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Abstract: In this work, an auto-tuning procedure for PID controllers is presented. This auto-
tuning procedure identifies a FOPDT model for a given process and uses an evolutionary
algorithm to solve a constrained non-convex optimization problem to adjust the parameters
of a PID controller with derivative filter. The auto-tuning procedure is validated with a set of
process with different characteristics. Presented results validate the auto-tuning algorithm as a
practical and viable application for auto-tuning procedures.
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1. INTRODUCTION

PI-PID controller remains as a reliable and practical con-
trol solution for several industrial processes. Owing to this,
research for new tuning techniques is an ongoing research
topic (see for example Ge et al. (2002); Toscano (2005);
Goncalves et al. (2008); Astrom et al. (1998); Panagopou-
los et al. (2002); Alfaro (2007)). Current research points
to guarantee reasonable stability margins as well as a good
overall performance for a wide variety of process. One of
the main advantages of PI-PID controllers is their ease
of implementation as well as their tuning, giving a good
trade-off between simplicity and cost to implement (Tan
et al. (2004); Stewart and Samad (2011)).
Auto-tuning routines for PI-PID commercial controllers
are a highly desirable characteristic for the industry. With
such applications, it is possible to reduce the amount of
time required to adjust the controller parameters for a
given process, as well as the expertise required for such
task. Because of this fact, several commercial products
include auto-tuning procedures. Nevertheless, in several
circumstances those auto-tuning procedures give as result
a poor performance (Greg Baker (2009)) or guarantee a
good performance under particular circumstances. For this
reason, new auto-tuning techniques to face a wide variety
of process are focus of attention for researchers.
In this work, we shown and implement an on-line auto-
tuning algorithm for PID controllers based on evolution-
ary algorithms (EvoTune in the following). The EvoTune
algorithm solve a constrained non-convex optimization
statement for an identified FOPDT process to adjust the
parameters of the PID controller. The remain of this work
is as follows: in section 2, a brief problem description is
given. In section 3, the optimization problem is stated
whilst in section 4 the EvoTune algorithm is explained. In
section 5, the EvoTune algorithm is evaluated over a set
⋆ This work was partially supported by the projects ENE2011-25900
and TIN2011-28082 from the Ministerio de Ciencia e Innovación,
Gobierno de España and the Universitat Politécnica de València by
the project PAID-06-11 and the FPI-UPV 2010/19 grant.

of benchmark processes. Finally, some concluding remarks
are given.

2. PROBLEM DESCRIPTION

Here, we deal with the auto-tuning procedure of a PID
controller with derivative filter:

Gc(s) = kc

(

1 +
1

Tis
+

Tds
Td

N
s+ 1

)

E(s) (1)

where kc is the proportional gain, Ti the integral time
(sec.), Td the derivative time (sec.), N the derivative filter
and E(s) the error signal.
The desired characteristics for the auto-tuning procedure
are:

• The algorithm must be executed in each sampling
time.

• The algorithm must include an experiment phase to
get information from the process.

• The algorithm gets two measurements from the pro-
cess in each sampling time: time (since the beginning
of the experiment phase) and the measurement from
the process.

To test the auto-tuning procedure, the Simulink c© plat-
form developed by Romero and Sanchis (2010, 2011) is
used. It is a Simulink c© platform which allows to simulate,
the auto-tuning procedure for a given process, with noise
in the measurement. It uses a sampling time of 0.1 secs.

3. PROBLEM STATEMENT

As guideline, it is used the non-convex optimization state-
ment developed in Astrom et al. (1998) and Panagopou-
los et al. (2002). This optimization problem has been
solved using evolutionary algorithms (Reynoso-Meza et al.
(2011a,b)). Nevertheless, it has been not implemented yet
for auto-tuning procedure for on-line applications.
Given a process Gp(s), we look for a set of PID parameters
x = {kc, Ti, Td, N} which maximizes the integral gain (or
its equivalent):
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min
x∈ℜ4

J(x) = −
kc
Ti

(2)

subject to a maximum value of the sensitivity function.
As noticed in Astrom et al. (1998), this is a non-convex
optimization statement. Evolutionary algorithms are re-
liable tools when controller tuning procedure is stated as
an optimization problem (Fleming and Purshouse (2002)).
Evolutionary algorithms are global optimizers, capable of
deal with non-lineal, non-convex and highly constrained
problems. They have been used with success for PI-PID
tuning (Herreros et al. (2002); Tavakoli et al. (2007); Kim
et al. (2008); Nobakhti and Wang (2008); Iruthayarajan
and Baskar (2009); Xue et al. (2010); Iruthayarajan and
Baskar (2010); Zhao et al. (2011); Reynoso-Meza et al.
(2012b,a)). Owing to this, they are used in this auto-tuning
procedure.

