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Abstract: This paper describes a lecture based on a laboratory experiment of the under-graduate course 

of Control and Automation Engineering at the Federal University of Santa Catarina. The goal is to show 

to the students the differences, codes and performance of tuning methods for the PID controller 

implemented with online back-calculation anti-windup scheme applied to a MTG (motor+tacogenerator) 

plant. The assessed system is used in many activities of a laboratory discipline of Feedback Systems. The 

whole study is conducted with a real plant instead of relying on computational numerical simulation. 

Analyzed tuning methods are: Ziegler-Nichols, Chien-Hrones-Reswick, Åström-Hägglund, AMIGO. 

Finally, the PID, tuned by the Internal Model Control (IMC), is also evaluated for different filter design 

parameters. The online experiment gives a better understanding, for the students, of how different tuning 

methods modify the system stability and the magnitude of the control signal. 

Keywords: PID controllers, control system analysis, anti-windup, back-calculation, educational. 

 

1. INTRODUCTION 

 

Industrial processes are subjected to restrictions. For 

example, a controller operates in a limited range of 1 to 5 V 

or 4 to 20 mA, a valve cannot be opened more than 100% and 

less than 0% or a motor working as an actuator has a speed 

limit. These constraints represent operation limitations on the 

process. As a result, the real input signal is temporarily 

different from the output signal of the controller. When this 

happens, if the controller is initially designed to operate in a 

linear region, the behavior of the closed-loop system dynamic 

deteriorates as compared to the expected linear performance. 

This inadequate behavior (saturation of the direct-loop) is 

called windup. Figure 1 illustrates a closed-loop control 

system with an ideal PID controller and a limitation of 

magnitude on the control effort. 

 

 

Fig. 1 – Closed-loop control system: constraint case. 

 

The classical form of the saturation on the magnitude of the 

control signal, shown in Figure 1, is described by the 

following equation: 
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where the signals ub and uf are, respectively, the controller 

output and the real input of the process. 

 

To understand the windup phenomenon in a control-loop, let 

us consider the second-order continuous system represented 

through the following model: 
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controlled by a PI+D controller with and without the 

presence of saturation in the control signal (umin = 0 V, umax = 

5 V). This simulation can be conducted at Simulink or 

ScicosLab computational platforms. Modeling the system by 

a first-order differential equation, Kp= 1, τ = 5.17 s, θ = 1 s, 

and applying the first rule of Ziegler-Nichols tuning, it is 

possible to set the following parameters: Kc = 6.204, Ti = 2, 

Td = 0.5. Figures 2 and 3 show the step response for a 

setpoint tracking of magnitude 2.5. The closed-loop control 

system with saturation presents an excessive overshoot and a 

long settling time when compared with the case without 

saturation (observe that saturation effectively opens the loop). 

Therefore, this simple example shows that the nonlinear 

dynamic of the actuator deteriorates the performance of the 

closed-loop control system and, a control structure 

modification on the design of the PI+D controller is 

necessary to avoid, for example, the actuator wear and an 

inappropriate loop behavior. 
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Fig.2 – Closed-loop step response with PID controller 

without saturation. 

 
Fig. 3 – Closed-loop step response with PID controller with 

saturation. 

 

Assuming that control education must be conceptual and 

experimental and as an attempt to give the practical loop 

characteristics of the PID tuning in the back-calculation anti-

windup scheme, this paper shows a laboratory lecture of a 

discipline, called Feedback Systems, at the Federal 

University of Santa Catarina of an under-graduate course in 

Control and Automation Engineering. The goal is to give to 

the students not only ideas of the system stability aspects 

using different PID tuning sets but also online numerical 

code, energy factor of the control signal and loop saturation 

using setpoint changes. 

 

In addition, the PID controller is the most adopted controller 

in the industry because of its preferable cost/benefit ratio 

when compared to other control techniques. The study of 

forms of configuration and parameter tuning are important 

aspects for teaching in engineering courses (Ang et al., 2005; 

Åström and Hägglund, 2006). 

 

2. ANTI-WINDUP TECHNIQUE 

 

Valves and motors as actuators present operating limits. 

When the control signal reaches the maximum or minimum 

limit of the actuator, control saturation happens. This 

phenomenon makes the feedback-loop inaccurate, because 

the actuator remains on its maximum or minimum limit 

independently of the process output. The consequence is that 

the transitory response becomes oscillatory, which is 

extremely unsatisfactory in industrial processes. If a 

controller with integral action is utilized, the error continues 

to be integrated and the integral term becomes too big, this 

means, continues to be greatly increased (windup). For the 

controller to come back to operate in the linear region it is 

necessary to decrease the integral term. So, it is expected that 

the error measurement changes its signal and, for a long 

period of time, apply in the controller input a signal of 

opposite error. There are several ways to avoid the integrator 

windup. Next, is reviewed the popular technique called back-

calculation (with the basic idea of stopping the integrator 

being continuously increased when the saturation happens). 

