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Abstract: The major input signals entering the PID controller are; the setpoint, the process
output, and measurable load disturbances. By feeding these signals through suitable filters,
the properties of the feedback loop can be improved significantly. This presentation will treat
setpoint handling, feedforward from load disturbances, TITO (two input two output) control,
noise filtering, and process dynamics compensation. An industrial case from the steel industry
is also discussed.
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1. INTRODUCTION

The PID controller is the standard controller used at the
lowest levels in process control configurations. It is also
often used at higher levels and in many other engineering
areas. Together with a process section, the PID controller
forms the basic feedback loop, see Figure 1.

The major input signals to the controller are setpoint
r, process output y, and, if available, measurable load
disturbance d. There may be several measurable load
disturbance signals, but for simplicity it is assumed that
only one signal is available. Besides these major signals,
there may also be other analog and digital input signals
used for tracking, mode switching etc.

The three controller input signals are normally filtered in
different ways before they enter the controller. A more
detailed description of the basic feedback loop is given in
Figure 2 where each input is fed through a filter before
it enters controller C. The controller part of the feedback
loop can therefore be described according to Figure 3.

Setpoint filter Fr is used to separate the design for setpoint
responses from the design of responses to load distur-
bances, and to reduce the high-frequency variations in
controller output u introduced by the setpoint. Process
output filter Fy can be used for several purposes. High-
frequency noise can be reduced if Fy is designed as a low-
pass filter with roll-off at high frequencies. The filter can
also be used to modify the dynamics in the loop transfer
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Fig. 1. The basic feedback loop with controller C, process
P , and the signals setpoint r, controller output u,
process output y, and load disturbance d.
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Fig. 2. The basic feedback loop with filters included.

function, and thereby improve the control performance.
This feature is useful when the structure of controller C
is restricted, e.g. to PID. Load disturbance filter Fd can
be used for feedforward compensation and to decouple
interacting control loops.

A proper choice of the three filters can improve the
performance of the feedback loop considerably. Therefore,
it’s important to keep these filters in mind during the
design procedures.

This paper treats the design of the three filters Fr , Fy,
and Fd. An industrial case from the steel industry is also
presented, where a proper design of filter Fy turned out to
be of great value.
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Fig. 3. Controller with the three major input signals and
their corresponding filters.

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 WePl.1



2. SETPOINT FILTER Fr

The standard form of the PID controller is

u(t) = K

(

e(t) +
1

Ti

t
∫

0

e(τ)dτ + Td

d

dt
e(t)

)

, (1)

where e = r − y is the control error. With this structure,
the controller has only one input signal, the control error.
Many of the earlier controllers were built in this way, and
there are still controllers today with this structure.

The fact that setpoint r and process output y are treated
in the same way causes mainly two problems. Controllers
tuned for good load-disturbance response give often over-
shoots at setpoint changes. For this reason, it is often
necessary to detune the controllers if setpoint changes are
considered. There are several tuning methods that pro-
vide different rules depending on whether load or setpoint
changes are considered. See O’Dwyer (2009).

Setpoint r is often changed stepwise. Another problem
with the structure (1) is that these abrupt changes in
r may result in large variations in controller output u,
and these variations may lead to wear in the actuators.
This problem may require a detuning of the controller,
especially of gain K and derivative time Td.

Most controllers and control systems have the possibility
to treat the setpoint and the process output differently,
i.e. they have two degrees of freedom. This freedom can
be seen as exploiting a filter Fr on the setpoint according
to Figure 2, even though it’s not always implemented in
this way.

Setpoint filter Fr may be chosen in several different ways.
It has normally a low-pass character, but not always. It
must have the property Fr(0) = 1 to ensure that the
process output equals the setpoint in steady state. Some
common filters are discussed in the remainder of this
section.

2.1 Simple filters

A simple way to reduce overshoots at step changes in the
setpoint is to introduce low-pass filters of the forms

Fr =
1

1 + sTf

Fr =
1

(1 + sTf )2
.

The first-order filter will also eliminate step changes in the
output from the proportional part of the controller, and
the second-order filter will eliminate step changes also in
the derivative part, at step changes in the setpoint.

