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Abstract: This work deals with the stabilization problem of a particular class of high-order
unstable linear systems with time delay. In particular, systems with one unstable pole, q − 1
complex conjugate stable poles and one minimum phase zero. To solve this problem a modified
version for the traditional PI controller, called in this work the Proporcional Integral Filtered
PIf , is proposed. This new scheme includes a low-pass first order filter and allows improving
the existing results on controlling high-order systems with time delay. Necessary and sufficient
conditions for the existence of the PIf controller are expressed in terms of the parameters of
the system and the maximum allowable time-delay magnitude. The proposed control scheme
is illustrated by a numerical example applied to the temperature control of an unstable
Continuously Stirred Tank Reactor (CSTR) linear model focused on the production of propylene
glycol.

Keywords: Time-delay, unstable system, complex conjugate poles, modified PI controller.

1. INTRODUCTION

Time delay systems are common in industrial processes
and are often used to model different kinds of engineering
systems, where propagation and transmission of informa-
tion or material are involved in computing control signals,
data acquisition, etc Niculescu (2001). The presence of
large delays makes system analysis and control design
much more complex. In general, control system perfor-
mance is very sensitive to these delays, which reflects
on poor performance in transient response, oscillations,
among others is obtained. In fact, a closed-loop control
system may become unstable as a consequence of delays,
Zhong (2006).

The problem becomes more complicated when the system
not only has a time delay but also it is unstable. Therefore,
the interest of tackling unstable processes containing a
delay term has been growing in the control community
due to its complexity in achieving stabilization and an
adequate performance Sipahi et al. (2011). In fact, this
kind of unstable systems with time delay are commonly
? This work was partially supported by the National Council for
Science and Technology, CONACyT-Mexico, under the grant 254329.
??This work was partially supported by the Secretary of Sci-
ences, Technology and Innovation of Mexico City, under the grant
SECITI/079/2017

found in chemical processes such as in liquid storage tanks
Pierdomenico and Ciccio (2011), continuously stirred tank
reactors (CSTR) Bequette (2003), among others.

A solution to deal with time-delay systems is to use
a Proportional-Integral (PI) and Proportional-Integral-
Derivative (PID) controllers. For instance, Silva et al.
(2004) have solved the stabilization of first-order systems
with time-delay using a version of the Hermite-Biehler
Theorem derived by Pontryagin (1995) applicable to a
quasi-polynomial. Moreover, this method was generalized
to the second-order integrating processes with time-delay
by Ou et al. (2006). For a first-order unstable system
with time-delay, the D-partition technique was applied to
characterize the stability domain in the space of system
and controller parameters as shown in Hwang and Hwang
(2004). However, in these references, necessary and suffi-
cient conditions for the existence of stabilizer controllers
are not provided. With a different perspective, in Lee
et al. (2010), a frequency domain approach is exploited
to analyze the stability of a particular class of high-order
system by means of P/PI/PD/PID controllers. The gen-
eralization of this result is provided in Hernandez-Perez
et al. (2015) where unstable delayed systems with possi-
ble complex conjugate poles are addressed. Recent works
focuses on a more particular class of systems, for instance
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in Novella et al. (2017), controllers for the stabilization
of high order delayed systems with two unstable poles are
considered. It is important to note that all previously cited
works consider the use of the classical structure of the PID
controller.

However, although PID controllers are the most used in
the industry, they have some disadvantages even without
the presence of delays. For example, the derivative term in
the PID controller causes the controller to have implemen-
tation problems because, from a transfer function point of
view, the controller is an improper function. Moreover,
the derivative term response is highly sensitive to mea-
surement noise in the process variable signal. If the sensor
feedback signal is noisy or if the control loop rate is too
slow, the derivative response can make the control system
unstable. Likewise, in the case of processes with large time-
delays, the anticipatory action of the derivative term is no
longer working since the linear approximation is only valid
for small values of the derivative term. For this reason, it
is common to avoid the use of the derivative term in the
control strategy and just keep the proportional-integral
action. However, the design of a feedback control law by
using a PI controller becomes more complicated when
besides the time-delay and unstable systems, the processes
have a minimum phase zero. Notice that the performance
is further limited when the process contains a zero in the
right half plane (RHP).

