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Abstract: This paper focuses on the design of PID compensator to exactly satisfy the gain margin,
the phase margin and the gain or phase crossover frequency specifications. The design problem is
numerically solved using the so called PID inversion formulae method. A graphical interpretation of the
solution on the Nyquist plane is presented. This could be suitable on education environment to deeply
understand the design of PID compensators. Simulations results show the effectiveness of the presented
method.
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1. INTRODUCTION

The proportional-integral-derivative (PID) compensators are
widely used in the industrial processes to meet most of the
control objectives. The gain and phase margin (GPM) specifica-
tions are important measure of the robustness of the controlled
systems, and many methods are known in the literature to meet
these design requirements. Some of them are described in Lee
(2004), Kim et al. (2005) and Aström and Hagglund (2006).
These methods are normally based on numerical or graphical
trial-and-error solutions which use Bode plots or fuzzy neural
network (FNN). In this paper a new and exact graphical pro-
cedure on Nyquist plane to meet the gain margin, the phase
margin and the phase or gain crossover frequency specifications
is shown. This procedure is similar to ones described in Wang
et al. (1999) and is based on so called PID inversion formulae,
see Zanasi et al. (2011), Ntogramatzidis and Ferrante (2011),
Zanasi and Cuoghi (2011).

The paper is organized as follows. In section II, the graphical
properties of PID compensator on Nyquist plane are described.
In section III a new design method based on the use of the
PID inversion formulas is presented. In section IV numerical
and graphical solutions of design problems based on GMP
specifications are given. Numerical examples and conclusions
end the paper.

2. PID COMPENSATORS: THE GENERAL STRUCTURE

Let us consider the classical form of the PID compensator

C(s) = KP+ sKD+
KI

s
, (1)

where the proportional, derivative and integrative terms KP, KD

and KI are supposed to be real and positive. The frequency
response ofC(s)

C( jω) = KP+ j

(

ωKD−
KI

ω

)

, (2)

can be written as

C( jω) = X+ jY (ω),
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Fig. 1. Nyquist plot of functionsC( jω) andC -1( jω).

where X = KP and Y (ω) = ωKD −
KI
ω
. The parameter X is

always positive, while the function Y (ω) is positive for ω >
√

KI
KD

and negative for 0< ω <
√

KI
KD
.

Let C (KP) and C−(KP) denote, respectively, the set of all the
PID compensators C(s) having the same parameter KP

C (KP) =
{

C(s) as in (1)
∣

∣

∣
KI > 0,KD > 0

}

, (3)

and the set of all the inverse functionsC(s) -1

C
−(KP) =

{

1

C(s)

∣

∣

∣
C(s) ∈ C (KP)

}

. (4)

It can be easily shown that the graphical representation of each
element of C (KP) on the Nyquist plane is a vertical straight line
r which passes through point (KP,0), see Fig. 1.

Property 1. The shape of the frequency response of each ele-
ment of set C−(KP) is a circle with center C0 =

1
2KP

and radius

R0 =
1

2KP
which intersects the real axis in point 0 and point 1

KP
.

This graphical property hinges on the fact that the Nyquist
diagram ofC-1( jω) is a circle
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Fig. 3. Unity feedback control structure.

C -1( jω) =
1

C( jω)
=C0+R0e

jθ(ω), (5)

where C0 = R0 = 1
2X
, θ(ω) = −arctan

Y (ω)

X
∈ [0,2π] and

X = kp.

Proof: the frequency response (2) can be written in polar form
as follows

C(jω)=M(ω)e jϕ(ω),

where M(ω)= X
cosϕ(ω) and ϕ(ω)=arctan

Y (ω)
X

. It follows that

C -1( jω) can be expressed in the form

C -1( jω) =
1

C( jω)
=

cosϕ(ω)

X
e− jϕ(ω)

=
1

2X
[1+cos(2ϕ(ω))]− j

1

2X
sin(2ϕ(ω))

=
1

2X
+

1

2X
e− j2ϕ(ω),

for Y (ω) ∈ [−∞,+∞]. The last relation clearly shows that the
shape of C -1( jω) in the complex plane is a circle with center
C0 =

1
2X

and radius R0 =
1
2X
.