2.2 Rate limiters

A traditional way to reduce high-frequency components in
the setpoint and also in the controller output is to feed
the signals through rate limiters or ramping modules. See
Shinskey (1996) and Åström and Hägglund (2005). One
way to implement a rate limiter is presented in Figure 4.
The output follows the input if the rate of change of the
input is smaller than the rate limit. A more sophisticated
limiter is the jump and rate limiter shown in Figure 5. The
output follows the input for small changes in the input
signal. At large changes, the output will follow the input
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Fig. 4. Rate limiter.
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Fig. 5. Jump and rate limiter.

with a limited rate. The rate limiters are nonlinear filters.
They have low-pass character and cause delays. They have
also the property Fr(0) = 1, which means that the outputs
are equal to the inputs in steady state.

2.3 Setpoint weighting

An efficient and common way to separate setpoint and
load disturbance responses in modern control systems is
to use setpoint weighting. A PID controller with setpoint
weighting is given by

u(t) = K

(

br − y +
1

Ti

t
∫

0

e(τ)dτ + Td

d

dt
(cr − y)

)

, (2)

where b and c are the setpoint weights, see Åström and
Hägglund (2005). The controllers obtained for different
values of b and c will respond to load disturbances and
measurement noise in the same way. The response to set-
point changes will, however, depend on the values of b and
c. The weight in the derivative part is normally set to c = 0
to avoid large abrupt changes in u at fast setpoint changes.

The controller (2) can be interpreted as a controller C with
error feedback and a filter Fr, with transfer functions

C = K
1 + sTi + s2TiTd

sTi

Fr =
1 + bsTi + cs2TiTd

1 + sTi + s2TiTd

,

where C is the transfer function of the standard form (1).

Example – Setpoint weighting The properties of a system
where the controller has set-point weighting is illustrated
in Figure 6. The figure shows responses to step changes in
setpoint and load in a system composed of a PI controller
and the process P (s) = (s+ 1)−3.

The figure illustrates the effect of changing b. The over-
shoot at set-point changes is smallest for b = 0, which
is the case where the reference is only introduced in the
integral term, and increases with increasing b. In this ex-
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Fig. 6. PI control of the process P (s) = (s + 1)−3, using
setpoint weights b = 0, b = 0.5, and b = 1. The figure
shows responses to a step change in r followed by a
step change in the load.

ample, responses to setpoint and load disturbances become
similar when the setpoint weight b = 0 is chosen. 2

Even if the setpoint weight normally is chosen in the
interval 0 ≤ b ≤ 1 to reduce overshoots in the set-point
response, there are also situations when b > 1 is used to
speed up the response in a sluggish control loop.

2.4 Notch filtering

In mechanical constructions, such as industrial robots, a
sudden change in the setpoint may induce oscillations in
the control loop. One way to avoid this is to feed the
setpoint through a notch filter before it enters the PID
controller. A common structure of the noise filter is

Fr =
s2 + 2ζωs+ ω2

(s+ ω)2
ζ ≪ 1

where ω is the resonance frequency of the system. This
transfer function is close to one for all frequencies except
those corresponding to the oscillatory modes where it has
low gain. The transfer function thus blocks signals that
can excite the oscillatory modes.

Example – Notch filtering Consider a system with the
transfer function

P (s) =
1

s2 + 0.4s+ 1
.

The oscillatory mode has a relative damping ζ = 0.2,
which is quite low.

Reasonable PI controller parameters for the system are
K = 0.2 and Ti = 0.7. Set-point weighting with b = 0 is
also used. A suitable notch filter is

Fr =
s2 + 0.4s+ 1

(s+ 1)2
.

Figure 7 shows the response of the system to setpoint
changes and load disturbances. The set-point response
is improved substantially by the use of the notch filter.
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Fig. 7. Responses to set points and load disturbances of
the process P (s) = 1/(s2 + 0.4s + 1) without notch
filter (dashed lines) and with notch (solid lines).

The load disturbance response is still poor, which reflects
the fact that PI control is not appropriate for a highly
oscillatory system. 2

The example shows that the use of a notch filter Fr is an
efficient way to avoid inducing oscillations by the setpoint
in oscillatory systems. However, it is also evident from
Figure 7 that oscillations caused by variations in the load
have to be reduced using active damping in the control
loop, i.e. more advanced controllers than the PID has to
be used.

In the notch filter, frequency ω should correspond to the
resonance frequency of the process. This frequency may
vary if the load varies. In this case, it is necessary to retune
the filter or include some kind of adaptation in the filter.

