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Abstract: A simple design method for robust PID controllers is presented. It is based on a multi criteria
H∞ optimal control formulation, which is shown to be easily solved by a few lines of MATLAB code.
This optimal solution for PID controllers including low pass filtering, is complemented by a simple paper
and pen solution that can be used to obtain nearly optimal solutions. The presented approach is shown
to give significantly better results compared to ordinary text book solutions based on frequency domain
loop shaping. The paper also includes a discussion on how to best formulate PID controllers for design,
and how additional filtering may easily improve high frequency robustness.
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1. INTRODUCTION

In basic text books on feedback control, cf. Franklin et al.
(2006); Ogata (2002), general design of PID controllers is
mainly based on loop shaping in the frequency domain. This
is complemented by tuning rules, often Ziegler Nichol’s rules,
Ziegler and Nichols (1942), and root locus design for special
plant models. In loop shaping the controller is typically deter-
mined to obtain a specific gain cross over frequency and phase
margin, to match desired demands on performance and robust-
ness. Most often the low pass filter on the derivative action
is neglected in the design. In e.g. Kristiansson and Lennartson
(2006a) it is shown that to avoid too much sensitivity to sensor
noise, the low pass filter will influence the stability margin
significantly, and therefore must be a part of the design.

A systematic design method including this filtering of the deriv-
ative action is not very common in basic text books. But in
e.g. Glad and Ljung (2006) it is observed that a PD controller
including low pass filter is equivalent to a lead filter, while a
PI controller can be interpreted as a lag filter with infinite lag
ratio. To reduce the complexity of this PIPD design including
four parameters, the maximum phase lift of the PD controller
is recommended to be placed at the desired gain cross over
frequency, the standard recommendation for lead filter design.
The zero in the PI controller is typically chosen a decade below
this frequency, which is the standard recommendation for lag
filter design to avoid too much influence on the stability mar-
gins. This classical lead/lag based design method, where the
two remaining parameters are determined to achieve a specific
gain cross over frequency and phase margin, is evaluated sys-
tematically in this paper. The resulting controller is compared
with a general PID controller formulated in Bode form, where
also complex zeros can be allowed, as well as additional low
pass filtering to further improve high frequency robustness.

To make a fair evaluation of any type of feedback control
system it is important to consider the coupling between low-
frequency, mid-frequency and high-frequency performance and
robustness. For instance, improvement of load disturbance

compensation implies normally either reduced pass-band ro-
bustness (stability margins) or reduced HF robustness due to
increased lead action in the controller, Persson and Åström
(1992). Based on these observations, a set of H∞ performance
and robustness criteria are used in this paper for general and
objective evaluation of PID controllers, see also Lennartson and
Kristiansson (1997); Kristiansson and Lennartson (2006a).

The evaluation procedure is formulated as a constrained op-
timization problem, and for a given controller structure there
is an optimal solution to this multi criteria H∞ optimal con-
trol problem. Based on this design procedure, optimal PI and
PID controllers have recently been extensively evaluated. This
includes a set of simple tuning procedures, Kristiansson and
Lennartson (2006b) and the introduction of a new Robust Inter-
nal Model Control (RIMC) strategy, Lennartson and Kristians-
son (2009). Alternative optimization strategies for PI and PID
controllers have also been presented by e.g. Panagopoulos et al.
(2002); Larsson and Hägglund (2011).

The presentation in this paper is made from a basic educa-
tion and engineering perspective, where the multi criteria H∞
optimal control problem is explicitly formulated as a short
MATLAB program. Based on the generation of optimal PID
controllers for some typical plant models in this paper, recom-
mendations on suitable values for gain cross over frequency and
phase margin are also obtained. Furthermore, for desired values
of these parameters, it is shown how a simple paper and pen PID
design solution can be formulated. This solution, which is based
on a Bode plot of the plant model and two graphs, generates a
PID controller that can be used to estimate suitable intervals for
the control parameters in the search for an optimal solution.

In an introductory course on feedback control, this PID design
strategy has been used successfully for a number of years.
Based on the multi criteria optimization method, this optimal
solution is also compared with the ones that can be achieved
by including the standard simplifications for PIPD design pre-
sented above. These simplifications, which are presented to
most students globally for the related lead/lag and PIPD design
based on frequency loop shaping, are shown to give significant
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deterioration of load performance compensation. Some reasons
for this performance loss are also discussed in the paper.