A modified version of the traditional PI control scheme is
proposed which is called the Proportional Integral Filtered
(PIf ) controller. This control scheme is composed of a tra-
ditional PI adding as a third term a simple first order filter
instead of the derivative term used in the traditional PID.
This modification allows having some advantages such
as reducing the measurement noise that may be present
in the system since it does not resort on a derivative
term. Moreover, it also allows the stabilization and control
of the same family of unstable systems with time delay
considered in Lee et al. (2010) and Hernandez-Perez et al.
(2015), but with the advantage that the delays supported
by this new scheme are larger than those supported by the
traditional PI. Additionally, one of the main advantages
of the PIf is that it can deal, with unstable systems which
include a transmission zero, which is an interesting feature
from the control point of view. This new scheme keeps the
basic properties of a conventional PI controller such as
disturbance rejection and reference tracking of step type
signals. Hence, conditions to stabilize high-order unstable
delayed systems with one unstable pole, a pair of possible
complex conjugate poles and a minimum phase zero are
presented in this work. The stabilization conditions are
expressed in terms of the maximum allowable time-delay
magnitude. Further, a procedure is provided for determin-
ing the parameter ranges of the stabilizing controller. The
proposed control scheme is illustrated by a numerical ex-
ample consisting of the temperature in an unstable linear
model of a Chemical Process-Propylene Glycol taken from
Bequette (2003).

The rest of the work is organized as follows: Section 2
presents the problem statement. Section 3 addresses the
proposed control strategy. In Section 4, the results are
applied to a numerical example. Finally, Section 5 ends
the papaer with some concluiding remarks.

2. PROBLEM STATEMENT

Consider the class of high-order Single-Input Single-
Output (SISO) linear unstable delayed systems with pos-
sible complex conjugate poles and a single zero given by,

Y (s)

U(s)
= G(s)e−τs =

α(s+ β)e−τs

(s− γ)

q∏
m=1

(s2 + 2ζmωnms+ ωnm
2)

, (1)

with γ, β and τ > 0, q = (n − 1)/2, ζ the damping
relation and ωn the undamped natural frequency. In order
to simplify the notation, it is assumed that the order of the
system is odd, i.e., n = 2q + 1. The stability analysis of
(1) will be carried out by means a modified PI controller
(PIf ), defined as

H(s) = kp

(
1 +

ki

s
+

kf

s+ φ

)
(2)

with kp, ki and φ > 0. Notice that the obtained closed–
loop system will have the general form,

Y (s)

R(s)
=

H(s)G(s)e−τs

1 +H(s)G(s)e−τs
. (3)

It is clear that the term e−τs located at the denominator of
the transfer function (3), leads to a system with an infinite
number of poles and where the closed–loop stability prop-
erties must be carefully stated. Therefore, the objective is
to provide conditions to stabilize the class of systems (1)
by means of a PIf controller (2). Also, it is intended to
characterize all possible values for the parameters kp, ki, kf
and φ that render the closed–loop system asymptotically
stable. Notice that from (3), the corresponding open-loop
transfer function can be expresed as,

Q(s) = H(s)G(s)e−τs. (4)

Notice that instead of adding a derivative term to the
classical PI, in order to get a PID controller, in this work
it is add a first order filter where its cutoff frequency is not
determined by the approximation of the derivative term.
Despite this, notice that even if the derivative term is not
explicitly included in (2), after elementary algebra, this
expression can be rewritten as a filtered controller or if it
is necessary, it can be seen as a PID with the derivative
term numerically approximated. However it is interesting
to note that, the main advantage provided by the PIf
against most of filtered-PID schemes is that the PIf
encloses in its core the cutoff frequency of the implemented
first order filter. This cutoff frequency is directly related
to the necessary and sufficient stability ranges required to
deal with time-delayed unstable systems which contain a
zero with non-minimum phase characteristic.