The Nyquist diagrams of frequency responses of sets C (KP)
and C−(KP) for different values of parameter KP are shown in
Fig. 2.

3. PID COMPENSATORS C(s,KD) AND C(s,KI)MOVING
A POINT A TO A POINT B

Consider the block-diagram shown in Fig. 3, where G(s) de-
notes the transfer function of the LTI plant to be controlled. Let
C( jω0) = M0 e

jϕ0 denote the value of the frequency response

C( jω) =M(ω)e jϕ(ω) at frequency ω0, whereM0 =M(ω0) and
ϕ0= ϕ(ω0). To study how C( jω0) affects G( jω) at frequency
ω0, let us consider two generic points A = MA e

jϕA and B =
MB e

jϕB of the complex plane. Referring to Fig. 4, we say that
point A is controllable to point B (or equivalently that point A

0
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Fig. 4. Controllable domain D
−
B and graphical design of com-

pensators C( jω,KI) moving point A to B.

can be moved to point B) if a value C( jω0) exists such that
B = C( jω0) ·A, that is if and only if the following conditions
hold:

MB =MAM0, ϕB = ϕA+ϕ0. (6)

Definition 1. Given a point B ∈ C, let us define “controllable
domain of the PID compensator C(s) to point B” the set D

−
B

defined as follows:

D
−
B=

{

A∈C
∣

∣

∣
∃KP,KI ,KD>0,∃ω≥0:C( jω)·A=B

}

.

It can be easily shown that the domain D
−
B on Nyquist plane

is the half-plane which includes point B and is delimited by
the straight line q passing through point O and perpendicular to
segment B0, see the gray region in Fig. 4.

Definition 2. Given a point B ∈ C, let CB(KP) and C
−
B (KP)

denote the sets of PID compensators defined as follows

CB(KP) =
{

B ·C(s)
∣

∣

∣
C(s) ∈ C (KP)

}

, (7)

C
−
B (KP) =

{

B

C(s)

∣

∣

∣
C(s) ∈ C (KP)

}

, (8)

with C (KP) defined in (3). Moreover, let CBKP
(s) ∈ CB(KP)

and C
−
BKP

(s) ∈ C
−
B (KP) denote particular elements of the two

sets CB(KP) and C
−
B (KP) chosen arbitrarily.

Definition 3. (PID Inversion Formulae)Given two points A=
MA e

jϕA and B = MB e
jϕB of the complex plane C, the PID

inversion formulae are defined as follows:














X(A,B) =
MB

MA
cos(ϕB−ϕA),

Y (A,B) =
MB

MA
sin(ϕB−ϕA).

(9)

These formulae are similar to the ones used in Phillips (1985)
and to the Inversion Formulae introduced and used in Marro
and Zanasi (1998) and Zanasi and Cuoghi (2011) for lead and
lag compensators design.

Property 2. (From A to B) Given a point B ∈ C and chosen
a point A = G( jωA) ∈ D

−
B , the sets C(s,KD) and C(s,KI) of
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all the PID compensators C(s) that move point A to point B is
obtained from (1) using, respectively, the parameters

KP = X , KI = KDω2
A−YωA, (10)

for all KD > Y
ωA

, or the parameters

KP = X , KD =
Y

ωA
+

KI

ω2
A

, (11)

for all KI > 0, where coefficients X = X(A,B) and Y = Y (A,B)
are obtained using (9).