2. MULTIPLE CRITERIA H∞ OPTIMIZATION

A set of important H∞ criteria was introduced in Lennartson
and Kristiansson (1997); Kristiansson and Lennartson (2006a)
for design and evaluation of robust PID controllers. These cri-
teria are briefly presented in this section from an undergraduate
perspective. First, consider a system with a plant G(s), where
the load disturbance v is added to the control signal u and the
sensor noise w is added (with minus sign) to the plant output y.
This plant is controlled by a one-degree of freedom controller
K(s), resulting in a loop transfer L(s) = G(s)K(s). Further-
more, the controller is assumed to include integral action, which
means that it can be formulated as K(s) = K̄(s)Ki/s where
K̄(0) = 1.

2.1 Low frequency range

A fundamental goal of a feedback system is to compensate low
frequency (LF) load disturbances. The transfer function from
the disturbance v to the controlled output y is

Gvy(s) =
G(s)

1 + G(s)K(s)
When the controller includes integral action we obtain in the LF
range 1+L(jω) ≈ L(jω)) and |Gvy(jω)| ≈ ω/Ki. Obviously,
the compensation of LF disturbances is improved when the
integral gain Ki in the controller increases. Hence, a simple
LF performance criterion to minimize is

J̄v = 1/Ki

To include a broader frequency range concerning load distur-
bances, we also consider the more complex H∞ criterion

Jv = max
ω

1
ω
|Gvy(jω)| = ||1

s
Gvy(s)||∞ (1)

The frequency weight 1/ω is included to still emphasize more
on LF load disturbances. It is also motivated by the LF asymp-
totic behavior of |Gvy(jω)| given above.

In MATLAB this criterion is easily computed, assuming that
a model Gvy is available in terms of a transfer function
or a state space model. Then the H∞ norm is computed as
norm(Gvy/s,inf), where s=tf(’s’).

2.2 High frequency range

In the high frequency (HF) range, it is important to avoid too
much sensor noise in the control signal. Hence, consider the
transfer function from the sensor noise w(t) to the control
signal u(t)

Gwu(s) =
K(s)

1 + G(s)K(s)
The plant G(s) is assumed to have low gain in the HF range
(lims→∞ G(s) = 0), which means that Guw(jω) ≈ K(jω)
in this range. Furthermore, assuming that K(s) is proper but
not strictly proper, we make the additional approximation to
consider the controller gain at ω = ∞. By the notation K∞ =
lims→∞ K(s) we then achieve Gwu(jω) ≈ K∞. A reasonable
HF criterion is therefore to consider the HF controller gain

J̄u = K∞
as a control activity measure. To guarantee that possible peaks
in K(s) in the HF range are not neglected when the HF

properties of the control gain are considered, the parameter K∞
may be replaced by the criterion

Ju = max
ω

|Gwu(jω)| = ||Gwu(s)||∞ (2)

For controllers with higher gain in the HF range (the critical
ones), these two measures give most often the same result. So
far we have focused on sensor noise, but also note that the
initial control amplitude, after a unit step in the reference signal,
becomes K∞, i. e. u(0) = K∞ when r(t) = unit step. Thus,
J̄u = K∞ and Ju are both relevant measures and need to be
constrained to avoid too large control activity and sensitivity to
sensor noise in the HF range.

When the controller has a roll off with an HF behavior K(s) ≈
K∞/s, it is also of interest to consider the HF criterion

JHF = max
ω

ω|Gwu(jω)| = ||sGwu(s)||∞ (3)

Note that JHF ≈ maxω ωK∞/ω = K∞, while Ju then
measures the peak gain of Gwu, which typically occurs slightly
above the mid frequency range. Hence, Ju may then be consid-
ered as a mid to high frequency measure, while JHF is the HF
criterion.