3. MAIN RESULTS

In order to state the PIf control strategy, the following
theorem is stated.
Theorem 1. Consider the class of high-order unstable de-
layed systems with possible complex conjugate poles and a
zero in the left half complex plane give by (1). There exists
a PIf controller given by (2) such that the corresponding
closed-loop system is stable if and only if,

τ <
1

γ
+

√√√√ 1

γ2
+ 2

q∑
m=1

2ζ2
m − 1

ω2
nm

− 2

q∑
m=1

ζm

ωnm
. (5)

The proof of Theorem 1 is based on the well-known
Nyquist stability criterion which is stated below.
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Theorem 2. (Nyquist stability criterion). A linear system
is stable if and only if N +P = 0, where P the number of
poles in the right half complex plane and N the number of
clockwise rotations to the point (−1, 0) (if N is negative,
the rotations are in the counterclockwise direction) in the
Nyquist diagram.

Proof. Theorem 1. Let us consider a frequency domain
analysis. From (4), the open-loop frequency response is
given by,

Q(jω) = kp
α
(
(jω)2 + (kf + ki + φ)jω + kiφ

)
(jω + β) e−τjω

jω (jω − γ) (jω + φ)
∏q

m=1
((jω)2 + 2ζmωnmjω + ω2

nm
)
.

(6)
In order to simplify the analysis, consider the following

definitions,
k̄p = kp(kf + ki + φ)

k̄f = 1
kf+ki+φ

k̄i = kiφ
kf+ki+φ

.

(7)

That allow rewriting the open-loop transfer function (6)
as,

Q(jω) =

k̄pk̄fα

(
(jω)2 + ( 1

k̄f
)jω + k̄i

k̄f

)
(jω + β) e−jωτ

jω (jω − γ) (jω + φ)
∏q

m=1
((jω)2 + 2ζmωnmjω + ω2

nm
)
.

(8)
Due to the freedom provided when selecting the parameter
φ of the proposed controller, let us choose the cutoff
frequency of the PIf as φ = β. Therefore, using (7), from
(6), the open-loop response is obtained as,

Q(jω) = k̄pk̄fα

(
(jω)2 + ( 1

k̄f
)jω + k̄i

k̄f

)
e−jωτ

jω (jω − γ)
∏q

m=1
((jω)2 + 2ζmωnmjω + ω2

nm )
.

(9)

For the sake of simplicity, let us consider k̄i = 0. The
phase and magnitude expression of (9) are given by,

6 Qk̄i=0(jω) = −
(
π − arctan

(
ω
γ

))
− ωτ+

arctan
(
k̄fω
)
−
∑q

m=1
arctan

(
2ζm

(
ω

ωnm

)
1−
(

ω
ωnm

)2

)
(10)

MQk̄i=0
(jω) =

k̄pα

√
1+k̄2

f
ω2

(ω2+γ2)
∏q

m=0

(
ω4+2ω2

nm
ω2(2ζ2

m−1)+ω4
nm

) . (11)

Necessity. Suppose that there exists a PIf controller such
that in closed-loop with (1) produces an asymptotically
stable system. Then, the Nyquist criterion is satisfied and
therefore, there exists a counterclockwise rotation to the
point (−1, 0) in the complex plane as it is shown in Fig.
1.

Fig. 1. Nyquist stability criterion.

Therefore, from the Nyquist stability criterion and taking
into account k̄i = 0, the phase trajectory begins at
6 Qk̄i=0(j0) = −π for ω = 0 and start its path in a positive
direction in the Nyquist diagram, i.e., the phase expression
is a increasing function of ω, which has only one change
of sign as ω → ∞. The existence of a counterclockwise
rotation to the (−1, 0) point allows concluding the next
inequality,

d

dω

(
6 Qk̄i=0(jω)

)∣∣∣
ω=0

> 0 (12)

or equivalently,

d
dω

(
6 Qk̄i=0(jω)

)∣∣
ω=0

= −τ + γ
ω2+γ2 +

k̄f
k̄2
f
ω2+1

−

−
∑q

m=1

(
2ζmωnm (ω2+ω2

nm
)

ω4+2ω2
nm

ω2(2ζ2
m−1)+ω4

nm

)
> 0.