3.1 Constraints

Three main constraints are included to guarantee a good
overall performance:

Constraint 1 To guarantee an acceptable stability mar-
gin, it is used the maximum value of the sensitivity

function Ms = max |S(jω)| = max
∣

∣

∣

1
1+Gp(jω)Gc(jω)

∣

∣

∣
. As a

rule of thumb, accepted values for Ms are in the interval
Ms ∈ [1.2, 2.0] (Astrom et al. (1998); Panagopoulos et al.
(2002)). The auto-tuning procedure uses a maximum value
for Ms, M

target
s defined by the user. That is,

Ms ≤ M target
S (3)

Computation of Ms could require a high computational
load. If we considerer a FOPDT process:

Gp(s) =
kp

Ts+ 1
e−Ls (4)

the following simplifications arises:

S(jω) =
1

1 +Gc(jω)Gp(jω)
(5)

≈
(aω4 + bω2) + (cω3 + dω)j

(eω4 + fω2 + gω0) + (hω3 + iω)j

where

a=
Ti · Td · L

2N

b=−Ti

(

T +
Td

N
+

L

2

)

c=−
Ti · Td · T

N
− Ti · L

(

T +
Td

N

)

d= Ti

e=
Ti · Td · T · L

2N

f =−Ti

(

T +
Td

N
+

L

2

)

−kc · kp · Ti · Td

(

1

N
+ 1

)
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kc · kp · L

2

(
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g = kc · kp
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+
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2
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1

N
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)

i= Ti + kc · kp

(

Ti +
Td

N

)

−
kc · kp · L

2

where a Padé approximation of first order e−Ls ≈
1−L

2
s

1+L
2
s
is

used.

Constraint 2 Constraint number two is used to bound
the maximum allowable control action of the PID con-
troller in each sampling time:

kc +max(Ts, L) · kc/Ti + kc · Td ≤ Ku (6)

where Ku is the estimated ultimate gain of the process
Gp(s) and Ts the sampling time.

Constraint 3 Constraint number 3 is used to consider
the measurement noise into the optimization statement
and its effect in the control action. A useful indicator is:

Mu = max

∣

∣

∣

∣

Gc(jω)

1 +Gc(jω)Gp(jω)

∣

∣

∣

∣

(7)

To avoid Mu computation, the following approximation is
used (Åström and Hägglund (2005)):

Mu ≈ kc ·N (8)

To bound such value, it is used the constraint Mu ≈ kc ·
N ≤ Ku.

3.2 Optimization statement

The constrained optimization statement proposed is:

min
x∈ℜ4

J(x) =























J(x) if

3
∑

k=1

φk(x) = 0

3
∑

k=1

φk(x) otherwise

(9)

where:

φ1(x) =
max{0,Ms −M target

s }

M target
s

(10)

φ2(x) =
max{0, kc +max(Ts, L) ·

kc

Ti
+ kc · Td −Ku}

Ku

(11)

φ3(x) =
max{0, kc ·N −Ku}

Ku

(12)

Next, the auto-tuning algorithm is explained.

