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Abstract: By today, PI-PID controllers remain as reliable control solutions in a wide variety of
industrial applications. Several tuning techniques have been designed and proposed successfully
over the years. However the difficulty for tuning procedures increase as multiple requirements
and criteria to evaluate the closed loop performance are demanded to be fulfilled. In this work,
a multi-objective optimization design methodology is applied to the SISO benchmark for PID
control based on the Boiler Control Problem. The main advantage of a multi-objective design
methodology, is the capacity to perform an analysis on the trade-off among objectives.
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1. INTRODUCTION

PID controller remains as a reliable and practical control
solution for several industrial processes. Owing to this,
research for new tuning techniques is an ongoing research
topic (Ge et al. (2002); Toscano (2005); Goncalves et al.
(2008); Astrom et al. (1998); Panagopoulos et al. (2002);
Alfaro (2007); Reynoso-Meza et al. (2012b)). Current
research points to develop tuning techniques to guarantee
reasonable stability margins as well as a good overall
performance for a wide variety of process. One of the
main advantages of PI-PID controllers is their ease of
implementation as well as their tuning, giving a good
trade-off between simplicity and cost to implement (Tan
et al. (2004); Stewart and Samad (2011)).
When multiple design objectives to fulfil are required, it
is said to have a multi-objective problem (MOP). In a
MOP, the designer (control engineer) has to deal with
several requirements, and searches for a solution with a
desired trade-off between objectives. As a Decision Maker
(DM) she/he has to design or translates such desired trade-
off in the optimization problem at hand. A traditional
approach to solve a MOP is to translate it into a single-
objective problem using weighting factors, indicating the
relative importance among objectives. More elaborated
methods to incorporate the preference handling have been
developed (Marler and Arora (2004)) such as lexicographic
methods, goal programming and physical programming.
However, new mechanisms and techniques are still required
to handle preferences in a flexible and meaningful way.
In this paper, we propose a tuning methodology based
on multi-objective optimization (MOO) to adjust the
parameters of a PID controller for the boiler control
problem for the IFAC Conference on Advances in PID
Controllers. The main advantage of this approach is to
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generate a set of potentials solutions, where the designer
can analyze the trade-off among conflicting objectives. The
rest of this paper remains as follows: in section 2, a brief
benchmark introduction is given. In section 3, the multi-
objective optimization design methodology is explained.
In section 4 and 5 the results are discussed and evaluated
in the benchmark framework. Finally, some concluding
remarks are given.

2. BENCHMARK DEFINITION

The process under consideration is the benchmark for PID
control 2012 described by Morilla (2012). It is a benchmark
which proposes a boiler control problem (Morilla (2010);
Fernández et al. (2011)) based on the work of Pellegrinetti
and Bentsman (1996). The original problem stated a 3x3
MIMO system with a measured load disturbance:

[

Y1(s)
Y2(s)
Y3(s)

]

=

[

g11(s) 0 g13(s)
g21(s) g22(s) 0
g31(s) 0 g33(s)

][

U1(s)
U2(s)
U3(s)

]

+

[

g1d(s)
0

g3d(s)

]

D(s) (1)

Where the inputs are fuel flow, water flow and air flow
whilst the outputs are steam pressure, oxygen level and
water level. For this conference, a reduced MIMO and
SISO version are available to evaluated different controller
tuning procedures. In this work, we focus in the SISO PID
controller tuning, where the fuel flow is manipulated to
control the steam pressure.
The benchmark also defines an index to evaluate the
performance for a given PID controller. It is an aggregate
objective function, which combines ratios of IAE, ITAE
and IAVU indexes. More details can be consulted in
Morilla (2012).
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Fig. 1. SISO loop (taken from Morilla (2012)).

3. MULTI-OBJECTIVE OPTIMIZATION DESIGN
METHODOLOGY

MOO can handle with MOP owing to its simultaneous
optimization approach. The MOO approach offers to the
designer a set of solutions, the Pareto set, where all the
solutions are Pareto-optimal (Marler and Arora (2004)).
This set of solutions will offer to the DM a higher degree
of flexibility at the decision making stage. The role of the
designer is to select the most preferable solution according
to his needs and preferences for a particular situation.
A MOP, without loss of generality (since a maximization
problem can be converted to a minimization problem), can
be stated as follows:

min
θ∈ℜn

J(θ)= [J1(θ), . . . , Jm(θ)] ∈ ℜm (2)

