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Abstract: This paper studies the performance of discrete-time fractional order controllers. The
fractional derivatives and integrals are numerically implemented by means of a generalized mean
of discrete generating functions. The two additional degrees of freedom provided by the method,
namely the averaging order and the weight of the generating functions, are tuned for increasing
the performance of the closed-loop system. Experiments with a fractional order PID controller
reveal the benefits of the approach.
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1. INTRODUCTION

Fractional calculus (FC) is a natural extension of the
classical mathematics. The fundamental aspects of FC
theory and the study of its properties can be addressed
in Oldham and Spanier (1974); Miller and Ross (1993);
Baleanu (2012); Petras (2011); Machado et al. (2011).
In what concerns the application of FC concepts we can
mention a large volume of research about viscoelasticity
and damping, biology, signal processing, diffusion and
wave propagation, modeling, identification and control
(Bagley and Torvik, 1983; Raynaud and Zergaınoh, 2000;
Lopes and Machado, 2014; Duarte and Machado, 2009;
Machado et al., 2014; Ionescu, 2013; Machado and Lopes,
2015).

Several researchers on automatic control proposed frac-
tional order algorithms based on the frequency (Oustaloup,
1991; Oustaloup et al., 2000; Pan and Das, 2013) and the
discrete-time (Machado, 1997; Podlubny, 1999; Machado
and Galhano, 2009) domains. In both cases, the practi-
cal implementation of the algorithms requires numerical
approximations that affect the performance of the con-
trollers.

This paper studies the performance of fractional order
controllers implemented in discrete-time. The fractional
derivatives (FD) and integrals are numerically imple-
mented by means of a generalized mean of discrete gen-
erating functions. The averaging order and the weight of
the generating functions are additional tuning parameters
used for increasing the performance of the controlled sys-
tem. Experiments with a PID fractional order controller
reveal the potential of the method.

In this line of thought, the paper is organized as follows.
Section 2 presents the method for FD discrete-time ap-
proximation. Section 3 studies the performance of frac-
tional order controllers. Finally, Section 4 draws the main
conclusions.

2. DISCRETE-TIME FRACTIONAL DERIVATIVES

The Grünwald-Letnikov definition of a FD of order α of
the signal x(t), Dαx (t), is given by:

Dα[x (t)] = lim
h→0

1

hα

∞∑
k=0

(−1)
k Γ (α+ 1)x (t− kh)

Γ (k + 1) Γ (α− k + 1)
, (1)

where Γ denotes the gamma function and h is the time
increment. Using the Laplace transform and neglecting
initial conditions we have the expression:

L{Dα [x(t)]} = sαL{x (t)} , (2)

where s and L{·} represent the Laplace variable and
transform operator, respectively.

Expression (1) inspires the discrete-time FD calculation,
by approximating the time increment h through the sam-
pling period T , yielding the equation:

Z{Dα[x (t)]} ≈ 1

Tα

∞∑
k=0

(−1)
k

Γ (α+ 1)

k! Γ (α− k + 1)
z−kZ {x (t)}

=

(
1− z−1

T

)α
Z {x (t)} ,

(3)
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where z and Z{·} denotes the Z variable and transform
operator, respectively.

Expression (3) represents the Euler (or first backward
difference) approximation in the so-called s→ z conversion
schemes. Other possibilities often adopted in control sys-
tem design consist in the Tustin (or bilinear) and Simpson
rules. The generalization to non-integer exponents of these
conversion methods lead to the z-formulae:

sα ≈
[

1

T

(
1− z−1

)]α
=
[
Ψ0

(
z−1
)]α

, (4)

sα ≈
(

2

T

1− z−1

1 + z−1

)α
=
[
Ψ1

(
z−1
)]α

, (5)

where
[
Ψ0

(
z−1
)]α

and
[
Ψ1

(
z−1
)]α

are often called gen-
erating approximants of zero and first order, respectively.

To obtain rational expressions the approximants need to
be expanded into Taylor series and the final algorithm
corresponds either to a truncated series, or to a rational
Padé fraction.

We can derive a family of fractional order differentiators by
means of functions

[
Ψ0

(
z−1
)]α

and
[
Ψ1

(
z−1
)]α

weighted
by the factors p and 1− p, yielding:

Ψav

[
z−1; (p, α)

]
= p

[
Ψ0

(
z−1
)]α

+ (1− p)
[
Ψ1

(
z−1
)]α

.
(6)

For example, the Al-Alaoui operator corresponds to an
interpolation of the Euler and Tustin integration rules with
weighting factor p = 3/4 (Al-Alaoui, 1993, 1997). These
approximation methods have been studied (Tseng, 2001;
Vinagre et al., 2003; Barbosa et al., 2006) and motivated
an averaging method (Machado and Galhano, 2009) based
on the generalized formula of averages, often called average
of order q ∈ R:

Ψav

[
z−1; (q, p, α)

]
=
{
p
[
Ψ0

(
z−1
)]αq

+ (1− p)
[
Ψ1

(
z−1
)]αq} 1

q

,
(7)

where (q, p) are two tuning degrees of freedom, being q
the order of the averaging expression and p the weight-
ing factor. In particular, when q = {−1, 0, 1} we get
the {harmonic, geometric, arithmetic} averages. In other
words, we extend the computation of FD approximations
as shown in Fig. 1.

3. PERFORMANCE OF DISCRETE-TIME
FRACTIONAL ORDER CONTROLLERS

For testing the performance of expression (7) we adopt a
second order Padé approximation:

Ψav

[
z−1; (q, p, α)

]
=

∑2
k=0 akz

−k∑2
k=0 bkz

−k
, ak, bk ∈ R, (8)

for T = {10−2, 10−3}, p = 3
4 and q = {−1,− 1

2 , 0,
1
2 , 1,

3
2 , 2}.