Proof: For ω = ωA, relation (2) can be rewritten as

C( jωA) = KP+ j

(

ωAKD−
KI

ωA

)

. (12)

From relation B = C( jωA) · A and (6) it is evident that point
A = G( jωA) = MA e

jϕA can be moved to point B = MB e
jϕB if

and only if

C( jωA) =
MB

MA
e j (ϕB−ϕA) = X+ jY. (13)

Solving equations (13) with respect to X and Y , one obtains the
PID Inversion Formulae (9). Equations (10) and (11) follow
directly from (12) and (13).

Property 3. The parameter KP can be determined on the
Nyquist plane as shown in Fig. 4:

(1) draw the unique circle AC
−
B passing through points A and

O having its diameter on the straight line r which passes
through points 0 and B;

(2) the circle AC
−
B intersects the straight line r in points O

and E = B/KP;
(3) the parameter KP is equal to the modulus of point B over

the modulus of point E: KP = |B|/|E|.

Proof: It follows directly from Property 1 because the circle
AC

−
B on the Nyquist plane is the inverse of the frequency

response CBKP
( jω) of function CBKP

(s) ∈ CB(KP) and because
the intersections of circle AC

−
B with the straight line r occur in

points O and E = B/KP.

4. SYNTHESIS OF PID COMPENSATORS

Let us consider the case of given steady-state specifications
that impose the value of the integrative term KI > 0. This case
occurs for example for type-0 systems and design specification
on velocity error, or for type-1 systems and design specification
on acceleration error. The fact that the integrative term KI has
been fixed do not reduce the admissible domain D

−
B to point

B, that is still the gray region shown in Fig. 4. The other two
degrees of freedom KP and KD of the regulator can be imposed
to meet the phase margin φm and the gain crossover frequency
ωp.

Design Problem A: (KI ,φm,ωp). Given the control scheme of
Fig. 3, the transfer functionG(s), the steady-state specifications
that impose the value of the integrative term KI > 0 and design
specifications on the phase margin φm, and gain crossover
frequency ωp, design a PID compensator C(s) such that the
loop gain transfer function C( jω)G( jω) passes through point

Bp = e j(π+φm) for ω = ωp.

0
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Re
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−
BpKP
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−
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Fig. 5. Graphical solution of Design Problem B on the Nyquist
plane.

Solution A: If point A = G( jωA) belongs to the admissible
domain D

−
B shown in Fig. 4, the solution follows directly from

(11) of Property 2 with parameter KI imposed by the steady-
state specifications.

Let us now consider the case of steady-state specifications
that do not constrain the value of KI . The degree of freedom
in the Property 2 can be utilized in order to satisfy another
specification. In literature different methods can be found to
impose the degree of freedom, such as to obtain real zeros of
the compensator, Aström and Hagglund (2006). Let us consider
the following design problems.

Design Problem B: (φm , Gm , ωp). Given the control scheme
of Fig. 3, the transfer function G(s) and design specifications
on the phase margin φm, gain marginGm and gain crossover fre-
quency ωp, design a PID compensator C(s) such that the loop
gain transfer function C( jω)G( jω) passes through point Bp =

e j(π+φm) for ω = ωp and passes through point Bg =−1/Gm.

Solution B: Let Ap =G( jωp) denote the value of G( jω) at the

desired gain crossover frequency ω =ωp, and let Bp = e j(π+φm)

and Bg =−1/Gm =MBg e
jϕBg denote the points corresponding

to the desired phase margin φm and gain margin Gm, respec-
tively. The set Cp(s,ωg) of all the PID compensators C(s)
which solve Design Problem B is obtained from (1) using the
parameters

KP = Xp > 0, KD =
Ypωp−Ygωg

ω2
p−ω2

g

> 0, (14)

KI =
Ypωpω2

g −Ygωgω2
p

ω2
p−ω2

g

> 0, (15)

where the coefficients Xp = X(Ap,Bp), Yp = Y (Ap,Bp), Xg =
X(Ag,Bg) and Yg = Y (Ag,Bg) are obtained using the inversion

formulas (9) with Ag =G( jωg) =MAg(ωg)e
jϕAg (ωg), for all the

frequencies ωg satisfying the relation

KP = Xg(ωg) =
MBg

MAg(ωg)
cos(ϕBg −ϕAg(ωg)). (16)

