RHM

− r(x1 − x4)

RHA

))
, (12)

This allows to consider a linear relation between the
system output (y = x1) and variable u, being u the
equivalent input of the linearised dynamics, and which is
considered of relative order one due to the fact that an
integration between the output and the equivalent input,
i.e., ẏ = u, is obtained. Taking into account this linear
relation, the control law to be designed is:

u = ẏd − ẏ + λ(yd − y) = ė+ λe, (13)

where yd is the desired output, e is the error, defined as
e = yd − y1, and 1/λ is the time constant of the error.

Hence, substituting (13) in (12) the following expression
is obtained:

ν =− Cp
Ap

(
ė− 1

Cp

(
r(x2 − x1)

RHM

− r(x1 − x4)

RHA

)
+ λe

)
, (14)

which allows to follow the reference in accordance with the
control law established.

For this strategy, fractional dynamics is introduced by
doing

u = Dαe+ λe, (15)

where D is the fractional operator, and α ∈ R+ the differ-
entiation order. This controller will be referred henceforth
to as FBL+FD.

4.2 PID Controller

A PID controller proposed in Gwak et al. (2015) is used
with gains: kp = 0.5, ki = 0.6, and kd = 0.003. It is applied
directly over the controlled variable x1.

In order to compare with the previous PID controller
and the PD control law used in FBL, in this case frac-
tional dynamics is introduced by using a three-parameter
fractional controller, namely, a fractional proportional-
derivative (FPD) controller.
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Table 3. Controller parameters.

Strategy λ or kp ki kd α

FBL 40 − − −
FBL+FD 40 − − 0.2
PID 0.5 0.6 0.003 −
FPD 0.5 − 0.6 0.2

5. SIMULATIONS

This section presents the simulation results obtained when
applying the control strategies described in Section 4 to
the CVS simulator.

Taking in mind the final objective of the simulator, i.e., the
construction of an experimental platform to test swimming
robots of small dimensions so as to emulate the conditions
in which these robots would navigate in the human circula-
tory system, the following considerations were established:

• In what the simulator is concerned, the pipes that
connect the different tanks and valves were consid-
ered with a diameter of 2 inches (enough diameter
to ensure free movement of the swimming robots).
Likewise, the dimensions of the deposits, their section
and the initial value of the fluid, are obtained from
the equivalences indicated above and the values given
in Table 2.
• In order to achieve microscopic phenomena produced

by the interaction of microrobots with cardiovascular
hemodynamics at macroscopic level, the fluid consid-
ered was 30 W oil, whose viscosity is 109.408 cSt and
density 852.5 kg/m3 at 35◦. Theses properties allow
to emulate the desired conditions.
• Fractional derivatives were approximated by Oustaloup

method with four poles and four zeros in the fre-
quency range [0.01, 100] rad/s.
• In order to avoid chattering, the controlled variable

was filtered before applying the control strategy by
the low-pass filter

F (s) =
100

s+ 100
. (16)

• For comparison purposes, the following hemodynamic
parameters will be measured in the waveforms ob-
tained: systolic and diastolic pressure, mean aortic
pressure (MAP), cardiac ouput (CO), stroke volume
(SV), systolic and diastolic pressure of left ventricle
(LVP), maximum and minimum volume of left ventri-
cle (LVV), and systolic and diastolic pressure of the
atrial (LAP).
• The controller parameters used for simulations are

given in Table 3.

The waveforms of the hemodynamics for a healthy adult
with 75 beat per minute obtained when applying the four
strategies are illustrated in Fig. 6, whereas the indices
measured are given in Table 4. From these results, it can
be stated that all strategies, even proportional control
law in FBL (i.e., u = λe), provide good enough tracking
and hemodynamic performance. So, a fractional order
α = 0.2 is chosen for comparison purposes. For all
cases, the hemodynamic parameters are coherent with real
hemodynamics (see e.g. Martini et al. (2015); LiDCO Ltd.
(2017); Lifesciences (2017); Priebe and Skarvan (1995)).

The results obtained by replacing the reference waveform
LVPd by a system-independent one (i.e., that given by the
electric model of the CVS, theoretical model in Fig. 5), are
plotted in Fig. 7 for integer order controllers, and in Fig. 8
for fractional order ones. As can be observed, the tracking
performance is better when using fractional derivatives.