Therefore, evaluating at ω = 0 yields,

−τ +
1

γ
+ k̄f −

q∑
m=1

(
2ζm

ωnm

)
> 0,

from which,

τ <
1

γ
+ k̄f −

q∑
m=1

(
2ζm

ωnm

)
. (13)

From the counterclockwise rotation assumption and the
fact that (12) is satisfied for ω = 0, it is clear that for this
frequency value the magnitude (11) should be a decreasing
function. The above is equivalent to ask that,

d

dω

(
M2
Qk̄i=0

(jω)

k̄2
pα

2

)∣∣∣∣∣
ω=0

< 0. (14)

After some manipulations inequality (14) produces,

2ωk̄2
f − 2ω

(
1 + k̄2

fω
2
) [

1
ω2+γ2 +

∑q

m=1
ψ

]
(ω2 + γ2)

∏q

m=1

(
ω4 + 2ω2

nm
ω2
(
2ζm

2 − 1
)

+ ωnm
4
) < 0, (15)

where,

ψ =
2ω
(
2ω2 + 2ω2

nm

(
2ζm

2 − 1
))

ω4 + 2ω2
nm

ω2
(
2ζm

2 − 1
)

+ ωnm
4
.

In the interval, ω ∈ (0,∞), the inequality (15) is equiva-
lent to,

k̄2
f −
(
1 + k̄2

fω
2
)[ 1

ω2 + γ2
+

q∑
m=1

ψ

]
< 0.

Evaluating the right-hand-side of the above inequality for
ω = 0 leads to the next condition,

k̄f <

√√√√ 1

γ2
+ 2

q∑
m=1

2ζ2
m − 1

ω2
nm

. (16)

Consider now the case k̄i 6= 0 that corresponds to the
analysis of the transfer function (9). The corresponding
magnitude MQ(jω) and phase expressions 6 Q(jω) are
given as,

MQ(jω) =

k̄pα

√
1+
(
k̄fω−

k̄i
ω

)2

(ω2+γ2)
∏q

m=1

(
ω4+2ω2

nm
ω2(2ζm2−1)+ωnm

4
) (17)

6 Q(jω) = −
(
π − arctan

(
ω
γ

))
− ωτ+

arctan

(
k̄fω − k̄i

ω

)
−
∑q

m=1
arctan

(
2ζm

(
ω

ωnm

)
1−
(

ω
ωnm

)2

)
.

(18)
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In the above expressions, if k̄i → 0, then MQk̄i=0
(jω) →

MQ(jω) and 6 Q(jω) → 6 Qk̄i=0(jω). Hence, applying a

continuity argument on k̄i it is always possible to choose
a gain k̄i small enough such that the inequalities (12) and
(14) are fulfilled. From this fact, the expression (13) can be
rewritten by using (16), such that the following relation,

τ <
1

γ
− 2

q∑
m=1

ζm

ωnm
+

√√√√ 1

γ2
+ 2

q∑
m=1

2ζ2
m − 1

ω2
nm

.

is true.

(Sufficiency) Suppose that (5) holds, then there exists a
PIf controller such that the closed-loop (1)-(2) is asymp-
totically stable. From the Nyquist stability criterion, in
order to have a stable system, it is required to have a
counterclockwise rotation to the point (−1, 0).

Let us consider k̄i = 0 and a cutting of frequency of the
first-order filter of PIf controller as φ = β. Consequently,
the fase expression given by (10), has an initial phase angle
at −π for ω = 0.

Therefore, notice that to get the required counterclock-
wise rotation around the point (−1, 0) (see Fig. 1), the
phase expression should be an increasing function and the
magnitude expression should be a decreasing function for
ω > 0. Note also that,

d
dω

(
M2
Q
k̄i=0

(jω)

k̄p
2α

2

)
=

2ω

[
ϕ(ω)

(ω2+γ2)
∏q

m=1

(
ω4+2ω2

nm
ω2(2ζm2−1)+ωnm

4
)] (19)

with
ϕ(ω) =

k̄2
f − (1 + k̄2

fω
2)

[
1

ω2+γ2 +
∑q

m=1

2ω

(
2ω2+2ω2

nm

(
2ζm

2−1

))
ω4+2ω2

nm
ω2(2ζm2−1)+ωnm

4

]
(20)

and

d
dω

(
6 Qk̄i=0(jω)

)∣∣
ω=0

=

−
[
τ − 1

γ
+
∑q

m=1

(
2ζmωnm (ω2+ω2

nm
)

ω4+2ω2
nm

ω2(2ζ2
m−1)+ω4

nm

)]
+ k̄f .

