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Abstract: In this paper, a new approach is proposed to design optimal PID controller for
load frequency control (LFC) problem. This scheme is based on Quadratic Regulator Approach
with Compensating Pole (QRAWCP) technique. Application of this control law is done to
both single area and multi-area power system based load frequency problem. In addition to
the nominal situation, robustness of this controller is also tested on the same systems with
respect to parametric uncertainty, external disturbances, and non-linearities like Generation
Rate Constraint (GRC) and Governor Dead Band (GDB). The performance evaluation is done
using Matlab & Simulink based simulations and the obtained results are compared with the
performance achieved using the recent control strategies designed for LFC.

Keywords: Frequency regulation, load frequency control, parametric variation, PID control,
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1. INTRODUCTION

Nowadays, electricity demand of every country is increas-
ing continuously, due to industrial revolution, technolog-
ical developments, etc. However, in power delivery, the
most critical issue is to provide uninterrupted power sup-
ply to the consumers in-spite of the presence of any para-
metric uncertainties or external disturbances by Kundur
(1994). For stable and continuous operation, one of the
ancillary services is the ‘frequency regulation’ or ‘load
following’ utilized for the Load Frequency Control (LFC).
The frequency of the generated voltage should be kept
within the permissible limits. To tackle the problem of
frequency regulation, output power changes with the con-
tinuously changing load demand as defined in Saxena
and Hote (2013). If the input-output power balance is
not maintained, the change in frequency occurs. Hence
frequency control is an essential issue, which is achieved
via speed governor mechanism. The role of the governor is
to control the speed and load accordingly. If the load on the
turbine increases, the speed of the governor decreases and
vice-versa. Fig. 1 shows the general scheme of a generating
unit, where Vr is the voltage demand and f is the reference
frequency as discussed by Ramana (2010).

LFC has been in practice for several years as part of
the automatic generation control (AGC) unit in electric
power systems. AGC is a system for adjusting the power
output of multiple generators at different power plants,
in response to changes in the load as shown by Tyagi
and Srivastava (2005); Prasad et al. (2014). Whenever
there is a change load, frequency of the system changes
from its nominal value. In the control literature, various
control techniques have been implemented on the LFC
problem. This frequency regulation concept can be traced
back nearly hundred years from today. In 1932 Dryer
(1932), and then in 1940 Estrada (1940), and Concordia

Fig. 1. General scheme of a generating unit

et al. (1941) have been working on frequency regulation
issue. Since then in every decade, the research work has
been carried on this LFC problem. However, in the last
two decades, the electricity demand increased steeply due
to population explosion, industrialization and urbaniza-
tion, etc. So it is observed that, because of the frequency
mismatches, we can see occurrences of interruption in
power supply. To overcome this recently, many researchers
have proposed methodologies to guarantee the uninter-
rupted power flow, such as, Saxena and Hote (2013, 2017);
Masuda (2012) designed Internal Model Control (IMC)
scheme using model order reduction for uncertain model.
W. Tan (2010) presented a unified tuning of proportional-
integral-derivative (PID) control, Anwar and Pan (2015)
designed PID using frequency response matching with di-
rect synthesis. In Saxena and Hote (2016), the researchers
designed PID controller using Kharitonov’s theorem for,
perturbed multi-area systems and Hanwate et al. (2018)
proposed adaptive policy for LFC. It is observed that,
there are various non-linear control strategies reported in
the control literature till date, which can outperform linear
controllers; however, most of these are mathematically
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complicated and to implement in real time applications.
Conversely, as PID controller is one of the simplest linear
controller till date, it is used in augmentation with optimal
control.