Figure 4 illustrates the block diagram of the anti-windup PID 

controller with back-calculation scheme. 

 

 

Fig.4 – Anti-windup PID controller topology. 

 

The basic idea of the back-calculation technique is: when the 

output of the actuator saturates, the integral term is again 

calculated in a way that its value stays inside the linear limit 

of the actuator. It is advantageous making this correction not 

instantly, but dynamically with a time constant Taw. 

 

In Figure 4, the system presents an additional feedback-loop. 

The difference between the input and the output of the 

actuator constitutes an error eaw that is added to the input of 

the integrator with a gain of 1/Taw. When the saturation does 

not exist, the error eaw is null and the controller is operating in 

the linear region. In other words, the signal uf is not saturated. 

If there is saturation, eaw is different from zero. The time 

taken by the integrator input to tend to zero is determined by 

the gain 1/Taw, where Taw can be interpreted as the time 

constant that determines how fast the input of the integrator 

becomes zero. The selection of small values for Taw can be 

advantageous. However, a small value choice for Taw should 

be carefully made, especially for systems with derivative 

action. What may happen is that the measurement noise can 

take the output of the controller into saturation state, resulting 

in a fast actuation of the anti-windup loop and making the 

input of the controller undesirably zero. In practice, Taw 

should be bigger than Td and smaller than Ti. An empiric 

selection rule suggested is Taw =
i dTT  or Taw = Ti (Åström 

and Hägglund, 1995; Visioli, 2006). 

 

Figures 5 and 6 show the step response for a setpoint with 

magnitude 2.5, using the system model as in (1), where the 

plant is controlled by a PI+D controller (Kc = 6.204, Ti = 2, 

Td = 0.5, Taw = 1) assessed with and without the anti-windup 
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compensation. The control system with anti-windup presents 

small oscillation and better settling time. 

 
Fig. 5 – Closed-loop dynamic with PID controller without 

anti-windup. 

 
Fig. 6 – Closed-loop dynamic with PID controller with anti-

windup. 

 

The anti-windup technique provides a shorter saturation time 

in the control signal. This is advantageous from the operating 

viewpoint, it means, improves the closed-loop stability, 

reduces the wear of instrumentation and extends the actuator 

life-time. There are many references explaining the theory of 

anti-windup techniques, which can provide a more formal 

description and insight about the implementation (Bohn and 

Atherton, 1995; Peng et al. 1996). 

 

3. PID CONTROLLER EVALUATION ON A 

PRACTICAL ESSAY 

 

The experimental plant, called MTG, to be utilized in the 

analysis of the PID controller with the objective of reducing 

the windup effect in the control loop, consists of a DC motor 

coupled by a small belt to another DC motor which is 

responsible for generating the tachometer voltage (speed 

measurement), as shown in Figure 7. 

 

 

 

Fig. 7 – MTG experimental prototype. 

 

The input signal for the plant is a voltage for the DC motor 

and the output is also a voltage corresponding to the angular 

speed. The voltage is ranging from 0 to 5 V and the sampling 

period is 0.1 s. Plant model parameters are calculated from an 

experimental essay (step response) with the control 

magnitude of 3 V, as shown in Figure 8. 

 

 

Fig. 8 – MTG response for a step of 3 V. 

 
The estimated model that represents the MTG dynamic is 

given by 
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Table 1 illustrates the implementation, in a machine cycle, 

the real-time PID controller with saturation and without anti-

windup technique. The control law, before the saturation, ub 

is calculated by the following parts: proportional, integral and 

derivative bands are given by up, ui and ud. Since the aim is to 

teach experimental PID control education and to have the 

PID structure in Figures 1 and 2 realizable, the integral part is 

adjusted with the forward rectangular approach while the 

derivative with the first-order difference (Bobál et al., 2005). 

 

Table 1 – Basic cycle of the PID signal with saturation 

e(k) = yr(k) – y(k); 

up(k) = kc*e(k); 

ui(k) = ui(k–1) + ((kc*ts)/ti)*e(k–1); 

ud(k) = ((kc*td)/ts)*(e(k) – e(k-1)); 

ub(k) = up(k) + ui(k) + ud(k); 

if  ub(k) <= umin; 

          uf(k) = umin; 

          elseif ub(k) >= umax; 

          uf(k) = umax; 

          else 

          uf(k) = ub(k); 

end 

 

Table 2 describes the classical tuning methods for 

implementation of the PID controller and with Taw = i dTT  

(O’Dwyer, 2000). 