2.5 More advanced filters

There are more advanced structures that can be used
to introduce the setpoint in the control loop. Instead of
just using a filter Fr, one can feed the setpoint forward
directly to the controller output, after feeding it through a
suitable filter, see e.g. Åström and Hägglund (2005). The
filters mentioned in this section can also be combined. For
example, in the notch filtering example, setpoint weighting
with b = 0 was used to reduce high frequencies in the
setpoint.

3. PROCESS OUTPUT FILTER Fy

Filter Fy is used to improve the information about the
process provided by measurement signal y. Noise can be
removed from the signal by giving Fy low-pass character,
and undesired features of the dynamics can be removed by
giving Fy compensating features.

3.1 Noise filtering

It is well known, that the derivative part of the PID
controller requires low-pass filtering to limit the high-
frequency gain. Many PID controllers have just a filter
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Fig. 8. Bode plot of the transfer function of a PI con-
troller with a first-order noise filter (left) and a PID
controller, with Ti = 4Td, with a second-order noise
filter (right). The time constants of the filters are
proportional to Ti for the PI controller and to Td for
the PID controller, with factors 100, 50, 20, 10, 5,
2, and 1. The dashed lines show plots without noise
filters.

in the derivative term, and these filters are often of first
order. It means that these controllers lack roll-off.

It has been shown that roll-off improves performance, see
Larsson and Hägglund (2011). This means that for P and
PI control, there should be a filter of at least first order,
and for controllers with derivative action, there should be
a filter of at least second order. In Larsson and Hägglund
(2011) it is shown that there is not much to gain in using
filters of higher order. The following filter structures are
suggested.

Fy =
1

1 + sTf

Fy =
1

1 + sTf + s2T 2
f /2

.
(3)

The filters have only one tuning parameter, filter-time
constant Tf . Note that the second-order filter has complex
poles with damping ratio ζ = 0.707.

Figure 8 shows Bode plots of a PI controller with a first-
order noise filter, and a PID controller with a second-
order noise filter. The figure shows that the filters cause a
significant phase reduction unless the filter-time constants
are significantly shorter than the controller times Ti and
Td. This illustrates why the noise filter should be taken
into account in the controller design.

Most design methods for PID controllers do not take
measurement noise into account, and it is often suggested
to choose the filter-time constant as a fraction of the
derivative time, i.e. Tf = Td/N . The fact that this solution
has severe drawbacks, and that the design of Tf should be
integrated in the design of the other controller parameters,
was pointed out in Isaksson and Graebe (2002). Examples
of such methods are given in Kristiansson and Lennartson
(2006), Garpinger (2009), Sekara and Matausek (2009),
and Larsson and Hägglund (2011).

3.2 Dynamics compensation

In controller design, it is often assumed that the process
dynamics are given, and the design procedure starts with
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Fig. 9. Lead/lag-filtering of temperature measurement.
The thin line shows the real temperature, the dashed
line the output from the sensor, and the solid thick
line the output from lead/lag-filter Fy .

this assumption. However, one can often modify the pro-
cess dynamics in several ways. The actuators can often not
be replaced, but their characteristics may be modified, e.g.,
to make them linear. If this is not possible, linearization
blocks or gain scheduling can be used.

The sensors include normally a low-pass filter. The time
constant of this filter is chosen as a compromise between
accuracy and ability to react to fast changes in the
measured variable. Accuracy has often the highest priority,
which means that the filter-time constant is long. For
control applications, it is however important to have fast
responses, which means that it often is desired to have
a shorter filter-time constant. Sometimes, it’s possible to
adjust the filter-time constant. If this is not possible, filter
Fy can be used to reach the same goal.

Suppose that the sensor has a low-pass filter with time-
constant Tlp, and that it is desired to change the time-
constant to T new

lp . This is accomplished using the lead/lag-
filter

Fy =
1 + sTlp

1 + sT new
lp

.

Example – Lead-lag filter to speed up sensor data Fig-
ure 9 shows a temperature that is increased rather quickly
from 10% to 20%. The measurement signal is noisy, and
the sensor has a low-pass filter with filter-time constant
Tlp = 2s, resulting in the dashed line in the plot. The
output from the filter has a very low noise level, but the
response to the temperature change is slow.