4. AUTO-TUNING ALGORITHM

Given the last optimization statement, the EvoTune (Al-
gorithm I) is defined. It has five main steps: noise estima-
tion, experiment phase, identification step, optimization
initialization and optimization process.
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Algorithm I: EvoTune
1 : Read input variable time.
2 : Read input variable measurement.
3 : IF time == 0
4 : Initialize variables.
5 : END IF
6 : IF Noise estimation process == TRUE
7 : Execute algorithm Noise.Estimation.
8 : END IF
9 : IF Experimentation process == TRUE
10: Execute algorithm Biased.Feedback.Rele.
11: END IF
12: IF Identification process == TRUE
13: Identify FOPDT process.
14: END IF
15: IF Optimization initialization process ==

TRUE
16: Generate initial population P |0 with known

tuning rules and random individuals.
17: END IF
18: IF Optimization process == TRUE
19: Read generation counter G.
20: Execute algorithm DE.Build.Offspring to

generate the offspring O|G with P |G.
21: Evaluate offspring O|G.
22: Execute algorithm Population.Update to

update population P |G.
23: Look for best solution found so far x

best|G
from P |G

24: G = G+ 1.
25: END IF
26: IF Optimization process == END
27: Algorithm terminates. xbest|G is the vector

with the tuning parameters.
28: END IF

4.1 Noise estimation

Through a pre-defined time interval (with the stable sys-
tem), it will be recorded the measurement signal from the
process to estimate the noise amplitude. This is necessary
for the adequate selection of the histeresis range and the
amplitude of the biased feedback rele test.

4.2 Experiment phase

It is used a biased feedback rele test (Hang et al. (2002);
Wang et al. (1997)) to get information from the process
for the model identification step.

4.3 Model identification

With the obtained data in the experiment stage, a FOPDT
process is identified according to the biased rele feedback
test (Hang et al. (2002); Wang et al. (1997)).

4.4 Optimization process initialization

The evolutionary optimization process requires an initial
vector population. To this purpose, a random set of
solutions is generated. To improve convergence properties,
in the initial population are included a set of well-known
tuning rules based on a FOPDT model: IMC, Lambda and
AMIGO.

4.5 Constrained non-convex optimization

Through the optimization process, two main task are
performed: the offspring generation and the selection of
the best solution found so far.

Offspring generation As evolutionary technique it is
used the Differential Evolution algorithm (DE) of Storn
and Price (1997); Storn (2008); Das and Suganthan (2010).
DE algorithm is used mainly due to its simplicity and
compactness. This algorithm has two main operators to
generate the offspring: mutation and crossover. They are
several primal versions of the algorithm but in this work,
we use the version known as DE/current-to-rand/2 (Price
(1999)) which uses a non-invariant rotationally lineal re-
combination strategy in the crossover operator.
Mutation For each decision vector x

i|k (parent vector),
it is calculated a mutant vector vi|k in each generation k
according to the equation (13):

v
i|k = x

r1 |k + F (xr2 |k − x
r3 |k) (13)

where r1 6= r2 6= r3 6= i and F is known as the scaling
factor.
Crossover (Lineal recombination) For each parent
vector in the decision space x

i|k and its mutant vector
v
i|k, it is calculated a trial vector (child vector) u

i|k =
[ui

1|k, u
i
2|k, . . . , u

i
n|k]:

u
i|k = x

i|k + Fi(v
i|k − x

i|k) (14)
where Fi is the scaling factor for the lineal recombination.

Selection As selection mechanism, a pair comparison
between parent and child vector is performed. The best
individual is selected to move into the next generation:

x
i|k+1 =

{

u
i|k if f(ui|k) ≤ f(xi|k)

x
i|k otherwise

(15)

In each execution of the algorithm, during the optimization
stage, the best controller found so far is selected. Such
controller is used to calculate the control action to the
system. When the convergence criteria is reached, the
algorithm will terminate and the final PID controller will
be given. Next, the EvoTune is validated over a set of
different processes, to shown its viability.

5. TEST

A set of well-known processes is used to validate the auto-
tuning procedure:

G1(s) =
1

(s+ 1)3
, G2(s) =

e−5s

(s+ 1)3

G3(s) =
1

(1 + 10s)(1 + 2s)(1 + 4
10s)(1 +

8
100s)

G4,5,6,7 =
1

(s+ 1)α
, α = 4, 5, 6, 7

G8(s) =
−2(s− 2)

(s+ 1)3

The parameters used by the auto-tuning procedure are:
• Scaling factor F = 0.9. With this value, according
to Storn (2008), exploration in the decision space is
promoted.