In general, it does not exist an unique solution because
there is not a solution better than other in all the ob-
jectives. Therefore a set of Pareto-optimal solutions, the
Pareto set ΘP is defined and its projection into the objec-
tive space is known as the Pareto front JP . Each point in
the Pareto front is said to be a non-dominated solution.
MOO techniques search for a discrete approximation Θ∗

P

of the Pareto set ΘP capable of generate a good quality
description of the Pareto front J∗

P
. In this way, the DM has

a set of solutions for a given problem and a higher degree
of flexibility to choose a particular or desired solution.
A general framework is required to successfully incorpo-
rate the MOO approach into any engineering process. A
multi-objective optimisation engineering design (MOOD)
methodology is shown in Figure 2 (Reynoso-Meza et al.
(2012a)). It consists in three main steps: the MOP defini-
tion, the MOO process and the decision-making stage.

Fig. 2. A multiobjective optimisation engineering method-
ology.

3.1 MOP definition

A PI controller is selected, mainly for comparison purposes
with the benchmark proposals:
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Fig. 3. Typical representation of the Pareto front (a) and
the Pareto set (b). Points at the same level in the LD
have correspondence on each graph.

Gc(s) = kc

(

1 +
1

Tis

)

E(s) (3)

where kc is the proportional gain, Ti the integral time
(sec.) and E(s) the error signal. A feedforward compen-
sator is integrated with the PI controller, according to
Guzmán and Hägglund (2011)
A multi-objective problem with three objectives is pro-
posed:
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Fig. 4. 3D visualization. The darker the solution, the most preferable according to the benchmark criteria (test 2).

min
θ∈ℜ2

J(θ) = [f IAE(θ),−ki,Ms] (4)

where θ = [kc, Ti], f IAE(θ) is the integral of the ab-
solute error for a step reference change in simulation
test (with a previously identified model), ki = kc/Ti

the integral gain of the controller and Ms the maximum
value of the sensitivity function Ms = max |S(jω)| =

max
∣

∣

∣

1
1+Gp(jω)Gc(jω)

∣

∣

∣
. It has been notice in Astrom et al.

(1998) that the integral gain is related with the integral
of error in the load response (

∫

e · dt ≈ 1/ki). Therefore,

J(θ) = [f IAE(θ),−ki,Ms] describes a trade-off between
set-point response, load rejection performance and robust-
ness.

3.2 Multi-objective optimization

Several algorithms used to calculate J
∗
P have been widely

proposed, for example the Normal Boundary Intersection
method of Das and Dennis (1998) or the Normal con-
straint method from Messac et al. (2003), but lately multi-
objective evolutionary algorithms (MOEA’s) have been
used due to its flexibility to deal with non-convex and
highly constrained functions (Coello and Lamont (2004)).
In this work, the sp-MODE algorithm from Reynoso-Meza
et al. (2010); Reynoso-Meza (2009) is used to generate the
Pareto front approximation J

∗
P .

3.3 Decision making

The selection of a trade-off solution, according with the
designer preferences, takes place in a posteriori analysis on
the Pareto front J

∗
P . In this work, to visualize the calcu-

lated front, the Level Diagram (LD) visualization of Blasco
et al. (2008) is used. The LD helps the DM to perform an
analysis on the obtained Pareto front Θ∗

P , which is not a
trivial task when the number of objectives is bigger than
three. The LD visualization is a useful technique to analyze
m-objective Pareto fronts (see for example Reynoso-Meza
et al. (2009, 2012a)); it is based on the classification of

the Θ∗
P calculated. Each objective Jq(θ) is normalized

with respect to its minimum and maximum values. After-

wards, to each normalized objective vector Ĵ(θ) a p-norm

‖Ĵ(θ)‖p :=

(

m
∑

q=1
‖Ĵ(θ)q‖

p

)1/p

is applied to evaluate the

distance to an ideal solution J
ideal = J

min.
The LD visualization proposes a graphical array for ev-
ery objective q ∈ [1, . . . ,m] and every decision variable

l ∈ [1, . . . , n]. The ordered pairs
(

Jq(θ), ‖Ĵ(θ)‖p

)

in each

objective sub-graphic and
(

θl, ‖Ĵ(θ)‖p

)

in each decision

variable sub-graphic are plotted. Therefore, a given so-
lution will have the same y-value in all graphics (see
figure 3). This correspondence will help to evaluate general
tendencies along the Pareto front and to compare solutions
according with the selected norm. In all cases, the lower
the norm, the closer to the ideal solution; to plot the LD
visualization, the LD-Tool 1 is used. For the remaining
of this work the ‖ · ‖2 norm will be used for the sake of
simplicity.