2.3 Mid-frequency range

In the pass band, robustness is achieved by ensuring good sta-
bility margins. Generally, the loop transfer G(jω)K(jω) must
be kept at an acceptable distance from the critical point (-1,0)
in the Nyquist plot. To ensure this, different measures have
been introduced like the classical phase margin ϕm and the
gain margin Gm. More recently, the shortest distance to the
point (-1,0), minω |1 + G(jω)K(jω)|, has been introduced as
a stability measure. Consider the sensitivity function

S(s) =
1

1 + G(s)K(s)
and its maximum gain

MS = max
ω

|S(jω)| = ||S(s)||∞ (4)

Obviously, this H∞ criterion is the inverse of the shortest
distance to the point (-1,0) in the Nyquist plot, and hence a
lower value of MS means a larger stability margin. For unstable
plants, including those with integral action, it is also important
to consider the complementary sensitivity function

T (s) = 1 − S(s) =
G(s)K(s)

1 + G(s)K(s)
and its maximum gain

MT = max
ω

T (jω)| = ||T (s)||∞ (5)

A restriction on MT also controls the damping of the system,
without reducing MS too much. In this paper we will include
the demands MS ≤ 1.7 and MT ≤ 1.3.

2.4 Controller design by multi criteria optimization

In all controller design, independent of method, the user has
to adjust a set of tuning parameters ρ. This set may include the
parameters in a PID controller or weighting function parameters
in e.g. an LQG optimization criterion. The user has to adapt or
tune these parameters to obtain a desired closed loop behavior,
in our case measured by the H∞ criteria suggested in this
section.

An objective method to evaluate different design methods is to
minimize one criterion with respect to the tuning parameters ρ,
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while constraints are introduced on the other criteria. In this
paper the LF performance is minimized, while constraints are
included on the mid and high frequency range criteria, i.e. the
controllers are designed by solving the following constrained
optimization problem

min
ρ

Jv(ρ)

MS(ρ) ≤ 1.7 MT (ρ) ≤ 1.3 Ju(ρ) ≤ Cu (6)
where the constant Cu depends on the plant model G(s). It is
chosen to give a reasonable control activity, while only mar-
ginally deteriorate the LF performance compared to a high gain
solution. The HF criterion JHF is considered as an optional
measure for controllers with additional low pass filtering and
roll off.

By this constrained multi criteria optimization procedure, dif-
ferent controllers may be designed and evaluated under equal
conditions. For a paper and pen solution, including a simple
calculator and Bode plots, the following alternative criteria can
be applied.

min
ρ

J̄v(ρ) ϕm(ρ) ≥ 45◦ Gm(ρ) ≥ 3 J̄u(ρ) ≤ Cu

Then a manual iterative search can be performed to achieve at
least a semi optimal solution.

The expression optimal controller is from now on used for a
controller, which is optimized according to (6) with all avail-
able controller parameters included in the tuning vector ρ. In
this paper the routine fmincon from Matlab’s Optimization
Toolbox is used for the optimization.

3. PID CONTROLLERS

In this section different formulations of PID controllers will be
discussed, and as a basis for further tuning, it is shown how
a desired phase margin ϕm and gain cross over frequency ωc

can be achieved for the different controller formulations. The
intention is mainly to efficiently compensate load disturbances.
When good servo properties are required, the controller can
always be augmented by a filter in the feed-forward path.

The traditional PID controller, with a low-pass filter on the
derivative part, is often formulated as

KPID(s) = Kp(1 +
1

sTi
+

sTd

1 + sTf
) (7)

3.1 PIPD controller

To get a better understanding of the PID controller in the
frequency domain the controller can alternatively be formulated
as a PI and PD controller connected in series, from now called
a PIPD controller

KPIPD(s) = Kp
1 + sτi

sτi

1 + sτd

1 + sτd/b
(8)

Note that the PD controller written in this form can also
be considered as a lead filter with a lead ratio b, where the
maximum phase lift ϕmax = arcsin((b − 1)/(b + 1)) occurs
at the mid frequency ωm =

√
b/τd. In the literature, see

e.g. Franklin et al. (2006), it is recommended to choose the
lead filter, here the PD controller, such that the gain cross over
frequency ωc is equal to or at least in the region of the mid
frequency ωm =

√
b/τd.

At the same time it is recommended to choose the integral time
constant τi large enough to not disturb the phase too much at ωc.