To speed up the response, a lead/lag filter is added after
the low-pass filter with the new time constant T new

lp = 0.5s,

i.e. the lead/lag-filter is

Fy =
1 + sTlp

1 + sT new
lp

=
1 + 2s

1 + 0.5s
.

The solid line in the figure demonstrates that the output
from the filter still has a low noise level, but the ability to
react to fast temperature changes has increased. 2

4. DISTURBANCE FILTER Fd

Filter Fd is used to reduce the influence of measurable load
disturbances. Two cases are treated here, traditional feed-
forward and TITO control for interacting control loops.
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Fig. 10. Block diagram illustrating the feedforward control
problem.

4.1 Feedforward control

The response to measurable load disturbance signals can
be improved by filtering the disturbance using a feed-
forward filter Fd, and feeding the filter output forward
to the controller. The feedforward structure is shown in
Figure 10. Process P is divided into two parts, P = P1P2,
where the relation between P1 and P2 is determined by
the entrance of the load disturbance. Transfer function P3

models, together with P2, the dynamics between distur-
bance d and process output y.

The goal is to design the feedforward compensator Fd so
that the effect of the disturbance d on the process output
y is minimized. The optimal solution to the problem is

Fd = P3P
−1
1 , (4)

since it will eliminate the load disturbance response com-
pletely. Unfortunately, the design (4) is not always real-
izable. It may e.g. lead to Fd being non-causal, unstable,
or having infinite high gain because of derivative action.
These facts make the design problem non-trivial, and there
is a need for design strategies and tuning rules.

It is surprising that there are so few design methods
for feedforward compensators presented in the literature.
Most basic control textbooks mention the feedforward
technique, and present the design philosophy of the ideal
compensator (4). They normally also mention the real-
izabililty problems, but they seldom go any further and
present design rules.

In Shinskey (1996), a design procedure for a lead-lag com-
pensator was proposed. The static gain of the compensator
is first determined from pure static models. The gain is
chosen so that a step change in the load is eliminated
in steady state, without any action from the feedback
controller. The time constants of the lead-lag filter are then
determined with the goal to reach IE = 0 with minimized
IAE. The effects of the feedback controller are not taken
into account in these design calculations.

Seborg et al. (1989) presented a design procedure where
the feedforward gain is determined in the same way as
in Shinskey (1996). A manual tuning procedure is then
suggested to tune the time constants of the lead-lag filter.
The tuning is based on repeated step changes of the load,
with the static feedforward introduced and the feedback
controller in manual.

Coughanowr (1991) presented a tuning procedure that was
based on a training film from Foxboro, produced in 1978.

The tuning procedure is made in the same way as the one
presented in Seborg et al. (1989). The difference is the way
the time constants of the lead-lag filter are determined.

All procedures mentioned so far are based on an open-
loop design, i.e. the feedback controller is not taken into
account when the feedforward compensator is designed.
The drawback of not taking the feedback controller into
account was noticed in Brosilow and Joseph (2002). It
was suggested to eliminate the problem by adding another
feedforward component to the control structure, so that a
load change not only affects the controller output, but also
its input.

Isaksson et al. (2008) pointed out that the feedback
controller should be taken into account when designing
the feedforward compensator. A design procedure was
presented, where the norm of the transfer function from
the disturbance to the process output is minimized. The
solution is a design scheme consisting of repeated solutions
of least-squares problems.

In Guzmán and Hägglund (2011) a simple design proce-
dure with the goal to obtain a load disturbance response
without overshoot that minimizes IAE was presented.
This procedure is summarized here to demonstrate the
design considerations that appear in feedforward control.

It is assumed that the process sections are modeled as

P1 =
K1e

−sL1

1 + sT1
, P2 =

K2e
−sL2

1 + sT2
, P3 =

K3e
−sL3

1 + sT3
, (5)

and that the feedforward compensator has the lead/lag
structure

Fd = Kff

1 + sTz

1 + sTp

e−sLff .

From (4), the optimal feedforward compensator is

Fd =
P3

P1
=

K3

K1
·
1 + sT1

1 + sT3
e−s(L3−L1).

This filter is obviously non causal and therefore not
realizable when L1 > L3, which means that one has to
look for suboptimal solutions. From now on, it is assumed
that L1 > L3.

A common solution to the problem is to neglect the non-
causality problem by simply removing the time delay. This
gives the feedforward compensator

Fd =
K3

K1
·
1 + sT1

1 + sT3
. (6)

A drawback with this solution is demonstrated in the
following example.