(21)

It is clear that (21) could be a positive or negative func-
tion depending on the value of the involved parameters,
however, if d(6 Qk̄i=0)/dω < 0, then equation (10) is a
decreasing function for all ω, and only if d(6 Qk̄i=0)/dω > 0
the function has only one change of sign as ω → ∞, this
allows as a first instance to conclude that,

d

dω

(
6 Qk̄i=0(jω)

)∣∣∣
ω=0

> 0.

On the other hand, since, ω > 0, the sign of (19) is
determined equivalently by the sign of the function given
in (20), where, evaluating around ω = 0, it is produced
the following expression,

ϕ(ω)|ω=0 = k2
f −

(
1

γ2
+

q∑
m=1

2
(
2ζ2
m − 1

)
ω2
nm

)
. (22)

In addition, rewriting inequality (5) allows,

τ −
1

γ
+ 2

q∑
m=1

ζm

ωnm
<

√√√√ 1

γ2
+ 2

q∑
m=1

2ζ2
m − 1

ω2
nm

. (23)

From (23), it is possible to choose k̄f such that,

τ −
1

γ
+ 2

q∑
m=1

ζm

ωnm
< k̄f <

√√√√ 1

γ2
+ 2

q∑
m=1

2ζ2
m − 1

ω2
nm

. (24)

Therefore, the above inequality allows obtaining,
d

dω

(
6 Qk̄i=0(jω)

)∣∣∣
ω=0

> 0

d

dω

(
M2
Qk̄i=0

(jω)

k̄2
pα

2

)∣∣∣∣∣
ω=0

< 0.

Then, only if the magnitude MQ(jω) is monotonically
decreasing and that the phase 6 Q(jω) has a change of
sign, then the existence of a counterclockwise rotation is
established in the Nyquist diagram and the closed-loop
stability is ensured.

In a similar way as in the necessity part, notice that if
k̄i 6= 0, it is always possible to choose a gain k̄i small
enough such that MQ(jω) is monotonically decreasing and
6 Q(jω) is an increasing function for ω = 0.

Finally, assuming that condition of Theorem 1 is satisfied.
For a small enough k̄i, there exists an adequate k̄f such
that the existence of a counterclockwise rotation in the
Nyquist diagram is ensured. To guarantee the anticlock-
wise rounding be located around the point (−1, 0) in the
Nyquist diagram, the parameter k̄p should be selected such
that,

k̄p(ωc1) < k̄p < k̄p(ωc2)
where ωc1 , ωc2 are the first two phase crossover frequencies
solutions of

arctan
(ωci
γ

)
− ωcτ + arctan

(
k̄fωci −

k̄i
ωci

)
−∑q

m=1
arctan

(
2ζm

( ωci
ωnm

)
1−
( ωci
ωnm

)2

)
= 0.

(25)

and k̄p(ωci=1,2
) are given by,

k̄p(ωci ) =

1
α

√√√√ (ωci
2+γ2)

∏q

m=1

(
ωci

4+2ω2
nm

ωci
2(2ζm2−1)+ωnm

4
)

1+

(
k̄fωci

− k̄i
ωci

)2 . (26)

Remark 1. Let us consider the case where the pole-zero
cancellation is not exact, i.e., φ ≈ β. Under this condition
the resulting phase expression 6 Q∗(jω) is represented as,

6 Q∗(jω) = 6 Q(jω) + arctan

(
ω

β

)
− arctan

(
ω

φ

)
. (27)

Since φ ≈ β then,

arctan

(
ω

β

)
− arctan

(
ω

φ

)
≈ 0

and 6 Q∗
k̄i=0

(jω) ≈ 6 Qk̄i=0(jω) and inequality (12) is sat-

isfied. It is also possible to prove that under the condition
φ ≈ β, the decreasing property (14) holds. Therefore, if
condition (5) is satisfied, then there exist k̄f , k̄i and k̄p
gains that stabilize system (1) in closed-loop with a PIf
controller.