A solution Cp(s,ωg) of Design Problem B exists only if:
1) the set Sωg of all the ωg > ωp satisfying (16) is not empty; 2)

Ap ∈ D
−
Bp

and Ag ∈ D
−
Bg
; 3) the parameters KI and KD in (14)

and (15) are real and positive.
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Fig. 6. Functions Xg(ω) (blue) and Xp(ω) (black).

Proof: The design specifications define the position of points

Bp = e j(π+φm), Ap = G( jωp) and Bg = −1/Gm. According
to Property 2, the compensators Cp(s,KD) which move point

Ap ∈ D
−
Bp

to point Bp are obtained using the parameters KP

and KI in (10). The free parameter KD can now be used to
force the loop gain frequency response Cp( jω,KD)G( jω) to
pass through point Bg. This condition can be satisfied only if
a frequency ωg exists such that compensator Cp(s,KD) moves
point Ag =G( jωg) ∈D

−
Bg
to point Bg, that is only if (16) holds.

The frequencies ωg ∈ Sωg satisfying (16) are acceptable only

if the compensator Cg(s,KD) which moves point Ag to point
Bg, obtained using Property 2, is equal to the compensator
Cp(s,KD). This condition is satisfied only if the two compen-
sators share the same KI and KD, that is only if

KI = ω2
pKD−Ypωp = ω2

gKD−Ygωg. (17)

Solving (17) with respect to KD one obtains the expression of
KD given in (14), that can be substituted in (17) obtaining (15).
The solutions are acceptable only if KP,KD,KI > 0.

The solution of equation (16) can be obtained graphically, by
plotting Xg(ω) and by finding all the frequencies ωg ∈ Sωg for

which Xg(ωg) intersects the horizontal line Xp = KP, see Fig. 6.
In the example of Fig. 6 it is Sωg = {ωg1, ωg2} and therefore
there are two solutions: Cp(s,ωg1) and Cp(s,ωg2). The loop
gain frequency responses H11( jω) = Cp( jω,ωg1)G( jω) (red
line) and H12( jω) =Cp( jω,ωg2)G( jω) (magenta line) on the
Nyquist plane are shown in Fig. 5. The two solutions satisfy
the design specifications and are acceptable only if KD > 0 and
KI > 0.

Property 4. The frequencies ωg ∈ Sωg satisfying (16) can be
graphically determined on the Nyquist plane as shown in Fig. 5:

(1) draw the circle C
−
BpKP

( jω) on the Nyquist plane and

determine the parameter KP of compensator Cp(s,KD) as
described in Property 3 when A= Ap and B= Bp;

(2) draw the circle C
−
BgKP

( jω) having its diameter on the

segment defined by points O and
Bg
KP

;

(3) the intersections Ag1, Ag2 of circle C
−
BgKP

( jω) with G( jω)

correspond to the frequencies ωg1, ωg2 belonging to set
Sωg .

Proof: The circles C
−
BpKP

( jω) (black line) and C
−
BgKP

( jω)

(blue line) shown in Fig. 6 represent, respectively, the frequency
responses of functions C

−
BpKP

(s) ∈ C
−
Bp
(KP) and C

−
BgKP

(s) ∈

C
−
Bg
(KP) with KP = Xg given in (16). These two circles can be

easily determined on the Nyquist plane because the points Ap,
Bp and Bg are known from the design specifications and KP is
given by the graphical construction described in Property 3. A
frequency ωg satisfying (16) exists only if

0

Im

Re

D
−
Bg

Ap

ωp

Bp

Bg

ωg1
Ag1

Ag2 ωg2

G( jω)

H11( jω)Bp

KP

Bg
KP

C
−
BpKP

C
−
BgKP

Fig. 7. Graphical solution of Design ProblemC.