Example – Neglected non-causality problem The process
transfer functions are:

P1 =
1

1 + 2s
e−2s, P2 =

1

1 + s
, P3 =

1

1 + s
e−s. (7)

The controller is tuned using the AMIGO rule, Åström and
Hägglund (2005), which gives the parameters K = 0.32
and Ti = 2.85. From (6), the compensator becomes

Fd =
1 + 2s

1 + s
. (8)

Figure 11 shows the responses to a step change in the load.
The figure shows that the process output gets a response
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Fig. 11. Responses to a step load disturbance using feed-
forward compensator (8). The dashed lines show the
response when the output from feedback controller C
is constant.

with an overshoot. For comparison, the figure also shows
the response that would have been obtained if the output
from feedback controller C were constant, i.e. the open-
loop case. The comparison shows that the overshoot is
caused by the action from feedback controller C, an action
that is not taken into account in the design. 2

The example illustrates the need for tuning rules that take
controller C into account in the design of the feedforward
compensator. Such a procedure was presented in Guzmán
and Hägglund (2011). The idea is to first reduce gain Kff

so that no overshoot in the response is obtained because
of the feedback. Then, Tp is determined with the goal to
minimize IAE. Time constant Tz is retained as Tz = T1.
The tuning rule is

Lff = max(0, L3 − L1)

Tz = T1

Tp =











T3 L1 − L3 ≤ 0

T3 −
L1 − L3

1.7
0 < L1 − L3 < 1.7T3

0 L1 − L3 > 1.7T3

Kff =
K3

K1
−

K

Ti

IE

IE =

{

0 L3 ≥ L1

K2K3(L1 − L3 + T1 − T3 + Tp − Tz) L3 < L1.

(9)
Note that when L1 ≤ L3, these equations are equal to the
optimal solution (4). The next example demonstrates the
performance of the tuning rule.

Example – Feedforward tuning rule The process transfer
functions and the feedback controller are the same as in the
previous example. The tuning rule (9) gives the following
compensator

Fd = 0.956
1 + 2s

1 + 0.404s
. (10)

The load step responses are shown in Figure 12. The
figure shows that the overshoot caused by controller C is
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Fig. 12. Responses to a step load disturbance using feed-
forward tuning rule (9). The dashed lines show the
responses obtained using tuning rule (8).

almost eliminated, and the disturbance response has been
decreased significantly because of the reduction of time Tp.

2

Both in Figure 11 and 12, the control signal has a sig-
nificant initial peak in its response. The magnitude of
this peak is proportional to KffTz/Tp. If this peak is
considered too large, it can be reduced in a systematic
way by increasing Tp, and consequently also Kff , in the
tuning rule (9), see Guzmán and Hägglund (2011).

More advanced structures can be used to handle mea-
surable load disturbances. Brosilow and Joseph (2002)
suggests, e.g., that a feedforward signal is not only added
to the controller output, but also to the controller input
via a filter Fy.

4.2 Inverted decoupling of TITO systems

Figure 13 illustrates the problem of interaction for a
system with two inputs and two two outputs (TITO). It
is taken from a paper mill and describes a process section
where pulp is transported from a pulp tower to a tank. It
is obvious from the figure that the pressure controller and
the flow controller interact. The problem was solved by
detuning the flow controller, since the pressure loop was
considered most important. To detune one of the loops is
a simple and common solution to the interaction problem.
The prize is that one of the loops is detuned and remains
coupled to the other one.

Pulp tower TankPIC

PT

LIC

FIC

FT

LT

Fig. 13. Pulp flow control in a paper mill.
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Fig. 14. Two coupled control loops.
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Fig. 15. Conventional decoupling.
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Fig. 16. Inverted decoupling.

The problem of interacting control loops is described by
the block diagram in Figure 14. The control signal in
one loop acts as a load disturbances on the other control
loop. The interaction problem can be solved using a TITO
controller that decouples the two control loops. A conven-
tional TITO controller is shown in Figure 15. A drawback
with this solution is that the process inputs are formed as
combinations of the outputs from the two controllers. This
makes the antiwindup solution complicated. This problem
is never noticed in simulation studies where control signal
limitations are not considered.