The PID controller offers simplicity, functionality, past
good record of success, and the most profound solution
to process industry and also to any real-time control prob-
lems, as defined in Astrom’ and Hagglund (1995); Yun
Li et al. (2006). The three terms of the PID controller
provide improvement to both the transient and steady-
state specifications of the control system response, de-
scribed in Blevins (2012); Bazanella et al. (2016); Nair
et al. (2016). The first tuning method for PID controllers
was designed by Ziegler and Nichols (1942). Since then
many of the research has been carried out on PID such as,
Cohen-Coon, Chien, Hrones and Reswich (C-H-R), Inter-
nal Model Control (IMC), optimization such that, Particle
Swarm Optimization (PSO) as done by Gaing (2004),
Big-Bang Big-Crunch (BBBC) techniques Iruthayarajan
and Baskar (2009), Linear Quadratic Regulator (LQR)-
PID Hanwate and Hote (2017), Fuzzy PID, ANN-PID
Padula et al. (2012), SBL-PID Tan (2005), FOPID Kumar
et al. (2017); Sondhi and Hote (2014), etc. However, these
methods have some merits and demerits, which improve
on previous method either in terms of transient or steady
state response. Tyagi and Srivastava (2005) designed LQR
and Linear Quadratic Gaussian (LQG) controllers, but
only presented for single area, and also did not consider
non-linear constraints. Recently Hanwate and Hote (2018)
designed quadratic regulator based PID for Sun tracker
system, for disturbance rejection, however they did not
extend the work for non-linearities of real-time system. So,
in this paper, we designed an optimal PID controller for
load frequency control using direct model based formula
by Quadratic Regulator Approach with Compensating
Pole(QRAWCP). For presenting the betterment of the
proposed technique, we compared the results obtained for
the single and multi-area cases, for practical issues such as
non-linearities (Generation Rate Constraint (GRC) and
Governor Dead Band (GDB)) and parametric uncertain-
ties, with the recently designed PID controller and other
control techniques. The comparison is carried out for three
different cases, which are discussed later in the paper.

The rest of the paper is organized as follows. In Section 2,
PID is designed using QRAWCP for LFC problem. Anal-
ysis of an isolated single area power system model and
a two area power system, are simulated and the results
are obtained in Section 3, for three different cases. Also,
numerical comparison between these cases is done in this
section, using integral performance indices. Finally, in Sec-
tion 4, brief conclusion on the work done in this paper is
presented, along with the future scope of research that
may emanate from this work.

2. PID CONTROLLER DESIGN USING QRAWCP
APPROACH FOR LFC

Fig. 2, shows the schematic of load frequency control using
controller to compensate the deviation of ∆f using proper
control signal u. Till dated, the QRAWCP is only designed
for sun tracker system by Hanwate and Hote (2018), but
it has not discussed about performance in presence of non-
linearities like GRC and GDB for the system. Using this

Fig. 2. Schematic of the proposed control system

Table 1. The LFC system variables.

∆f Incremental frequency deviation (Hz)
∆Pd Load disturbance (p.u.MW)
f Reference load frequency input
u Control signal
KP Electric system gain
TP Electric system time constant (s)
KG Governor gain constant
TG Governor time constant (s)
KT Turbine gain constant
TT Turbine time constant (s)
R Speed regulation due to governor action (Hz/p.u.MW)
∆PG Incremental change in generator output (p.u.MW)
∆XG Incremental change in governor valve position

QRAWCP approach, to design optimal PID controller, for
single Non-reheated (NR) turbine and multi-area reheated
turbine. Initially, the steps for the single area model are
described, followed by a similar extension for multi area
model.
Step 1: For the single area the transfer function G(s) of
LFC is given in (1), since ∆f(s) = G(s)U(s), we get,

G(s) =
K

s3 + b2s2 + b1s+ b0
(1)

where K = KPKTKG/σ, b0 = 1 +KPKTKG/σR, b1 =
(TG + TT + TP )/σ, b2 = (TGTT + TGTP + TTTP )/σ and
σ = TGTTTP . For multi-area power system, the system
model of each control area is BiG. Further, the state space
model becomes, ẋ(t) = Ax(t) + Bu(t) and y(t) = Cx(t)
and given in (2). Table 1 describes all the variables of LFC,
which are considered from Saxena and Hote (2016).[

ẋ1
ẋ2
ẋ3

]
=

[
0 1 0
0 0 1
−b0 −b1 b2

] [
x1
x2
x3

]
+

[
0
0
K

]
u

y = [ 1 0 0 ]

[
x1
x2
x3

] (2)

In (2), A ∈ Rm×m, B ∈ Rm×l, and C ∈ R1×m. The
PID controller’s transfer function is given by C(s) =
(ρds