G( jωg)CKP
( jωg) = Bg, (18)

where CKP
(s) is the PID compensator (1) with the value of

parameter KP determined as described above. Relation (18) can
also be rewritten as follows

G( jω) =
Bg

CKP
( jω)

= C
−
BgKP

( jω), (19)

with ω = ωg, and therefore it can be solved graphically on the
Nyquist plane by finding the intersections ωg ∈ Sωg of G( jω)

with C
−
BgKP

( jω).

Design Problem C: (φm , Gm , ωg). Given the control scheme
of Fig. 3, the transfer function G(s) and the design specifi-
cations on the phase margin φm, gain margin Gm and phase
crossover frequency ωg, design a PID compensator C(s) such
that the loop gain transfer functionC( jω)G( jω) passes through
point Bg = −1/Gm for ω = ωg and passes through point Bp =

e j(π+φm).

Solution C: Let Ag =G( jωg) denote the value of G( jω) at the

desired phase crossover frequency ωg, and let Bp = e j(π+φm)

and Bg =−1/Gm =MBg e
jϕBg denote the points corresponding

to the desired phase and gain margins. The set Cg(s,ωp) of all
the PID compensators C(s) which solve Design Problem C is
obtained from (1) using the parameters

KP = Xg > 0, KD =
Ypωp−Ygωg

ω2
p−ω2

g

> 0, (20)

KI =
Ypωpω2

g −Ygωgω2
p

ω2
p−ω2

g

> 0, (21)

where Xp = X(Ap,Bp), Yp = Y (Ap,Bp), Xg = X(Ag,Bg) and
Yg = Y (Ag,Bg) are obtained using the inversion formulas (9)

with Ap = G( jωp) =MAp(ωp)e
jϕAp (ωp), for all the frequencies

ωp satisfying the relation

KP = Xp(ωp) =
MBp

MAp(ωp)
cos(ϕBp −ϕAp(ωp)). (22)

A solution Cg(s,ωp) exists only if:
1) the set Sωp of all the ωp > ωg satisfying (22) is not empty; 2)

Ap ∈ D
−
Bp

and Ag ∈ D
−
Bg
; 3) the parameters KI and KD in (20)

and (21) are real and positive.

The proof is quite similar to the one given for Solution B.
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Design Problem D: (φm , Gm). Given the control scheme of
Fig. 3, the transfer function G(s) and the design specifications
on the phase margin φm and gain margin Gm, design a PID
compensator C(s) such that the loop gain transfer function

C( jω)G( jω) passes through points Bp = e j(π+φm) and Bg =
−1/Gm.

Solution D: Let Bp = e j(π+φm) and Bg = −1/Gm =MBg e
jϕBg

denote the points corresponding to the desired phase margin φm
and gain margin Gm. The set CKP

(s,ωp,ωg) of all the compen-
sators C(s) which solve the Design Problem D is obtained as
follows:

a) find all the pairs (ωp, ωg) ∈ Sγω of frequencies which solve
the equation

KP = Xp(ωp) = Xg(ωg), (23)

where the parameter KP > 0 is chosen arbitrarily, SKPω is the
set of all the pairs (ωp, ωg) satisfying (23) with ωg > ωp,
and functions Xp(ωp) and Xg(ωg) are defined in (22) and (16)

with Ap = G( jωp) = MAp(ωp)e
jϕAp (ωp) and Ag = G( jωg) =

MAg(ωg)e
jϕAg (ωg).

b) for each pair (ωp, ωg) ∈ SKPω compute


















KD =
Ypωp−Ygωg

ω2
p−ω2

g

> 0,

KI =
Ypωpω2

g −Ygωgω2
p

ω2
p−ω2

g

> 0.