We consider the closed-loop control system represented

Fig. 1. Schematic representation of FD approximations
based on the generalized mean.

in Fig. 2, and we analyze the system time response to
a reference unit step input, x(t). The plant, G(s), and
controller, C(s), are given by (Valério and da Costa, 2006):

G(s) =
1

4.3200s2 + 19.1801s+ 1
, (9)

C(s) = 6.9928 +
12.4044

s0.6000
+ 4.1066s0.7805. (10)

The controller is a fractional order PID, tuned by means
of Ziegler-Nichols-type rules (Valério and da Costa, 2006).
The results are also compared with the integer order PID
(Valério and da Costa, 2006):

C(s) = 120 +
300

s
+ 12s. (11)

Fig. 2. Closed-loop control system.

Figs. 3 and 4 depict the closed-loop step response, error
and control action, y(t), e(t) and u(t), for two values of
sampling time, T = {10−2, 10−3}, p = 3/4 and q =
{−1,−1/2, 0, 1/2, 1, 3/2, 2}. We verify that:

• The integer order PID leads to large overshoot;
• For T = 10−2 the fractional order controlled system

does not exhibit overshoot, at expenses of larger
steady-state errors. Steady-state errors are due to the
truncation of the series used for calculating the FD,
yielding poor approximation of sα at low frequencies
Machado (2009);

• For T = 10−3 the overshoot increases while the
steady-state behavior is better;

• The performance for q = 0 is quite different from the
one obtained with other values;

For measuring the response error we compute the integral
square error:
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Fig. 3. Closed-loop step response, error and control action,
y(t), e(t) and u(t), for T = 10−2, p = 3

4 and q =

{−1,− 1
2 , 0,

1
2 , 1,

3
2 , 2}.

ISE =

∫ ∞
0

[e(t)]2dt, (12)

time (s)
0 2 4 6 8 10

y(
t)

0

0.5

1

1.5
T = 10-3

x(t)
PID

ZL

PID
FO

: q = -1

PID
FO

: q = -1/2

PID
FO

: q = 0

PID
FO

: q = 1/2

PID
FO

: q = 1

PID
FO

: q = 3/2

PID
FO

: q = 2

time (s)
0 2 4 6 8 10

e(
t)

-0.5

0

0.5

1
T = 10-3

PID
ZL

PID
FO

: q = -1

PID
FO

: q = -1/2

PID
FO

: q = 0

PID
FO

: q = 1/2

PID
FO

: q = 1

PID
FO

: q = 3/2

PID
FO

: q = 2

time (s)
1 1.2 1.4 1.6 1.8 2

u(
t)

-200

-100

0

100

200

300

400
T = 10-3

PID
ZL

PID
FO

: q = -1

PID
FO

: q = -1/2

PID
FO

: q = 0

PID
FO

: q = 1/2

PID
FO

: q = 1

PID
FO

: q = 3/2

PID
FO

: q = 2

Fig. 4. Closed-loop step response, error and control action,
y(t), e(t) and u(t), for T = 10−3, p = 3

4 and q =

{−1,− 1
2 , 0,

1
2 , 1,

3
2 , 2}.

within the time interval t = [1, 10] and q = [−1, 2].
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Fig. 5 depicts the ISE versus q for T = {10−2, 10−3} and
p = 3

4 . Fig. 6 represents the results for T = 10−3 and

p = { 14 ,
1
2 ,

3
4}.
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Fig. 5. The ISE versus q, for t = [1, 10], T = {10−2, 10−3},
p = 3

4 and q = [−1, 2].
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Similarly, we measure the control action effort by means of
the integral square error of u(t) within the time intervals
t = [1, 2] and t = [2, 10], that is, for the initial transient
and for the steady-state periods, respectively.

Fig. 7 depicts the ISE versus q for T = {10−2, 10−3} and
p = 3

4 . We verify that the control effort varies varies little
with q up to q ≈ 1.5, particularly for low values of T .

In conclusion, we extended the optimization control prob-
lem. With the classical PID algorithm we have 3 parame-
ters to adjust, namely the proportional, integral and differ-
ential gains {Kp,Ki,Kd}. For the fractional order PIλDµ,
we have 5 parameters {Kp,Ki, λ,Kd, µ}. In this study, we
verify that it is advisable to consider also the discretization
scheme and the approximation formula leading to 7 tun-
ing parameters {Kp,Ki, λ,Kd, µ, p, q}. The development
of automatic optimal tuning strategies, capable of tacking
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Fig. 7. The ISE versus q for T = {10−2, 10−3} and p = 3
4 .

advantage of all degrees of freedom, needs further study.
Also, the adoption of different optimization indices, for
distinct classes of dynamical systems, and the relationship
with the parameters will be the matter of future research.

4. CONCLUSIONS

In this paper discrete-time FD approximations were eval-
uated in the perspective of control systems. The two ad-
ditional degrees of freedom provided by the generalized
mean, namely the order of the averaging and the weight of
the generating functions, augment the set of parameters
that can be tuned for increasing the performance of the
controlled system. Several experiments with a fractional
order PID control illustrated the usefulness of the method.
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Valério, D. and da Costa, J.S. (2006). Tuning of fractional
PID controllers with Ziegler–Nichols-type rules. Signal
Processing, 86(10), 2771–2784.

Vinagre, B.M., Chen, Y.Q., and Petráš, I. (2003). Two
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