4. DEVELOPMENT

As we are looking for a controller with better perfor-
mance than the reference controller (θRef = [2.5, 50]),
we evaluate it in the identified model 2 . In this case,
J1(θRef ) ≈ 60. Therefore, we constraint the solutions in
the Pareto front approximation to have a J1(θ) ≤ 70. The
sp-MODE algorithm executed 2020 function evaluations
to approximate a Pareto front. In figure 4 and 5 the 3D
and LD visualization are shown, respectively.
In figure 4 the reference controller, as well as the evaluated
controller (θEval = [5.0, 25]) of the benchmark are shown.

1 Free GUI available at http://www.mathworks.com/

matlabcentral/fileexchange/24042
2 G(s) = 0.3934

45.6794s+1
e−3.42s; This model was obtained with a step

response experiment using the identification toolbox of matlab.
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Fig. 5. LD visualization. The darker the solution, the most preferable according to the benchmark criteria (test 2).

Notice how both controllers converge into the Pareto front
approximation. It means that both of them are Pareto
optimal (according to the objective vector statement using
in the optimization). The evaluated controller is not better
than the reference controller, but it is a most desirable
solution, according with the benchmark function cost.
All controllers were evaluated in the benchmark model
with the second test (which is similar to the one used
in the identified model in the optimization step) to use
their index value as a new indicator for selection. This
information can be included in the LD visualization using
a colour coding. In this case, the darker the solution, the
most preferable according with the benchmark function
cost. It is possible to appreciate in figure 5 the preferable
zone according with such indicator.

5. TEST

The most preferable controller from the Pareto front ap-
proximation is selected (θPref = [3.48, 27.45]), and com-
pared with the evaluated controller from the benchmark.
This controller has a small ki value when compared with
others controller along the Pareto front. This means it will
have a worst load rejection performance. Nevertheless, as
the main load is measured and tackle by the feedforward
compensator, we can rely in this controller. A new exper-
iment is defined, with a lineal load disturbance (from 46
to 50 %) from time 100 to 800 sec. followed by a setpoint
change (60 to 50 %) at time = 1000 secs. Results from
this experiment are shown in figures 6 to 13. The most
appreciable change is in the fuel flow, where the manipu-
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lated variable saturates (same anti-windup mechanism is
incorporated in both controllers).

6. CONCLUSIONS

In this work, a multi-objective optimization design method-
ology (MOOD) for PID controller tuning has been used. As
illustrative example, a PI controller was adjusted for the
SISO benchmark control problem of the IFAC Conference
on Advances in PID Controllers. The MOOD methodol-
ogy consist on three main steps: multi-objective problem
definition, multi-objective optimization process and multi-
criteria decision making.
With this approach, a set of potential solutions is calcu-
lated. This allows to analyse the trade-off among solu-
tions and select the most preferable solution, according
to a given problem. Although the index defined in the
benchmark is used to detect a desirable zone in the Pareto
front, the MOOD allows to embed the DM in the final
selection of the solution. This is a more flexible approach,
since it is possible to select another Pareto-optimal so-
lution (but sub-optimal according with a given index) to
improve one desirable objective, in exchange of another(s).
Furthermore, new indexes or measurements not used in
the optimization stage could be included in the decision
making step (control effort, raising time, overshoot, for
example). This would be helpful to the DM to perform
and justify his/her final selection.
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Fig. 6. Drum water level performance for evaluated con-
troller θEval = [5.0, 25].
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Fig. 7. Fuel flow performance for evaluated controller
θEval = [5.0, 25].
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Fig. 8. Oxygen level performance for evaluated controller
θEval = [5.0, 25].
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Fig. 9. Steam pressure performance for evaluated con-
troller θEval = [5.0, 25].
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Fig. 10. Drum water level performance for preferable
controller θPref = [3.48, 27.45].
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Fig. 11. Fuel flow performance for preferable controller
θPref = [3.48, 27.45].
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Fig. 12. Oxygen level performance for preferable controller
θPref = [3.48, 27.45].
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Fig. 13. Steam pressure performance for preferable con-
troller θPref = [3.48, 27.45].
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