4. NUMERICAL EXAMPLE APPLIED TO A
CHEMICAL PROCESS-PROPYLENE GLYCOL

PRODUCTION

Roughly 1.3 billion pounds of propylene glycol are pro-
duced per year. It has a wide variety of uses, including:
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anti-freeze applications, aircraft deicing; solvents for a
number of drugs; moisturizers; and artificial smoke or fog,
for fire-fighting training or theatrical productions. Propy-
lene glycol is produced by a Continuously Stirred Tank Re-
actor (CSTR) Pierdomenico and Ciccio (2011). This kind
of reactor is dynamically modeled as a simplified kinetic
mechanism that describes the conversion of reactant A to
product B with an irreversible and exothermic reaction.
A more detailed model of a CSTR includes the effect of
cooling jacket dynamics.

A general description of the mathematical model of a
CSTR has been taken from Bequette (2003), and is de-
scribed by three differencial equations presented below,

Fig. 2. Unstable CSTR with cooling jacket.

(1) Balance of the mass on component A is
dCA

dt
=
F

V
(CAf − CA)− k0e

−∆E
RT CA.

(2) Energy balance in the reactor,

dT

dt
=
F

V
(Tf − T ) +

−∆H

ρcp
k0e

(
−∆E
RT

)
CA −

UA

V ρcp
(T − Tj) ,

(3) Energy balance in the cooling liquid,
dTj

dt
=
Fjf

Vj
(Tjf − Tj) +

UA

Vjρjcpj
(T − Tj) ,

System parameters are listed in Table 1.

Table 1. CSTR parameters.
Description Variables Values Unit

Volume of the reactor V 85 ft3

Activation energy −∆E 32, 400 Btu/lbmol

Heat transfer coefficient U 75 btu/hr◦F

Heat of Reaction −∆H 39, 000 Btu/lbmolPO

Heat transfer area A 88 ft2

Frequency factor k0 16.96x1012 hr−1

Ideal gas constant R 1.987 Btu/lbmol◦F

Volume cooling liquid in the chamber (reactor jacket) V j 21.25 ft3

Heat capacity on reactor with density of the reagent ρcp 53.25 Btu/ft3 ◦F

Density of the cooling liquid with heat capacity of the
cooling liquid

ρjcpj 55.6 Btu/ft3 ◦F

To get a linear representation of the CSTR model, the
cooling jacket feed rate flow Fjf is considered as the ma-
nipulated (input) variable and the temperature T , as the
controlled (output) variable. A tangent approximation will
be obtained by considering the operating point described
in Table 2 (detailed descriptions of these parameters can
be found in Bequette (2003)),

The linear representation around the considered operating
point it is obtained as,

Fjf (s)

T (s)
=

−4.747s− 37.940

(s− 1, 177)(s2 + 10.509s+ 29.260)
. (28)

Table 2. Values at the operating point of CSTR.

Description Variables Values Unit

Feed concentration of product A CoAf 0.132 lbmol/ft3

Concentration of the product A CoA 0.066 lbmol/ft3

Product Flow A F o 340 ft3/hr

Cooling jacket feed rate flow F ojf 28.75 ft3/hr

Temperature in the reactor T o 101.1 ◦F

Feed temperature T of 55 ◦F

Cooling jacket temperature T oj 60 ◦F

Cooling jacket feed temperature T ojf 50 ◦F

Notice that (28) is of the same class of systems described
by equation (1), in Section 2, with τ = 0 since it has an
unstable pole, a pair of complex conjugate poles and a zero.
Using high quality sensors to determine the temperature
(T ) in CSRT reactors usually means high costs. This
disadvantage in the sensor generates a dead-time in the
measurement of the temperature, which creates a problem
for the control strategy design, that increases its difficulty
when the system is unstable. For that reason, it is possible
to consider this effect by adding an adequate time-lag to
equation (28). For this kind of reactor, the time–delay in
the temperature measurement is approximately 0.25 hr.
taking into accoutn the residence time over the operation
point, this produces,

Fjf

T (s)
=

−4.73(s+ 7.992)

(s− 1, 177)(s2 + 10.509s+ 29.260)
e−0.25s. (29)

The parameters of the system are β = −7.992, γ = 1.1772,
ζ = 0.971, ωn = 5.409 and τ = 0.25. From the stability
condition stated in Theorem 1 and assuming that m = 1,