Another solution to the interaction problem is shown in
Figure 16. This structure is called inverted decoupling
and is obtained by feeding the two control signals through
filters Fd and then forward to the other controller. With

this structure, the antiwindup problem is automatically
solved by the antiwindup functions already available in
the controllers, since each process input is given by one
controller output. Another important advantage is that
the decoupling can be obtained by simply using two
lead/lag-filters. This means that no special blocks have
to be built in the DCS systems.

The differences between the conventional TITO controller
and the inverted decoupling does not appear as long as
implementation issues like bumpless transfer, limitations,
and antiwindup are not considered. This may be one
reason why the conventional TITO controller is the most
common in textbooks and research papers. Two papers
in the late nineties called for interest in the inverted
decoupling structure, see Wade (1997) and Gagnon et al.
(1998). The technique is nowadays studied by several
research groups, see e.g. Chen and Zhang (2007) and
Garrido et al. (2011).

5. STEEL BELT POSITION CONTROL

This example describes an industrial case where a properly
chosen process output filter Fy is of great value.

5.1 Introduction

At the company Sandvik Process Systems, steel belts of
different dimensions are placed around rotating cylinders
and welded so that closed belts are obtained. See Figure
17. The lengths of the belts vary between 50m and 170m,
and the velocities vary between 40m/min and 80m/min.

The control problem is to position the belt at the centers
of the cylinders. With the previous control solution, this
could take up to four hours. The goal was to decrease
this time so that a maximum settling time corresponding
to fifteen revolutions of the belt was obtained, resulting in
settling times varying between nine minutes (shortest belt,
highest velocity) and 64 minutes (longest belt, lowest ve-
locity). If this goal was obtained, an increase in production
of about 25% was expected.

5.2 Process description

Two hydraulic motors are connected at each side of one
of the cylinders. Since they are controlled individually,
both the total tension and the tension profile in the cross
direction can be controlled. The goal is to position the
belt at the centers of the two cylinders by controlling the
difference between the two forces.

Process output y, measured in mm, is the belt position in
the cross direction. The belt position is measured a few
decimeters from the lower side of the controlled cylinder,

v

F1

F2

Fig. 17. The steel belt process.
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Fig. 18. Open-loop step response of the steel belt process.
The thick line is the measured process output, and
the thin line is the output from the model (11).

which means that the position is measured a short time
after the belt has left this cylinder.

Control signal u is measured in mm, and denotes the
position difference between the two sides of the cylinder.

5.3 Modeling

The process was modeled from step response experiments
made with steel belts of varying dimensions and velocities.
This section shows the results of one experiment, where the
belt had the dimensions length l = 70m, width w = 2m,
and thickness d = 1.2mm, and the velocity of the belt was
v = 40m/min.

Figure 18 shows an open-loop step response of the process.
Initially, the belt is almost at rest in the cross direction.
At time t = 50s, a step change of 2mm in u is made.

The step response shows that the process is integrating.
If a step change is made when the belt is at rest on
the cylinders, the belt starts to move away from the
equilibrium. The response also shows that an oscillatory
response is added to the integrator. The period of the
oscillation corresponds to the revolution time of the belt.
Finally, because of the position of the sensor, an inverse
response is obtained initially, indicating that there is a zero
in the right-half plane.

The model

P (s) =
Kv

s
+

(as+ b)ω2

s2 + 2ζωs+ ω2
, (11)

where Kv = 0.048, a = −65, b = 1.0, ζ = 0.2, and
ω = 0.063, captured the dynamics of the process well.
The thin line in Figure 18 shows the step response from
this model.

Figure 19 shows the Bode and Nyquist plots of the model
(11). The figure verifies that the process is integrating and
the oscillatory mode results in a large peak in magnitude
at the frequency ω = 0.06 rad/s, corresponding to the
circulation time of the belt.

All experiments made with different dimensions and ve-
locities were well described by the model (11), but the
parameters had to be scaled with respect to the belt
lengths and the velocities. Gain Kv is proportional to
velocity v, and frequency ω corresponds to the revolution
time, which is proportional to l/v.

5.4 Control Design

The resonance peak shown in Figure 19 would have caused
troubles if the design goal was to position the steel belt in
a very short time. However, the design goal was to position
the belt within fifteen revolutions, corresponding to a gain
crossover frequency of ωc = 0.004, which is more than an
order of magnitude lower than the resonance frequency.
This desired cross-over frequency is marked with vertical
lines in Figure 19.

