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Abstract: The use of videos is a valuable and powerful tool which may significantly contribute to change 

and improve teaching and learning methods. Lecturers can made their own videos addressing specific topics 

suitable to fulfill their student’s needs. These videos can address control engineering syllabus as well as 

complementary topics. This paper proposes using video as a tool to introduce the particle swarm 

optimization algorithm to students within a digital PID control simulation experiment. The experience 

preliminary results and feedback received from students are quite positive.             
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1. INTRODUCTION 

Current students demand new teaching and learning 

methodologies. Videos can be used for different purposes, such 

as the following examples: i) to record classes and make them 

available in an internet repository or university learning 

management system (Crook and Schofield, 2017); This 

approach is currently used both by eLearning and classical 

courses; ii) to provide short introductions addressing topics 

covered in classes (Rossiter, 2013). Videos are the flipped (or 

inverted) classroom (FC) approach key essence (Rossiter, 

2014; Oliveira and Boaventura, 2017). In the FC, short videos 

can be used by students as a preparation element for the next 

class, releasing class-time which can be best used to promote 

students engagement and motivation with other learning 

activities (e.g. group problem solving, quizzes answering, 

computer simulations, group critical debate, etc.). However, 

videos can also be used by students to complement their 

learning process whenever they feel like it and at their own 

pace; iii) control simulations or practical rig demos; iv) 

technical training support (Starr et al., 2015). Indeed, it has 

been found that videos can help in increasing student’s 

motivation to the learning process (Bravo et al., 2011). Videos 

can also be used to provide introduction to complementary 

topics not covered in industrial control and automation courses. 

This is the case of some Artificial Intelligence (AI) and 

Machine Learning topics, which are skills highly requested in 

the Internet of Things and Industry 4.0.  

Proportional, Integrative and Derivative (PID) controllers are a 

fundamental control engineering education topic, quite relevant 

due to its extensive practical use in industrial systems. This 

topic is transversal to different engineering applications 

(Electrical, Mechanical, Chemistry, Biomedical, etc.). An 

important skill to be acquire by students is how to design PID 

controllers. Since Ziegler and Nichols (1942) breakthrough 

techniques many alternative and complementary PID tuning 

and design methods have been proposed (e.g. Åström and 

Hägglund, 2004; Vrančić  2001; O’Dwyer A., 2006)). With the 

development of computer based methods, the incorporation of 

optimization approaches constitute a strong alternative to 

design PID controllers (Mercader et al., 2017). Optimization 

methods which are inspired in nature and biological (NABI) 

phenomena have been successfully applied to design PID 

controllers. Examples of the most well-established methods are 

genetic algorithms (Holland, 1975), particle swarm 

optimization (PSO) (Kennedy and Eberhart, 1995) , differential 

evolution (Storn and Price, 1995), etc. Indeed, NABI can be 

used as an alternative to classical design methods. Some of 

their advantages are the following: they just need a cost 

function to guide the search procedure; they do depend on the 

evaluation of derivatives or gradients; they are independent of 

the type of system to be controlled and may not require any 

knowledge regarding their specific dynamics. Thus considering 

the success popularity attained by NABI techniques in solving 

a wide range engineering problems it is natural to teach this 

methods in control engineering courses.       

In this paper, following previous author experiences regarding 

the use of NABI in control engineering education (Oliveira, 

2005; Oliveira and Boaventura, 2016), a video based approach 

is proposed within a student’s simulation assignment, bridging 

PSO and control engineering topics. The PSO algorithm is 

adopted as an optimization tool to design digital PID 

controllers within a teaching/learning experience. This study 

was performed in a Digital Control course of the 4th year of 

UTAD Electrical Engineering and Computers ( 5 years course). 

As it will be further detailed, the experience is based on two 

main stages: 

1. Understanding of basic PSO algorithm through a 

computer program implementation, to minimize a 

benchmark continuous quadratic function. Skills 

regarding some of the main PSO issues perception are 

promoted, in order to make the transition to PID controller 

design easier. An introductory video was made available 

to students (English version available in (Oliveira, 2018), 
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presenting elementary notions about the PSO dynamics as 

well as the some tests assuming different settings for 

major PSO heuristic parameters. Students are expected to 

replicate these tests in their own simulations. 

2. To extend and adapt the implemented PSO algorithm in 

stage 1 to design digital PID controllers. Here the main 

objective lies in the design of an objective function to 

simulate the digital control loop. This function returns 

values for pre-defined performance criteria, such as: the 

integral of absolute error (IAE), integral of absolute error 

weighted by time (ITAE) or integral of square error (ISE).     