τ = 0.25 <
1

γ
+

√√√√ 1

γ2
+ 2

q∑
m=1

2ζ2
m − 1

ω2
nm

− 2

q∑
m=1

ζm

ωnm
= 1.735,

and therefore, system (29) can be stabilized by a PIf
controller. Following the methodology proposed in this
work, in order to obtain the tuning parameters of the
controller given by (2), the first step is to consider the
cutoff frequency of the filter in the PIf controller as
φ = −7.992. After that, from equation (24), the range of
values for the stabilizing gain k̄f is −0.240 < k̄f < 0.884.
Considering k̄f = 0.4, the gain k̄i must be small enough
to satisfy the conditions (12) and (14). For this case,
k̄i = 0.022. Solving (25) allows obtaining the range of
stabilizing gain given by 1.37 < k̄p < 14.06. Considering
k̄p = 2, and finally using the definition given in (8), the
proposed PIf controller is represented as:

PIf = 2

(
1 +

0.0068

s
+
−5.496

s+ 7.99

)
.

Fig. 3 illustrates the control strategy performance regard-
ing the reactor temperature when input reference equal to
50◦F is considered. In the same figure is show how the
proposed controller provides a more appropriate transients
response than the classical PI and PID controllers with a
filtered derivative action (PIfda and PIDfda respectively)
since not only eliminates the noise but also provides a
smoother response which is a desirable feature in any
controller. To evaluate the performance of the three used
controllers, the Integral Squared Error (ISE), as an indica-
tor of efficiency, was used (illustrated in Fig. 4). The results
show that the PIf has better performance than the PIfda
and the PIDfda, with the PIfda being the controller with
the worst performance.
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Fig. 3. PIf controller performance.

Notice that the cutoff frequency of the PIf controller is
directly related to the stability ranges required to deal with
unstable time delayed systems. While, by the other hand,
the cutoff frequency of PIfda and PIDfda controllers
do not have any relation with stability tuning. For this
reason, and for comparison purposes, in this work, tuning
parameters used for PIfda and PIDfda controllers are
empirically proposed, without guaranteeing stability for
delays of larger magnitude.
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Fig. 4. Performance indicator (Integral Squared Error
(ISE)).

Remark 2. The considered PIDfda and PIfda controllers
were designed as (30) and (31) respectively,

H1(s) = kp

(
1 +

1

Tis
+

Tds

1 +
Td
N
s

)
(30)

H2(s) = kp

(
1 +

1

Tis

)
1

1 + 1
N
s
, (31)

where the the tuning parameters for the PIDfda are given
as kp = 5, Ti = 20, Td = 1.2 and N = 9.5 for a τ = .25
while for the PIfda are given by kp = 5, Ti = 45, N = 9.5
with a τ = 2.5 but with a maximum delay τmax = 0.49
(smaller than the one supported by the PIf ).

5. CONCLUSION

This paper presents necessary and sufficient condition for
the stabilization of a class of high-order unstable delayed
linear systems with one unstable pole, q− 1 possible com-
plex conjugate poles and one minimum phase zero by using
a novel control law called the PIf controller. The proposed
controller is based on an standard PI controller plus a
first order low-pass filter. Additionally, the procedure to
determine the parameters for the stabilizing gains kp, ki
and kf are given in order to provide an accurate PIf

controller tuning. It is worth noting that the proposed
PIf controller not only maintains the basic properties of
conventional PI/PID controllers regarding constant dis-
turbance rejection and tracking of step references; besides,
it exhibits two advantages. First, the stability condition is

improved by the term
√

1
γ2 + 2

∑q
m=1

2ζ2
m−1
ω2
nm

, compared

with P or PI controllers, i.e., the PIf allows stabilizing
systems with larger delays than the ones allowed by the
conventional P/PI controllers. A second advantage is that
the PIf controller does not resort on derivative terms;
the above feature eases its practical implementation and
also, this fact allows to reduce the noise caused by the
derivative term. Aditionally, the PIf controller is able to
stabilize systems with one minimum phase zero, a problem
that has not been addressed in past work by means of
P/PI/PID controllers. Finally, a numerical example ap-
plied on chemical process-propylene glycol production was
used to verify the performance of the proposed strategy
using a numerical simulation.
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