A standard suggestion is to choose 1/τi a decade lower than ωc.
This leads to a slow compensation of load disturbances. Hence,
we moderate that suggestion by evaluating 1/τi = 0.2ωc,
which results in a phase lag of approximately 11◦ at ωc.

This classical PIPD design strategy will be evaluated in this
paper. The PD controller is then designed such that a desired
phase margin ϕm and cross over frequency ωc are achieved,
by placing the maximum phase lift at ωc. The phase lag in the
PI controller is compensated by adding extra phase lift (larger
ϕmax) at ωm = ωc in the PD controller.

3.2 PID controller in Bode form

In e.g. Kristiansson and Lennartson (2006b) it has been shown
that a PID controller, optimized with the filter included and all
parameters free, often implies complex zeros in the controller.
This has been verified for a large number of plants with poles
strictly on the negative real axis. Hence, a suitable alternative
parametrization of the PID controller is

KPID(s) = Ki
1 + 2ζτs + (τs)2

s(1 + sτ/β)
(9)

with the four parameters the integral gain Ki, the high-
frequency gain K∞ = KPID(∞) = Kiτβ, the zero damping
ζ and the natural frequency 1/τ . The notation β is short for
K∞/(Kiτ), but may also be used as a design parameter, an
alternative to K∞.

Since this representation of the PID controller is written in
Bode form, the parameters have a clear relation to the frequency
function KPID(jω). It means that they have a natural physical
meaning, especially Ki and K∞ that define the low and high
frequency behavior of the controller. For ζ ≥ 1 it is related
to the PIPD formulation as τi = cτ and τd = τ/c, where
c = ζ +

√
ζ2 − 1.

To achieve a desired phase margin ϕm and cross over fre-
quency ωc for this controller, we first observe generally that
|KPID(jωc)||G(jωc)| = 1 and ∠KPID(jωc) = −180◦ +
ϕm − ∠G(jωc). The gain and phase expressions for (9) then
result in the following nonlinear relations

∠KPID(jωc) =−90◦ + arccos
1 − x2

√
(1 − x2)2 + (2ζx)2

− arctan(x/β)

K∞|G(jωc)|= xβ
√

1 + (x/β)2
√

(1 − x2)2 + (2ζx)2

where x = ωcτ . Corresponding relations are illustrated in
Fig. 1 for different values of β for the specific choice ζ = 1. By
selecting a desired K∞ the second plot gives a suitable β, which
by the first plot then determines τ , and finally Ki = K∞/(τβ).

When it comes to implementation it is straightforward to trans-
late these design parameters in Bode form to the traditional ones
in (7).

A PI controller can be considered as a special case of the PID
controller (9) with β = 1 (low high-frequency gain) and ζ = 1
(double zero).

KPI(s) = Ki
(1 + τs)2

s(1 + τs)
= Ki

1 + τs

s
(10)

Desired values of the phase margin ϕm and the cross over
frequency ωc are then directly obtained by selecting τ =
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Fig. 1. ωcτ and K∞|G(jωc)| as functions of the desired PID
controller phase ∠KPID(jωc) for ζ = 1 and different values
of β.

tan(ϕm − 90◦ − ∠G(jωc))/ωc and Ki = ωc/(|G(jωc)|√
1 + (ωcτ)2).

4. OPTIMIZATION AND EVALUATION

The PID controller (9) will now be optimized by solving the
constrained optimization problem (6). Since Ju is most often
equal to J̄u = K∞=Kiτβ for the reasonable control activities
we are interested in, it is enough to specify a desired HF
control gain K∞, which then determines β = K∞/(Kiτ).
The remaining parameters, Ki, τ , and ζ, are optimized by the
following MATLAB program, based on the routine fmincon
and applied to G(s) = 1

(1+s)(1+0.5s)(1+0.25s) .

s=tf(’s’); G=1/(1+s)/(1+0.5*s)/(1+0.25*s);

MS_max=1.7; MT_max=1.3; Kinf=15;

min_x=[3 0.4 0.6]; % Lower and upper limits

max_x=[5 0.9 1]; % on Ki, tau, zeta

x=(min_x+max_x)/2; % Initial value = mean value

options = optimset(’Algorithm’,’active-set’);

x=fmincon(@(x) objfun(x,s,G,Kinf),x,[],[],[],[],...