(24)

A solution exists only if:
1) KP satisfies

0< KP <min(max(Xp(ωp)),max(Xg(ωg))) (25)

2) SKPω is not empty; 3) Ap(ωp) ∈ D
−
Bp

and Ag(ωg) ∈ D
−
Bg
; 4)

KD and KI in (24) are real and positive.

Proof: The proof hinges on the fact that C(s) has to be
design to move point Ap = G( jωp) to point Bp and point
Ag = G( jωg) to point Bg. A solution CKP

(s,ωp,ωg) exists only
if the frequencies ωp and ωg satisfy (22) and (16), that is only if
they satisfy (23). For each value of KP satisfying (25), one can
find the set SKPω of all the solutions (ωp,ωg) of (23).

The solutions of (23) can also be obtained graphically by
plotting Xp(ω) and Xg(ω) and by finding, for each admissi-
ble value of KP, all the pairs (ωp,ωg) ∈ Sωp where Xp(ωp)
and Xg(ωg) intersect the horizontal line KP, see Fig. 6. In the
example of Fig. 6 there are three different solutions: SKPω =

{(ωp1,ωg1), (ωp1,ωg2), (ωp2,ωg2)}. The solution (ωp2,ωg1) is not
admissible because ωp2 > ωg1. The loop gain frequency re-
sponses H11(s), H12(s) and H22(s) of these three solutions on
the Nyquist plane are shown in Fig. 8. These solutions are ac-
ceptable only if parametersKD and KI given in (24) are positive.

The solution of (23) can also be obtained on the Nyquist plane.
Given points Bp and Bg and a desired value for KP > 0, the

circles C
−
BpKP

( jω) and C
−
BgKP

( jω) can be drawn on the Nyquist

plane as the circles having their diameters on the segments

defined by points {O,
Bp

KP
} and {O,

Bg
KP
}, respectively, as de-

scribed in Property (3). Each pair (ωp,ωg) corresponding to the
intersections of G( jω) with circles C

−
BpKP

( jω) and C
−
BgKP

( jω)

is a possible solution for Design Problem D. If G( jω) does

0

Im

Re

D
−
Bp

Ap2
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Bp

Ag1

Ag2

Bg

G( jω)

H11

H12

H21

H22Bp

KP

Bg
KP

C
−
BpKP

C
−
BgKP

Fig. 8. Graphical solution of Design Problem D.

Im

Re

0

q
D
−
B

A

ωp

ωp

B

G( jω)

H( jω)

B
KP

C
−
BKP

Fig. 9. Graphical solution of Design problem A .

not intersect both circles C
−
BpKP

( jω) and C
−
BgKP

( jω), the chosen

value of KP is not acceptable.

5. NUMERICAL EXAMPLES

Design Problem A: Given the following type-1 plant

G(s) =
28(s+1)

s(s+1.5)2(s+3)
,

design a PID compensator C(s) in order to achieve the acceler-
ation constant Ka = 2, the phase margin φm = 50o and the gain
crossover frequency ωp = 2.5.

Solution: The integral constant KI is determined by steady-
state requirement as

Ka = lim
s→0

s2C(s)G(s) =
28KI

1.52 ·3
= 2,

that leads to KI = 0.482. The point A = G( jωp) = 0.84e j178
o

belongs to the admissible domain D
−
B defined by B = e− j230o ,

see Fig. 9. From inversion formulae (9) it follows that X =
0.734 and Y = 0.939. Finally relations (11) lead to KP = 0.734
and KD = 0.433. The designed compensator (1) is

C(s) = 0.734+0.433s+
0.482

s
.

The corresponding loop gain transfer function H( jω) =
C( jω)G( jω) is plotted in red in Fig. 9. The improvement of
the closed-loop step response is shown in Fig. 10
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Fig. 10. Design problem A: closed-loop step responses without
the controller y1(t) and with the controller y1(t).