Therefore, to simplify the design of controller C, the
strategy chosen was to reduce the peak caused by the
oscillatory mode and to turn the peak in the Nyquist curve
away from −180◦ by feeding the process output through a
low-pass filter Fy . The structure of the low-pass filter was

Fy =
1

1 + sTf

,

with the filter-time constant Tf .

Because of the added filter Fy, it was possible to control
the steel belt using a pure PI controller

C = K

(

1 +
1

sTi

)

.

Derivative action was not used, since it would have in-
creased the gain at the oscillation frequency.

The three parameters K, Ti, and Tf where designed to
minimize the IAE value at step changes in load dis-
turbances, with the robustness requirement that the Ms

value was less than 1.4. The design program described
in Garpinger and Hägglund (2008) was used to get the
parameters K = 0.15, Ti = 365s, and Tf = 80s.

Figure 20 shows the Bode and Nyquist plots of the model
(11) combined with the filter Fy. The figure shows that
the resonance peak is reduced significantly, with minor
changes in the dynamics at the desired gain crossover
frequency ωc .

Figure 21 shows the Bode and Nyquist plots of the loop
transfer function with the filter Fy and the PI controller.
The diagrams show that the design resulted in a gain
crossover frequency ωc = 0.007 that exceeds the goal
ωc = 0.004, and that the robustness constraint is fulfilled.
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Fig. 19. Bode and Nyquist plots of the steel belt process.
The vertical lines denote the desired gain crossover
frequency ωc.
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Fig. 20. Bode and Nyquist plots of the steel belt process
combined with the filter Fy . The dashed lines are the
plots of the unfiltered process, and the vertical lines
denote the desired gain crossover frequency ωc.
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Fig. 21. Bode and Nyquist plots of the loop transfer
function. The vertical lines denote the gain crossover
frequency ωc.
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Fig. 22. Simulated closed-loop step response of the steel
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Fig. 23. Transient response of the steel belt process. The
curves are band position (upper), setpoint (middle),
and controller output (lower).

Because of the integrator in the process, the phase is
−180◦ at low frequencies, reaches a peak at the crossover
frequency, and then drops rapidly. This property makes
the controller difficult to tune manually.

Figure 22 shows a simulated response to a step change
in the setpoint. The settling time is approximately 700s,
corresponding to seven revolutions of the belt, i.e. about
twice as fast as the requirements.

5.5 Results

The controller structure was implemented at Sandvik
Process Systems. Since the dimensions of the belts and
the velocities vary, a design rule that takes these variations
into account was derived. The following rule was applied:

K = 0.15, Ti = 210 l/v, Tf = 45 l/v,

where the times are given in seconds. This means that the
operators have to provide belt length l [m/s] and velocity
v [m/min] each time a new belt is processed.

Figure 23 shows data from a case where the belt length
was l = 70 m and the velocity v = 80 m/min, which
corresponds to a revolution time of about 2 minutes. The
upper curve is the measured belt position, the middle curve
is the setpoint, and the lower curve is the controller output.
The position sensor, that bears against one side of the belt,
records the profile of the belt during the first revolution.
This profile is then added to the setpoint. This is the
reason why the setpoint in Figure 23 is a is a straight
line with the profile of the output signal superimposed.
The figure shows that in this case the belt has reached the
desired position after about five revolutions.

The new control strategy has been used since 2009. The ex-
perience is that it works well and gives settling times that
are shorter than the desired maximum time corresponding
to fifteen revolutions. This means that the production can
be increased by more than 25%. The key to the simple
solution was the addition of the filter Fd.
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6. CONCLUSIONS

The PID algorithm is the core function in low-level con-
trollers. The controller has three major analog input sig-
nals, setpoint r, process output y, and measurable load
disturbances d. These signals should be filtered before they
enter the the PID controller. The design of these filters is
the topic of this paper.

Setpoint filter Fr is used to provide separate handling of
the setpoint and the process output, and thereby shape the
response to setpoint variations. Load disturbance filter Fd

is used to feed the information of load disturbances forward
to the controller. Process output filter Fy is used to remove
undesired components, such as measurement noise, from
the signal, and to compensate for undesired dynamics in
the process. A proper choice of these filters is of great
importance for the overall performance of the control loop.
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