min_x,max_x,@(x) confun(x,G,MS_max,MT_max,Kinf),

options);

Ki=x(1); tau=x(2); zeta=x(3); beta=Kinf/(Ki*tau);

K=tf(Ki*[tauˆ2 2*zeta*tau 1],[tau/beta 1 0]);

function Jv=objfun(x,s,G,Kinf)

Ki=x(1); tau=x(2); zeta=x(3); beta=Kinf/(Ki*tau);

Fd=tf(Ki*[tauˆ2 2*zeta*tau 1],[tau/beta 1]);

Jv=norm(feedback(G/s,Fd),inf);

return

function [C,Ceq]=confun(x,G,MS_max,MT_max,Kinf)

Ki=x(1); tau=x(2); zeta=x(3); beta=Kinf/(Ki*tau);

K=tf(Ki*[tauˆ2 2*zeta*tau 1],[tau/beta 1 0]);

MS=norm(feedback(1,G*K),inf);

MT=norm(feedback(G*K,1),inf);

stab=norm(feedback(G*K,1));

if stab<inf, C=[MS-MS_max; MT-MT_max];

else C=[1; 1]; end

Ceq=[];

return

Control parameter intervals In this routine lower and upper
limits on the three control parameters are defined, and Jv is
computed by including the integral weighting 1/s in the loop.
Generally, it is recommended to start with wider control pa-
rameter intervals, and then tighten when the optimal parameter
region has been identified. Initial parameter intervals are prefer-
ably estimated by making a manual ωc/ϕm design, based on
the gain and phase of G(jωc) and the curves in Fig. 1. This
design depends in its turn on a suitable choice of ωc and ϕm,
which will be further discussed below based on experience from
typical plant models. If the control parameter intervals include
a feasible solution, which satisfies the given constraints, the
convergence of the optimization is very fast (< 5 sec. for the
given MATLAB example above on a standard LAPTOP-PC).

Plant models and their complexity Optimal controllers for
the following plant models are evaluated in this paper.

G1(s) =
1

(1 + s)(1 + 0.5s)(1 + 0.25s)

G2(s) =
1

(1 + s)3

G3(s) =
e−0.3s

(1 + s)(1 + 0.5s)

G4(s) =
1

s(1 + s)(1 + 0.2s)

G5(s) =
(1 + 2s)

s(1 + 0.2s + s2)(1 + 0.02s)

G6(s) =
e−s

(1 + Ts)

The complexity of a plant model can be characterized by its
κ number, κ = |G(jω180G)|/G(0), cf. Hang et al. (1991),
where ω180G is the frequency where the plant has a phase lag
of −180◦. From Table 2 it is clear that a minimum phase plant
with one dominating pole has a κ close to zero, while Table 3
shows that a plant which is close to a pure time delay process
has a κ ≈ 1. For plants with integral action, the κ number is
modified as κ = ω180G |G(jω180G)|/(limω→0 ω|G(jω)|).
Zero damping factor ζ For the plant models G1(s)-G5(s),
optimal H∞ criteria based on (6), including optimal PID para-
meters, are presented in Table 1. The damping factor ζ in the
PID controller (9) is clearly less than one, which motivates
the introduction of the complex zeros in KPID(s). For the
plant G5(s), which has a resonance with a damping factor 0.1,
the optimal Jv is achieved for ζ = 0.28, which unfortunately
results in a negative overshoot of 40% in the load step response.
This is avoided by introducing a min value of ζ = 0.5 in the
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Table 1. Optimal H∞ criteria and PID parameters for differ-
ent plant models.

Model Jv Ju MS MT Ki τ ζ β

G1(s) 0.24 15 1.70 1.30 4.46 0.62 0.73 5.4

G2(s) 0.57 15 1.70 1.30 1.97 1.17 0.69 6.5

G3(s) 0.46 10 1.70 1.30 2.32 0.60 0.82 7.2
G4(s) 0.74 20 1.70 1.30 1.38 1.35 0.77 10.7

G5(s) 1.14 20 1.43 1.30 1.03 1.38 0.50 14.1

optimization, but at the cost of an increased Jv by 43%. This
solution is shown in Table 1 and 2.