2 + sρp + ρi)/s, where, ρp = proportional gain, ρi=
integral gain and ρd = derivative gain.
Step 2: The closed-loop characteristic equation for C(s)
and plant G(s) is ∆(s) = 1+G(s)C(s), and equating ∆(s)
to zero, we get,

s4 + b2s
3 + (b1 +Kρd) s2 + (b0 +Kρp) s+Kρi = 0 (3)

Step 3: Determine the control law by Linear Quadratic
Regulator approach: The quadratic regulator approach is
an optimal state feedback controller which is designed to
minimize a specific quadratic cost function. The perfor-
mance index is designed for constraints like u, y, error(e)
or unconstrained objectives of linear time invariant (LTI)
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Fig. 3. Model of single area power system

system. The optimal control vector u(t) is obtained from
u(t) = -λ x(t). So for here, unconstrained optimal action
is considered. Therefore Performance Index (PI) of the
system is defined as,

ψ =

∞∫
0

(
xTQx +uTRu

)
dt (4)

where Q ∈ Rm×m and R ∈ Rl×l are symmetric positive
semi definite and positive definite respectively. Here, for
the LFC problem m = 3 and l = 1.
So then LTI system equation becomes,

ẋ = Ãx (5)

where, Ã = (A − Bλ). Since A and B are controllable,

then, eigenvalues of Ã will be on left side of s-plane. Then
(4) re-written as,

ψ =

∞∫
0

(
xT

(
Q+ λTRλ

)
x
)
dt (6)

assuming, d
dt

(
xTPx

)
= −

(
xT

(
Q+ λTRλ

)
x
)(

xT
(
Q+ λTRλ

)
x
)

= −xTPẋ− ẋTPx (7)

Using (5) in (7) and then substituting in (6), we get,

ψ = −
∞∫
0

xT
[
PÃ+ ÃTP

]
xdt (8)

It is necessary condition that P must be positive definite
matrix. By comparing (7) with (8), we get,

PÃ+ ÃTP = −
(
Q+ λTRλ

)
(9)

As (A−Bλ) is a stable, its eigen values are on left side of
s-plane. Therefore, solving for a positive definite matrix P
which can satisfy (9), the cost function can be obtain as,

ψ =

∞∫
0

(
xT

(
Q+ λTRλ

)
x
)
dt (10)

From (7), the ψ = −xTPx
∣∣∞
0

, so we can write as,

ψ = −xT (∞)Px(∞) + xT (0)Px(0) (11)

Since (5) is asymptotically stable, and x(∞)→ 0. Thus we
get ψ = xT (0)Px(0). This is obtained in terms of initial
condition.

Step 4: From (4), the minimization of ψ using pontrya-
gin’s minimum principle gives the state feedback control
law u = −λx. The feedback gain λ is found as:

λ = R−1BTP (12)

Using this control further simplifying (5), we get Algebraic
Riccati Equation(ARE) as,

ATP + PA− PBR−1BTP +Q = 0 (13)

In (13), Q and R are selected in such a way that Q =
diag(q11, q22, q33) is q11 > q22 > q33 > 0 and R =
V TV > 0, where V ∈ Rm

>0.
Step 5: Using ARE, (12), and (13), state feedback control
gain λ is obtained as,

λ = [p13K p23K p33K] (14)

Step 6: The closed-loop characteristic equation (sI − Ã)
can be written as,

s3 +
(
b2 + p33K2

)
s2 +

(
b1 + p23K2

)
s+(

b1 + p13K2
)

= 0
(15)

Step 7: The order of the closed-loop system (3) is of fourth
order and (15) is of third order. Therefore, in order to
compare these two equations, we need to add one pole.
According to QRAWCP methodology by augmenting one
pole we get.

s4 +
(
α4 +

(
b2 + p33K2

))
s3+((

b1 + p23K2
)

+
(
b2 + p33K2

)
α4

)
s2+((

b1 + p13K2
)

+
(
b1 + p23K2

)
α4

)
s+(

b1 + p13K2
)

= 0

(16)

Comparing (16) with each independent coefficient of (3),
α4 can be calculated as,