The remainder of the paper is organized as follows: section 2 

presents some key issues regarding digital PID controllers. 

Section 3 presents the simulation experiment description. 

Section 4 presents aspects regarding the type of results 

expected as well as students feedback and finally section 5 

concludes the paper and outlines further work.  

2. DIGITAL PID CONTROLLERS ISSUES 

A single-input single-output control loop is considered in the 

digital domain such as the one represented in Fig.1: 

-
y(kT)r(kT) PID Gp

+

Controller System
e(kT) u(kT)

 

Fig. 1. Digital control feedback loop. 

with r, e, u, y, T, k  representing respectively the: reference 

input, system error, controller output, controlled output, 

sampling interval and sample index. The main learning issues 

related with digital implementation of PID controllers in the 

reported simulation experiment promotes student’s perception 

of:  

1. The PID control law digitalization: starting with an ideal 

parallel format, the digital approximation of the 

continuous integrative and derivative PID components are 

the main issues. The use of different approximations for 

the integrative of the error are tested, namely: first 

regressive error, first forward error, trapezoidal and 

Tustin.  A first order plus time (FOPTD) delay model is 

adopted in this experiment and simulation of the digital 

versus the continuous implementations are tested. After 

this stage students can test other PID control laws ( e.g. 

with derivative action filtering, set-point weighting, etc.) 

2. Absolute and incremental PID control implementations: 

the results of simulating the PID control loop with both 

algorithms are compared.   

3. The outcome of testing different settings for the PID 

controller gains obtained using some tuning rules; 

4. The effect of derivative kicking and the influence of 

applying the derivative action to the system output. 

5. The actuator saturation effect in the control system 

performance, namely by observing the integrative windup 

and the relevance of halting the respective control action 

in the saturation period to avoid it.  

Students are asked to implement the digital control loop by 

developing a script (in Matlab or Python) based on a difference 

equations approach. The following equations for the positional 

and incremental PID controller based on the rectangular 

backward error difference, can serve as a starting point:  

u(kT) = Kp [  e(kT) + 
1

Ti

∑ Te(kT)+Td
e(kT) - e((k-1)T)

T
  k

i=1 ] (1) 

∆u(kT) = Kp [  ∆e(kT) + 
Te(kT)

Ti

+ Td
∆2e(kT)

𝑇
] (2) 

with: Kp, Ti and Td, representing respectively the proportional 

constant, the integrative and derivative time constants; 

e(kT)=e(kT)-e((k-1)T) and 2e(kT)=e(kT)-2e((k-1)T)+e((k-

2)T) and the digital FOPTD model using a zero-order hold: 

y(kT) =  e 
-T

τ  y((k-1)𝑇) +K(1- e 
-T

𝜏 )u( (k-1- )T) (3) 

with: K,   and  representing respectively the dc gain, 

dominant time constant and time delay samples. 

3. PARTICLE SWARM OPTIMIZATION BASIC ISSUES 

Basic issues regarding the PSO algorithm are addressed in the 

experiment supporting video. Each swarm particle is 

characterized by two variables, x and v, representing 

respectively its position and velocity in the search space. The 

search space is d-dimensional, but for simplicity of exposition 

particle position and velocity equations are introduced without 

considering the dimension index. The new particle velocity, is 

evaluated from the current velocity, corresponding to iteration 

t, using the following equation: 

vi (t+1) = vi (t)+c1 1 ( bi (t) - xi (t) )+ c2 2 ( g(t) - xi (t) ) (4) 

with: b representing particle i best position obtained until the 

current iteration; g representing the global best position, which 

in this case considers the entire swarm; c1 and c2 are known as 

the cognitive and social constants; 1 and 2 are random 

numbers generated in the interval [0,1].  After each particle 

velocity is evaluated the new particle position can be updated 

using:    

xi (t+1) = xi (t)+ vi (t+1)  (5) 

As in any search technique, it is important to guaranty a 

compromise among a swarm exploratory behavior in initial 

search stage and a specialization behavior toward the end. This 

compromise among exploration and exploitation, can be 

obtained by incorporating a inertia weight, , in (4), as follows: 

vi (t+1) =  vi (t)+c1 1 ( bi (t) - xi (t) )+ c2 2 ( g(t) - xi (t) ) (6) 

The inertia weight is often decreased from a higher value to a 

lower value along the search.  

4. SIMULATION EXPERIMENT DESCRIPTION 

The experiment is organized in two parts: 

1. PSO algorithm implementation and testing using a simple 

benchmark function minimization problem. This stage 

enables the PSO key principles to be apprehended by 

students and then easily adapted to design PID controllers. 