6. CONCLUSION AND FURTHER WORK

This paper has compared feedback linearization (FBL)
and proportional-integral-derivative (PID) controllers, of
integer and fractional order, for the control of a simulator
of the human cardiovascular circulatory system (CVS)
in the Matlab/Simulink environment. The simulator was
based on a hydraulic model of the system, realizable in
practice, which emulates the behavior of the CVS and
has non autonomous character. More precisely, muscular
contraction of the left ventricle was modelled by a pump
with piston (tank of variable volume depending on the
position of the piston), so that a control strategy was
needed to control the velocity of the piston in order to
emulate the behaviour of the heart. Simulations were given
to demonstrate that:

(1) The control strategy applied shapes the result-
ing reference waveform (LVPd) when using system-
dependent reference generation. This can be used to
emulate pathologic behavior.

(2) All strategies have good tracking and hemodynamic
performance.

(3) FBL has high sensitivity to its parameter λ but low
sensitivity to fractional order α. Even for α = 0 (pure
proportional control law), the results do not show
large differences.

(4) When reference is independent of the controlled sys-
tem, the best tracking performance is obtained with
fractional controllers.

Our future works will focus on: 1) justifying the results
obtained mathematically; 2) applying PID structures with
two degrees of freedom; 3) shaping the resulting waveform
to emulate dysfunctions in the CVS; and 4) studying the
influence of the approximations of fractional operators.

REFERENCES

Chaturvedi, D.K. (2009). Modeling and simulation of
systems using MATLAB and Simulink. CRC Press.

Dasi, L.P., Simon, H.A., Sucosky, P., and Yoganathan,
A.P. (2009). Fluid mechanics of artificial heart valves.
Clinical and Experimental Pharmacology and Physiol-
ogy, 36(2), 225–237.

Gwak, K., Kim, H.D., and Kim, C. (2015). Feedback lin-
earization control of a cardiovascular circulatory simula-
tor. IEEE Transactions on Control Systems Technology,
23(5), 1970–1977.

LiDCO Ltd. (2017). Normal hemo-
dynamic parameters. URL
http://www.lidco.com/clinical/hemodynamic.php.

Lifesciences, E. (2017). Normal hemodynamic parameters
and laboratory values.

Liu, Y., Allaire, P., Wu, Y., Wood, H., and Olsen, D.
(2006). Construction of an artificial heart pump perfor-
mance test system. Cardiovascular Engineering, 6(4),
151–158.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

52



Table 4. Hemodynamic parameters and MSE when applying the proposed strategies.

Systolic Diastolic Systolic Diastolic Max Min Systolic Diastolic
pressure pressure MAP CO SV LVP LVP LVV LVV LAP LAP

Controller (mmHg) (mmHg) (mmHg) (l/s) (ml/beat) (mmHg) (mmHg) (ml) (ml) (mmHg) (mmHg)

FBL 107.6 71.2 83.33 5.47 73 116.2 6.42 138 65 13.12 8.74
FBL+FD 108.2 71.56 83.77 5.50 73.34 117 6.15 138.2 64.96 13.05 8.5
PID 107.8 71.28 83.45 5.48 73.1 116.2 6.16 138.3 65.21 13.03 8.56
FPD 107 71.05 83 5.44 72.57 115.1 6.58 137.9 65.33 13.04 8.79

0 0.5 1 1.5 2 2.5 3

Time (s)

0

50

100

150
FBL-FD

FBL

PID

FPD

1.22 1.24 1.26 1.28 1.3 1.32

6

8

10

12

14

16

18

1 1.05 1.1

112

113

114

115

116

117

Fig. 6. Tracking performance of the LVP when applying the proposed strategies with system dependent reference.

Fig. 7. Tracking performance of the LVP when applying integer order controllers with independent reference.

Fig. 8. Tracking performance of the LVP when applying fractional order controllers with independent reference.

Martini, F., Nath, J., and Bartholomew, E. (2015).
Fundamentals of Anatomy & Physiology. Benjamin-
Cummings Publishing Company.

Nichols, W., O’Rourke, M., and Vlachopoulos, C. (2011).
McDonald’s Blood Flow in Arteries, Sixth Edition: The-
oretical, Experimental and Clinical Principles. CRC
Press.

Priebe, H. and Skarvan, K. (1995). Cardiovascular physi-
ology. BMJ Publishing Group.

Simaan, M.A. (2009). Rotary Heart Assist Devices, 1409–
1422. Springer Berlin Heidelberg, Berlin, Heidelberg.

Slotine, J. and Li, W. (1991). Applied
Nonlinear Control. Prentice-Hall Inter-
national Editions. Prentice-Hall. URL
https://books.google.es/books?id=HddxQgAACAAJ.

Stergiopulos, N., Meister, J., and Westerhof, N. (1996).
Determinants of stroke volume and systolic and diastolic
aortic pressure. American Journal of Physiology-Heart

and Circulatory Physiology, 270(6), H2050–H2059.
Traver, J.E., Ortega, J.F., Tejado, I., Pagador, J.B.,
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