α4 = −p33K2 (17)

The above (16) can be written in simplified form for the
purpose of comparing as,

s4 + p1s
3 + p2s

2 + p3s+ p4 = 0 (18)

where,

p1 = p33K2 + b2 + p33K2

p2 =
(
b1 + p23K2

)
+
(
b2 + p33K2

)
p33K2

p3 =
(
b1 + p13K2

)
+
(
b1 + p23K2

)
p33K2

p4 = b1 + p13K2

Step 8: By comparing (3) and (18), we get parameters of
C(s) as follows,

ρp =
1

K
(
b1 + p13K2 +

(
b1 + p23K2

)
p33K2 − b0

)
ρi =

1

K
(
b1 + p13K2

)
ρd =

1

K
(
p23K2 +

(
b2 + p33K2

)
p33K2

) (19)

3. RESULTS AND ANALYSIS

In this section, we considered three different cases. Case 1
and 2 consider single-area with parametric uncertainty
and hardware non-linearity constraints, respectively, while
case 3 discusses the two-area scenario. From QRAWCP,
PID parameters are obtained: ρp = 6.5208, ρi = 8.7649
and ρd = 3.1385 and using the parameters of single area
LFC from Anwar and Pan (2015); Padhan and Majhi
(2013); Saxena and Hote (2016), we simulated the model
and controller in Matlab & Simulink environment.

3.1 Case 1: Single area for N-R turbine

The nominal parameters for single-area power system with
N-R turbine is considered from Padhan and Majhi (2013).
KP = 120, TP = 20, KT = 1, TT = 0.3, KG = 1,
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Fig. 4. Time response for nominal case of LFC
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Fig. 5. Response under −50% lower parametric uncer-
tainty of LFC
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Fig. 6. Response under +50%upper parametric uncer-
tainty LFC

TG = 0.08, R = 2.4. In this case, to compare with
proposed (QRAWCP-PID), we have considered recently
designed PID controller from, W. Tan (2010), Padhan and
Majhi (2013), Anwar and Pan (2015) and other technique
through internal model control by Saxena and Hote (2013).
Fig. 4 shows the time evolution of frequency variation for a
sudden load disturbance of 0.01 p.u. MW, which is applied
at 1 sec. It is seen that the QRAWCP scheme shows
minimum undershoot in comparison to other approaches.
Further, we analyze the controllers for ±50% parametric
variation to its nominal value, for lower and upper bound.
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Fig. 7. Time response for nominal case of LFC with GRC
and GDB

It is shown in Fig. 5 and 6, which also shows the frequency
curve converges to zero with minimum undershoot and
lesser time as compared to other considered approaches.
This graphical analysis can also be measured numerically
with integral performance indices such as Integral Square
Error (ISE), Integral Absolute Error(IAE), Integral Times
Squre Error (ITSE), Integral Time Absolute Error(ITAE).
From Table 2, it is evident that using the proposed scheme,
the deviation in frequency attains minimum value in both
the cases.

3.2 Case 2: LFC considering GRC and GDB constraints

For this case, we have considered real-time non-linearities
of generation rate constraint (GRC), and governor dead
band (GDB). Their specifications are: GRC is 0.1 p.u./min.
or 0.001667 p.u./sec. from W. Tan (2010); Saxena and
Hote (2017) and GDB is 0.06% or 0.036 Hz/p.u. MW
according to IEEE Standard-112 (1991). These are applied
to the LFC configuration given in case 1. Fig. 7 illustrate
the QRAWCP has better results in comparison to other
PID controller techniques given in Tan (2005); Padhan
and Majhi (2013); Anwar and Pan (2015), and also using
IMC by Saxena and Hote (2013), which these shows large
oscillation across load frequency ∆f . Similar to case 1,
±50% parametric variation has been considered, as shown
in Fig. 8 and 9, which represents robustness capability of
proposed approach in comparison to others. The results
obtained from the graphical analysis can be better under-
stood using the integral performance indices values, given
in Table 3, for respective control techniques including the
proposed one. The values from this table clearly implies
that the frequency of generated voltage suffers less varia-
tion, when controlled using QRAWCP approach.