A video (Oliveira, 2018) was produced by the paper 

author and made available to students, providing a brief 
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introduction to the PSO algorithm and experiment test 

demos that students are asked to replicate. As it will be 

further described, this stage main learning objective is that 

students successfully implement a simple PSO algorithm. 

Once the PSO is implemented, students should test the 

effect of adjusting some of its heuristic parameters, 

namely: population size, number of iterations per run, 

inertia weight, maximum velocity clamping and bounding 

particles position in the search space.  

2. PID digital controller design adapting the PSO 

implemented in Part 1. This requires the PID controller 

implementation in the digital domain and respective 

control loop simulation. 

Part II addresses digital controls topics which are currently 

well-known, and whose basics have been introduced in section 

2. Thus, the remaining of this section will be focus to explain 

Part I.  

The simple function used to demonstrate PSO concepts is a 

quadratic expression represented by: 

f (x1,x2) =( x1 - 50 )
2
 + ( x2 - 50 )

2
  (7) 

and the decision variables are allowed to vary within the 

interval [0,100] and the optimum value of 0 is obtained in 

[50,50]. The corresponding search space can be visualized in 

Fig. 2.   

 

Fig. 2. Considered search space for function (7). 

Particles initial velocities were set to 0 in all the video 

(Oliveira, 2018) simulations. A key aspect to be addressed in 

the experiment is the inertia weight influence in the PSO 

search. While students can test other settings, two different 

conditions are proposed to be tested and illustrated in the video: 

 Linearly decaying  from max=0.9 to max=0.4 along 

the search. 

 Fixed value, =0.4, along the search.   

The initial number of iterations considered per run is 70 

iterations. Two swarm sizes are considered in the PSO demos: 

n=4 particles and n=50 particles. Regarding the small sized 

swarm (n=4), three different cases are considered regarding the 

particles initialization and starting positions: 

 Random initialization considering the entire search 

space. 

 Random initialization considering a corner of the 

search space ( e.g. range [90,100]).   

 Fixed initialization, with a particle assigned to each 

corner of the search space. 

The velocity value was clamped to a maximum absolute value 

of Vmax=3.33 per iteration. However, it is pedagogical that 

students start the PSO simulations without limiting the 

maximum velocity value. The results of running the PSO, 

considering a swarm with 4 particles, randomly initializing the 

swarm in the entire search space, and decaying the inertia 

weight is presented in Fig. 3. In this figure initial solutions are 

represented inside a square sign and final solutions with a white 

circle. The evolution of the best values for both parameters is 

illustrated in Fig. 4. The results show that all 4 particles 

converged to the global minimum. Around iteration 36 the 

decision variables best value reached a steady-state value. 

 

Fig. 3. Test 1: swarm with n=4, randomly initialization 

considering the entire search space and decaying  in the 

interval [0.9, 0.4].  

 

Fig. 4. Evolution of the best values for x1 and x2 for test 1 (Fig. 

2). 

The results of a PSO run with four particles starting from 

positions initialized in the [90,100] for both dimensions, are 

presented in Fig. 5 and Fig. 6. These figures illustrate that the 

swarm could leave the initialization region towards the 

optimum value region. However, this run failed to reach the 

optimum value in one dimension. This indicates that more 

0
20

40
60

80
100

0

50

100
0

1000

2000

3000

4000

5000

x
1

Quadratic Function

x
2

f

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x
1

x
2

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Iterations

 

 

Best x
1
 

Best x
2

Minimum x
1
 and x

2

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

300



 

 

     

 

iterations would be necessary to reach the optimum value. If a 

constant value of =0.4 is used keeping the same remaining 

test conditions the swarm is prone to stay in the initialization 

corner. It is important to remark that in these tests the initial 

particles velocity was set to zero and the maximum value it 

were allowed to change in each iteration is a low value. 

 

Fig. 5. Test 2: swarm with n=4, randomly initialization in 

interval [90,100] and decaying  in the interval [0.9, 0.4]. 

 

Fig. 6. Evolution of the best values for x1 and x2 for test 2 (Fig. 

5). 

The results of a test run with the four particles starting from 

initial positions defined in the search space four corners are 

presented in Fig. 7 and Fig 8.  The results obtained with a 

swarm size of n=50 and a fixed inertia weight of 0.4 are 

presented in Fig 9 and Fig 10. Even for this simple two 

dimensional function the speed of convergence tends to be 

reduced as the swarm size is increased. 

 

 
Fig. 7. Test 3: swarm with n=4, initialized in the four corners 

of the search space and decaying  in the interval [0.9, 0.4]. 

     

Fig. 8. Evolution of the best values for x1 and x2 for test 3 (Fig. 