Design Problem B: Given the system proposed in Wang et al.
(1999)

G(s) =
1

0.12s2+1.33s+1.24
e−2s, (26)

design a PID compensator to meet the following design specifi-
cations: phase margin φm = 60◦, gain margin Gm = 3 and gain
crossover frequency ωp = 0.3325.

Solution. The modulus and the phase of point Bp are MBp = 1,
ϕBp = −120

◦. The value of KP obtained by (14) is KP = Xp =
0.6107, the frequencies obtained solving (16) are ωg1 = 1.1052
and ωg2 = 1.257, see Fig. 6. The corresponding points on

G( jω) are Ag1 = 0.546e j180
◦
and Ag2 = 0.506e j158.1

◦
. From

(14) and (15), the regulators satisfying the Design Problems B
are

C1(s) =
0.3449s2+0.6107s+0.4212

s
, (27)

C2(s) =
0.4706s2+0.6107s+0.4351

s
. (28)

The corresponding loop gain transfer functions H11( jω) (red
line) and H12( jω) (magenta line) are plotted in Fig. 5.

Design Problem C: Given the plant (26), design a PID com-
pensator to meet design specifications on the phase margin
φm = 60◦, the gain margin Gm = 3 and the phase crossover
frequency ωg = 1.1052.

Solution. The modulus and the phase of point Bg are MBg =
0.333 and ϕBg = 180◦. The value ofKP obtained by (20) isKP =
Xg = 0.6107. The frequencies obtained solving (22) are ωp1 =
0.332 and ωp2 = 1.18, see Fig. 6. The corresponding points on

G( jω) are Ap1 = 0.767e− j57.9◦ and Ap2 = 0.525e j168.7
◦
. Since

ωp2 > ωg, the corresponding PID is not acceptable. The unique
admissible solution is the PID (27) obtained substituting ωp1 in
(20) and (21) . The corresponding loop gain transfer function
H11( jω) is plotted in red in Fig. 7.

Design Problem D: Given the plant (26), design a PID com-
pensator to meet design specifications on the phase margin
φm = 60◦and the gain margin Gm = 3.

Solution. The design specifications define the points Bp =

e− j120◦ , Bg = 0.333e j180
◦
and KP = Xp = Xg = 0.6107. The

four solutions (ωpi,ωg j) of equation (23) can be graphically
determined as shown in Fig. 6. The two acceptable regula-
tors (27), (28) are obtained for (ωp1 = 0.332,ωg1 = 1.1052)
and (ωp1 = 0.332,ωg2 = 1.257). The solution determined by
(ωp2 = 1.18,ωg1 = 1.1052) is not acceptable because ωp2 >
ωg1. The solution determined by (ωp2 = 1.18,ωg2 = 1.257)
is not acceptable because the PID parameters KD and KI are
negative and the controlled system is unstable. The obtained
loop gain transfer functions are plotted in Fig. 8.

6. CONCLUSION

The presented graphical and analytical methods for the design
of PID controllers are based on the use of PID inversion formu-
lae, which allow to achieve given design specifications on the
gain margin, the phase margin and the gain or phase crossover
frequency. One of the main advantages of the graphical solution
over other graphical approaches, such as Yeung (2000), is that it
can be directly determined in the complex plane by finding the
intersections of the frequency response of the plant with circles,
that can be easily determined from the design specifications.
The simplicity of the method and its graphical interpretation
on the Nyquist plane seem to be useful both for educational
and industrial purposes. It is well known that in the process
of learning the graphical representation of a numerical solution
makes it easier to understand and easier to recall. The drawing
and the comparison of the same function plotted in different
diagrams, i.e. the loop gain frequency response on the Bode,
the Nyquist and the Nichols diagrams, have a great educational
value. They emphasize some properties hidden in a single rep-
resentation and lead to a deeper knowledge of the concepts. In
this paper some properties of PID regulators on the Nyquist
diagrams are pointed out. These have been used to exactly solve
the considered design problem to obtain the system robustness.
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