Motor 

Dynamic +
First-Order 

Filter

Generator 

Constant

Input 

Voltage

Disturbance

Output 

Voltage
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Table 2 – Classical tuning for the PID controller 

Tuning Method Kc Ti Td 

Ziegler-Nichols 
p

1.2

K





 
2  0.5  

Chien-Hrones-

Reswick p

0.6

K





   0.5  

Åström-

Hägglund p

0.94

K




 2  0.5  

AMIGO 
p

1
0.2 0.45

K
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Using the estimated model described in (3) and the tuning 

rules from Table 2, it is possible to obtain the gains of Table 

3, for the PID controller (Åström and Hägglund, 2006). 

 

 

Table 3 – PID controller gains 

Tuning Method Kc Ti Td Taw 

Ziegler-Nichols 11 0.2 0.05 0.1 

Chien-Hrones-

Reswick 
5.5 1.1 0.05 0.2345 

Åström-Hägglund 8.6167 0.2 0.05 0.1 

AMIGO 4.2917 0.4381 0.049 0.146 

 

 

System responses for each tuning method are illustrated in 

Figures 9 to 12. 

 

 
Fig. 9 – System response to PID tuned by Ziegler-Nichols 

method. 

 

The Ziegler-Nichols tuning method provides the most 

aggressive control between the four methods. This kind of 

behavior gives a large saturation area on the control signal 

with a short settling time. 

 
Fig. 10 – System response to PID tuned by Chien-Hrones-

Reswick method. 

 

The Chien-Hrones-Reswick tuning method does not present 

overshoot. It shows the longest settling time, the second less 

aggressive control and the lowest saturation area. 

 
Fig.11 – System response to PID tuned by Åström-Hägglund 

method. 

 
Fig. 12 – System response to PID tuned by AMIGO method. 
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The Åström-Hägglund tuning method presents a very similar 

response compared to the Ziegler-Nichols method but with a 

much less aggressive control. It also has less overshoot. The 

settling time and saturation area is very close to the Ziegler-

Nichols method. 

 

The AMIGO tuning method is the one that presents the 

second lowest saturation area between the four methods. The 

combination of parameters results in a good settling time 

according to the saturation area of the other methods. The 

settling time is still larger than the Ziegler-Nichols and 

Åström-Hägglund methods, but this is compensated by the 

smaller overshoot and the less aggressive control. 

 

4. IMC BASED PID TUNING 

 

The IMC tuning method is becoming largely applied in the 

industry. So, essays based on the IMC-PID tuning method are 

presented as an alternative solution for the anti-windup PID 

strategy reviewed in this paper. This calibration method can 

provide good results not only decreasing the saturation level 

and overshoot of the system response but also by keeping the 

system speed at reasonable levels  more theoretical 

background of the IMC PID tuning can be found in Rivera et 

al. (1986) and Zulkeflee et al. (2010). 

 

Next, the PID controller for the MTG plant is tuned by the 

IMC-PID settings. The goal of the control system is to 

achieve a fast and accurate setpoint tracking. IMC-PID tuning 

parameters for first-order plus dead-time processes are 

described in Table 4. 

 

Table 4 – PID controller settings with IMC strategy 

PID Parameters IMC Tuning  

Kc )5.0(K

5.0

p 


 

Ti  5.0  

Td 




2
 

 

Due to Kc being inversely related to the filter constant λ 

(associated with the plant response speed and the energy 

factor of the control), different essays with different values of 

λ, to verify the system response, are implemented. The 

parameter λ must be greater than 0.8θ because of the model 

uncertainty due to the Padé approximation. The integral time 

and derivative time of the PID controller are constants and 

with values Ti = 1.15, Td = 0.0478, respectively, and Taw = 

0.2345. Parameter Kc changes according to λ as displayed in 

Table 5. 

 

Table 5 – Parameter Kc of the PID according to λ 

λ Kc 

0.8θ 7.3718 

9.7θ 0.9395 

 

Closed-loop system results of the experiment, according to 

the variation of λ, are displayed in Figures 13 and 14. 

 
Fig. 13 – System response to PID tuned by IMC-PID method 

for λ = 0.8θ. 

 
Fig. 14 – System response to PID tuned by IMC-PID method 

for λ = 9.7θ. 