Gain cross over frequency ωc From Table 2 and 3 it can
also be concluded that the ratio ωc/ω180G is clearly less than
one for the stable plants, typically around 0.6 for plants with
lower κ numbers, and even lower ratios when κ increases. In
Kristiansson and Lennartson (2006a) the following estimate
was given

ωc/ω180G = 0.6 − 0.35κ (11)
For plants with integral action this ratio is clearly higher;
around one for the simple integral plant G4(s). A more system-
atic evaluation for different models gives the following rough
estimate

ωc/ω180G = 1.4 − κ (12)
for plants with integral action without resonances. These esti-
mates are based on a reasonable choice of control activity Ju,
see further details in Kristiansson and Lennartson (2006b).

The model G5(s) is highly resonant with a damping factor 0.1,
and the kappa number gives no relevant information. But for
this model another feature is observed, the phase curve is
quite flat around -180◦ for nearly a decade, and for this model
ωc = 3.1ω180G.

The general recommendation is therefore to relate the choice of
ωc to the shape of the plant phase curve around -180◦, where a
larger negative phase shift in this region results in a reduced ωc.
For stable non-oscillating plants the estimate (11) can be used,
and (12) is useful for corresponding plants with integral action.

Phase margin ϕm The optimal phase margin ϕm is slightly
above 45◦, except for plants with high kappa numbers, see
Table 3, where ϕm increases even up to 60◦. The reason is
that the phase of G is decreasing much faster than its gain,
which implies a shorter distance to the point (-1,0) (larger
MS). However, since MS is restricted, it is not allowed and to
compensate for this, the loop gain has to be reduced, resulting
in a large phase margin.

Controller phase ∠KPID(jωc) In lead lag compensation the
controller is expected to add a positive phase shift at ωc. This
is also often the case, see Table 2, but the optimization of Jv ,
which is approximately the same as optimizing J̄v = 1/Ki,

Table 2. Plant κ number and additional loop transfer proper-
ties for the optimal PID controllers presented in Table 1.

Model κ ωc ωc/ω180G ϕm ∠KPID(jωc)

G1(s) 0.09 2.28 0.61 46.2◦ 11.0◦

G2(s) 0.13 1.11 0.64 45.9◦ 10.2◦

G3(s) 0.17 1.51 0.50 45.1◦ -14.2◦

G4(s) 0.37 2.09 0.94 46.1◦ 43.3◦

G5(s) 4.21 3.88 3.08 49.5◦ 58.2◦

Table 3. Load performance comparing optimal PID and PI
controllers for G6(s), including additional loop transfer prop-
erties for the PID controllers. Ju = 5G6(0) for the PID and

Ju≈G6(0) for the PI controllers.

T κ JPID
v /JPI

v ωc/ω180G ϕm ∠KPID(jωc)

1 0.44 0.69 0.38 50.3◦ -47.1◦

0.3 0.80 0.74 0.32 57.5◦ -62.6◦

0.1 0.96 0.84 0.27 59.5◦ -71.6◦

0.05 0.99 0.88 0.26 59.8◦ -74.1◦

means that a high Ki is desirable. For models with larger kappa
numbers this results in a very large negative controller phase
shift at ωc, which is clearly demonstrated in Table 3.

PID or PIPD control Results from the optimization of the
PIPD controller (8) are given in Table 4. Comparing with the
optimal PID controllers in Table 1 where ζ < 1, corresponding
to complex zeros, the best PIPD controllers are obtained by
choosing a double zero τi = τd. The performance deterioration
in Table 4 is then varying between 10% and 40%, compared to
the corresponding optimal PID controller.

For plants without integral action the product τiωc is around one
and the ratio ωc/ωm � 0.5 for the optimal PIPD controller. To
force the integral time constant to be 5 times larger than 1/ωc

is more costly, simply because we want to compensate the load
disturbance down to zero as fast as possible. In other words we
want the integral action to become active as fast as possible, and
this occurs from the frequency 1/τi. Thus a smaller τi results
in a faster complete compensation of a step load disturbance.
Typical text book recommendations are τi = 10/ωc, which of
course gives additional performance deterioration.