6). 

 
Fig. 9. Test 4: swarm with n=50, initialized randomly in the 

entire search space. Inertia weight fixed, =0.4. 
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Fig. 10. Evolution of the best values for x1 and x2 for test 4 (Fig. 

8). 

Results using the same test conditions of tests 3 and 4 with 

different inertia weight are included in (Oliveira, 2018). Once 

students completed the PSO learning stage by apprehending the 

main concepts they can move forward to adapt the PSO to 

design PID controllers. A first step can be considering 

optimizing (7) with three dimensions. 

 

4.  DESIGN OF DIGITAL PID CONTROLLERS WITH PSO 

In this stage students must incorporate into the PSO script an 

objective function to simulate the digital control system 

response to a step input. While, this objective function can be 

more easily implemented using Matlab functions and/or 

Simulink models, authors are convinced it is pedagogical to 

code the feedback loop using difference equations representing 

both the PI controller and plant model. The following 

specifications are proposed to students as a starting point, by 

considering:         

 a FOPTD model with K=1 and L=T=1s, using a 

sampling time, T=0.1s. 

 The absolute PID controller digital form represented 

by the approximated model (1) applying the 

derivative action to the system output. 

 A search space defined by interval [0.01 5] for the 

three controller gains. 

 Set-point tracking performance optimization by 

minimizing an error based criterion such as: IAE, 

ITAE or ISE when an unit step is applied to the 

reference input.  

Regarding the PSO the following issues are proposed to be 

addressed as a starting point, by considering: 

 particles randomly initialized in the search space with 

zero value for their velocity. This means that the 

initial swarm is allowed to have particles representing 

unstable controller settings. Students can in a later 

stage test informed population initialization 

techniques ( e.g. by using PID tuning rules).   

 Linearly decayed inertia weight and fixed value 

inertia weight along the search. 

 Forcing particles to stay within the parameter search 

limits. Particles generated outside the limits are 

clamped to the nearest parameter interval limit.  

 Starting by not limiting the velocity value, and then 

testing limiting the velocity to a maximum absolute 

value per iteration (vmax).    

Considering as illustrative examples the design based on the 

IAE and ITAE minimization, the type of results that can be 

obtained and analyzed by students are presented in Fig. 11-13. 

It is clear from Fig. 11 and Fig 12 that with the fixed value 

inertia weight, the gains parameter variation is smaller along 

the search compared to the linear decayed case, thus confirming 

a faster PSO convergence rate.  The gain sets obtained for the 

IAE designs are: [Kp=0.687, Ti=1.39, Td=0.01] both for the 

inertia decayed and fixed inertia cases, resulting in IAE=2.16. 

For the ITAE designs are: [Kp=0.57, Ti=1.21, Td=1.89] [Kp= 

0.57, Ti=1.21, Td=2.12]  for the inertia decayed and fixed inertia 

cases, respectively, both with ITAE=2.89.  

 

Fig. 11. Variation of best PID gains versus iteration number 

using IAE criterion. 

 

Fig. 12. Variation of best PID gains versus iteration number 

using ITAE criterion. 
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The results of these gains tracking responses are shown in Fig. 

13 for both the IAE and ITAE designs. 

  
Fig. 13. Set-point tracking response for final best gains IAE 

versus ITAE design. 

 

5. DISCUSSION AND CONCLUSION  

A PSO based experiment to design digital PID controllers has 

been reported. The experiment was conducted in the first 

semester of 2017-2018, within a digital control course to the 4th 

year electrical engineering and computers degree (5 years 

course). The PSO algorithm was introduced to students by 

providing a video explaining the algorithm bare bone 

dynamics, as well as presenting some test results. These tests 

regard the minimization of a simple function, and students are 

expected to implement the PSO algorithm and be able to 

replicate similar results.    

The results obtained in practical classes indicated that students 

could successfully implement a PSO algorithm and replicate 

the proposed tests. Perception and practical sensibility 

regarding the principal PSO adjustable heuristic parameters 

was gained. This PSO learning stage, allowed a fast transition 

from the benchmark function optimization to the PID digital 

controller optimization.  Different aspects regarding the digital 

PID control implementation were implemented and tested 

allowing students to acquire skills in two domains: artificial 

intelligence and control engineering. The feedback received 

from students and the author perception regarding student’s 

enthusiasm in classes was quite positive. Students were quite 

surprised with the effectiveness obtained with the PSO 

algorithm. Moreover, it was clearly demonstrated by this 

experience that in the same way students progressed from a 

simple two decision variables function optimization problem to 

designing digital PID controllers, they can solve more complex 

control engineering and other domains problems.  
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