 

Comparing the IMC-PID tuning with the other four methods 

displayed in Section 3, it can be observed that the saturation 

area is very small for greater values of Kc and almost absent 

for smaller values. The system also does not present 

overshoot for any value of λ. Comparing the results with the 

other method that presents no overshoot, Chien-Hrones-

Reswick tuning, it is possible to note that the settling time of 

the IMC-PID tuning is smaller. 

 

Utilizing λ = 9.7θ the system achieved a control without 

saturation, but has slower behavior, and therefore, being the 

only method of the ones analyzed that can remove the 

saturation level on the control signal. 

 

These experiments can be implemented with the Matlab 

numerical code presented in Appendix A. 

 

5. CONCLUSIONS 

 

Through different tuning methods the process control 

engineering students can understand and observe how the 
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PID parameters affect the system dynamic under an on-line 

numerical code and anti-windup scheme. This practical case 

study, combined with the fact that the experiment is 

conducted over a real plant, not over a computer simulated 

model, opens the mind of the students on how a real system 

works, considering that an experimental system has 

measurement noise and does not have the exact behavior of 

the model obtained from the step response identification. 

 

Costing less than some engineering textbooks, each 

university can build a MTG plant for control lab lessons and 

reinforcing classroom concepts. Another important point is 

that the numerical code and PID tuning methods presented in 

this paper do not apply only to the MTG plant, but for any 

stable system with first-order approximated behavior. 
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Appendix A. MATLAB SIMULATION CODE 

Matlab code of the PID controller 

clear all; close all; clc; 

% ----- Initial conditions 

nit = 250; ts = 0.1;umin = 0; umax = 4.9; 

ub(1:3) = 0; uf(1:3) = 0; erro(1:3) = 0; y(1:3) = 0; 

up(1:3) = 0; ui(1:3) = 0; ud(1:3) = 0; eaw(1:3) = 0; 

% ----- Reference 

yr(1:80) = 3.5; yr(81:160) = 1.5; yr(161:250) = 3.5; 

% ----- Plant model parameters 

kp = 1.2; tau = 1.1; teta = 0.1; 

lambda = 9.7*teta; % the IMC-PID tuning 

% ----- PID controller parameters 

method = 5; % Tuning method for the PID 

switch method 

case 1 % Ziegler-Nichols 

kc = (1.2*tau)/(kp*teta); ti = 2*teta; td = 0.5*teta; 

case 2 % Chien-Hrones-Reswick 

kc = (0.6*tau)/(kp*teta); ti = tau; td = 0.5*teta; 

case 3 % Åström-Hägglund 

kc = (0.94*tau)/(kp*teta); ti = 2*teta; td = 0.5*teta; 

case 4 % AMIGO 

kc = (1/kp)*(0.2 + 0.45*(tau/teta)); 

ti = ((0.8*tau + 0.4*teta)/(0.1*tau + teta))*teta; 

td = (0.5*tau*teta)/(tau + 0.3*teta); 

case 5 % IMC-PID 

kc = (tau+0.5*teta)/(kp*(lambda+0.5*teta)); 

ti = tau+0.5*teta; 

td = tau*teta/(2*tau+teta); 

end 

taw = sqrt(ti*td); 

% ----- Start the data acquisition board 

inicializa_placa(5); 

% ----- Closed-loop experiment 

for k = 3:nit 

% ----- Output and error 

     y(k) = recebe_dado(1); 

     erro(k) = yr(k) - y(k); 

% ----- Control law with anti-windup 

     up(k) = kc*erro(k); 

     ui(k) = ui(k-1) + ((kc*ts)/ti)*erro(k-1) + … 

                 (ts/taw)*eaw(k-1); 

     ud(k) = ((kc*td)/ts)*(erro(k) - erro(k-1)); 

     ub(k) = up(k) + ui(k) + ud(k); 

% ----- Saturation 

     if ub(k) <= umin 

         uf(k) = umin; 

         elseif ub(k) >= umax 

         uf(k) = umax; 

         else 

         uf(k) = ub(k); 

     end 

     eaw(k) = uf(k) - ub(k); 

% ----- Send control signal to the board 

     envia_dado(1,uf(k)); atraso_ms(1000*ts); 

end 

% ----- End the data acquisition board 

finaliza_placa; 

% ----- Simulation results 

t = 1:nit; 

subplot(2,1,1), plot(t,y(t),t,yr(t),'LineWidth' , … 

     3), ylabel('output and reference (V)'), xlabel('sample'); 

subplot(2,1,2), plot(t,ub(t),t,uf(t),'LineWidth' , … 

     3), ylabel('control (V)'), xlabel('sample'); 
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