The second demand to force ωc at the maximum phase lift for
the PD controller (ωc = ωm) results in even worse behavior.
Indeed, for the plant model G3(s) it is not even possible to
obtain a feasible solution demanding τiωc = 5 and ωc = ωm.
However, the constraints τiωc = 5 and ωc = 0.37ωm give a
feasible solution that satisfy the stability demand MS ≤ 1.7.

The load disturbance step responses for the different PIPD
controllers and the optimal PID controller are shown in Fig. 2
for G1(s) and G3(s). They confirm our conclusion that stan-
dard text book recommendations for PIPD loop shaping, more
specifically τiωc = 5 − 10 and ωc = ωm, result in quite bad
performance or does not even give a feasible solution. This can
be compared to what is possible with an optimal PID controller

Table 4. Optimal criteria and parameters for PIPD controllers
with specific equality constraints denoted in bold numbers,
compared with optimal PID controllers. The same control ac-

tivity Ju and stability constraints as in Table 1.

Model JPIPD
v /JPID

v τi τi/τd τiωc ωc/ωm b

1.28 0.64 1 1.43 0.53 7.4

G1(s) 2.34 2.04 5.34 5 0.46 4.2

3.28 1.83 1.95 5 1 6.5

1.12 0.55 1 0.79 0.26 9.4

G3(s) 3.13 3.13 11.0 5 0.21 4.6

5.23 3.60 5.21 5 0.37 6.7

1.39 1.51 1 3.01 0.81 13.7
G4(s) 1.59 2.38 2.04 5 0.78 9.9

1.89 2.27 1.42 5 1 12.4
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Fig. 2. Load disturbance step responses for (a) G1(s) and (b) G3(s),
controlled by an optimal PID controller and different PIPD con-
trollers according to Table 4.

without such restrictions, when reasonable demands on stability
margins and control activity are required, cf. (6).

Additional low pass filtering in the PID controller To even
further reduce the HF noise sensitivity and increase the HF
robustness, a first order roll off in the controller can easily be
included. Then the first order low pass filter in (9) is replaced
by a second order low pass filter in the controller

KPIDf (s) = Ki
1 + 2ζsτ + (sτ)2

s(1 + 2ζfsτ/β + (sτ/β)2)

The additional control parameter is the damping factor ζf . This
extra filtering generates some additional phase lag that influ-
ences the stability margin. To compensate for this, still preserv-
ing the desired MS and MT constraints, the integral gain Ki has
to be reduced, which increases Jv . From Table 5 we conclude
that a reduction from ζf = 1 to 0.5 reduces JHF significantly
but at the cost of somewhat additional performance loss on
Jv . This trade off is up to the user to decide on. As always,
improvement in one frequency range deteriorates the result in
another range. In this case we see a clear but not dramatic
relation between HF and LF properties.

Table 5. Optimal criteria for PIDf controllers, compared with
optimal PID controllers. The same control activity Ju and

stability constraints as in Table 1.

Model G1(s) G3(s) G4(s)

ζf 1.0 0.5 1.0 0.5 1.0 0.5

JPIDf
v /JPID

v 1.04 1.14 1.02 1.04 1.06 1.31

JHF /ωc 251 83 315 113 321 100

5. CONCLUSIONS

A simple design method for four parameter PID controllers
including low pass filtering is presented. It is based on multi cri-
teria H∞ optimization, and is shown to be easily implemented
by a few lines of MATLAB code. The framework also includes
a simple paper and pen solution that can be used for educational
purposes. This manual approach also gives good initial values
for the final nonlinear constrained optimization. The suggested
method is compared with typical text book recommendations
on frequency domain loop shaping. Such recommendations,
which are introduced to simplify the four parameter design
procedure, are shown to deteriorate the control performance
significantly compared to a true optimal solution. What is inter-
ested from an educational point of view is also that both the pa-
per and pen solution and the MATLAB optimization illustrate
the important trade off between LF performance, HF control
activity and stability margins. It is finally observed that the
suggested PID design method has been successfully evaluated
in an introductory course on feedback control for a number of
years.
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