3.3 Case 3: LFC for two area control

Extending the application of the proposed technique to
two-area power system model in this case. The model
assumed for this purpose consists of two reheated gen-
erators, one in each area. The schematic of the individual
areas and their interconnections is shown in Fig. 10, which
is taken from Padhan and Majhi (2013) and Anwar and
Pan (2015). The dynamics of each area is same as for the
single area case, with the addition of the interconnected
Tie-Line power of Ti1 = Ti2 = 4.2 and frequency bias
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Table 2. Performance indices for Non-reheated turbine(×10−4)

Methods
Nominal Plant Lower -50% plant Upper +50% plant

ISE IAE ITSE ITAE ISE IAE ITSE ITAE ISE IAE ITSE ITAE

Proposed 0.013 13.79 0.018 25.24 0.0087 12.73 0.014 24.61 0.022 14.52 0.028 24.96
Tan 1.777 177.7 3.026 348.1 0.696 157.0 1.396 428.8 2.524 202.7 4.229 391.9
Padhan & Majhi 0.393 76.63 0.562 150.5 0.191 76.36 0.340 196.5 0.790 110.4 1.205 222.9
Anwar & Pan 0.289 44.35 0.378 61.97 0.110 39.99 0.155 70.23 0.786 124.6 1.291 275.6
Saxena & Hote 0.350 65.55 0.492 117.5 0.073 22.34 0.089 32.80 1.084 160.9 1.982 387.4

Table 3. Performance indices at Non-linearities constraints GRC and GDB considered (×10−4)

Methods
Nominal Plant Lower -50% plant Upper +50% plant
ISE IAE ITSE ITAE ISE IAE ITSE ITAE ISE IAE ITSE ITAE

Proposed 0.165 60.92 0.339 140.5 0.160 58.21 0.313 127.3 0.162 60.83 33.73 143.7
Tan 27.93 792.5 60.56 1864.4 13.55 719.8 31.24 2138.8 30.21 795.5 65.29 1828.6
Padhan & Majhi 5.129 352.5 9.423 815.8 3.551 351.0 7.296 969.2 5.738 352.5 10.33 806.4
Anwar & Pan 2.997 184.0 4.679 306.7 1.908 183.9 3.113 356.1 4.009 260.9 6.699 558.4
Saxena & Hote 3.412 231.8 5.612 456.3 0.953 92.53 1.332 147.5 6.062 426.1 12.85 1168.1
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Fig. 8. Response under −50% lower parametric uncer-
tainty of LFC with GRC and GDB
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Fig. 9. Response under +50% upper parametric uncer-
tainty LFC with GRC and GDB

is B1 = B2 = 0.35. The analysis with the two-area
model is done by applying a load disturbance at 1 sec
for ∆Pd1, and at 15 sec for ∆Pd2. The PID controller used
for this analysis is kept same as used for the single area
situation, and the magnitude of the injected disturbance
is: |∆Pd1| = |∆Pd2| = 0.01 p.u.MW. The results of this
analysis are shown in Fig. 11, which shows that the load
frequency curve exhibits lesser undershoot and quicker

convergence to zero, as compared to using other techniques
reported so far.

Fig. 10. Block diagram of multi two area power system
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Fig. 11. Response of proposed scheme for Case 3 Multi
area-2
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4. CONCLUSION

A new model-based scheme for PID controller, based on
LQR approach with an additional compensating pole, to
address the LFC problem, is proposed. It is applied and
compared with recent approaches reported for the same
problem, in three different cases. In Case 1, discussion on
single area with non-reheated turbine is made, followed by
consideration of non-linearities such as GRC and GDB,
in Case 2. Case 3 uses Case 1 for a two-area power
system, with an exception that, instead of using non-
reheated turbine for single area, reheated turbines are
used in the two-area case. In all these cases, the control
of load frequency is achieved by the proposed technique,
that is, QRAWCP-PID, as well as the recent ones. Keen
observation of the results obtained from these analysis
clearly indicate that the proposed controller outperforms
the existing ones, regarding the LFC problem, considering
external disturbances and parametric variations. More
clarity about the superiority of the proposed control logic
is achieved by calculating and comparing the integral
performance indices for each strategy.
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