• Scaling factor for the lineal recombination Fi = 0.95.
According to Price (1999), a good initial choice for Fi

is Fi = 0.5 · (1 + F ).
• Population size: |P | = 10 · 4 = 40 (Storn and Price
(1997)). As a rule of thumb, it is recommended to
use a population ten times the number of decision
variables. To guarantee the on-line execution, in each
sampling time five individuals are evaluated.
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• Upper bound: [kc, Ti, Td, N ] = [Ku, 2 · T, 2 · L, 20].
• Lower bound: [kc, Ti, Td, N ] = [0, 0.1 · T, 0, 3].
• Frequency range (with a little of notation abuse)
[ω = 1/100 : 1/25 : 8].

• Histéresis = max{0.01, 2 ·NoiseAmplitude}
• M target

s = 1.4, 1.6, 1.8.

5.1 Results and discussions

Given the stochastic nature of the auto-tuning procedure,
a statistical analysis is proposed to shown its viability
and robustness. A total of 25 independent trials for each
process with M target

s = [1.4, 1.6, 1.8] are performed. In
tables 1 to 5 are presented the median value of the integral
of the absolute value of the control action (IADU), the
integral of the absolute error (IAE), the maximum devia-
tion from reference, the Ms with the simulated model and
the time required to adjust the parameters, respectively.
Also, a Ziegler-Nichols (ZN) tuning (based on ultimate
gain identification) and the AMIGO tuning rules (using
an estimated FOPDT as described in section 4.3) with
derivative filter of N = 30 and N = 3 are presented for
comparison purposes. In table 1, it is possible to notice
how the EvoTune has a better performance than the ZN
and AMIGO procedures with N = 30. Compared with
AMIGO at N = 3 has almost the same performance.
Nevertheless, the inclusion of the derivative filter leads
to a change in Ms (see table 4); as notice in Isaksson
and Graebe (2002), derivative filter must be considered an
integral part on the PID design. In the case of the EvoTune
procedure, it has a Ms > 2.0 for models G4(s) and G5(s)
in all cases. Due to space limitation, boxplot graphs for
Ms are presented in figure 1 to show its dispersion. The
corresponding trade-off among approaches can be appre-
ciated in table 2: the less the stability margins and the
most the control action, the better the IAE performance.
In the case of the maximum deviation, all controllers have
almost the same performance. Finally, in table 5, the time
required to adjust the parameters in each case are shown.
Due to space limitation, just the graphical performance
comparison for processes G1(s), G2(s), G3(s) and G8(s)
with ZN procedure are shown in figures 2-5.

6. CONCLUSIONS

In this work, an auto-tuning procedure using evolutionary
algorithms (EvoTune) has been presented. The EvoTune
states a constrained non-convex optimization problem to
adjust the proportional gain, the integral time, the deriva-
tive time and the derivative filter of a PID controller. The
EvoTune includes an identification phase, to approximate
a FOPDT model with a biased rele feedback test.
The EvoTune mechanism is robust, and is capable of
adjust different kind of process with characteristics as
multiple poles, long time delay, non-minimum phase, etc.
When compared with other tuning techniques (ZN and
AMIGO), is more robust, since it considers the derivative
filter in the tuning procedure. It allows to control a bigger
subset of processes with better stability margins. Ongoing
work points to real-time testing as well as preference
articulation for the user.

REFERENCES

Alfaro, V.M. (2007). Pid controller’s fragility. ISA
Transactions, 46(4), 555 – 559. doi:10.1016/j.isatra.
2007.03.006.

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

1 2 3 4 5 6 7 8Process

M
ax

im
u

m
 v

al
u

e
se

n
si

ti
vi

ty
 f

u
n

ct
io

n

(a) Ms=1.4

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8Process

M
ax

im
u

m
 v

al
u

e
se

n
si

ti
vi

ty
 f

u
n

ct
io

n
(b) Ms=1.6

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8Process

M
ax

im
u

m
 v

al
u

e
se

n
si

ti
vi

ty
 f

u
n

ct
io

n

(c) Ms=1.8

Fig. 1. Maximum value sensitivity function dispersion.
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Table 1. IADU performance (1e3).

Process ZN AMIGO M
target
s

N=30 N=3 N=30 N=3 1.4 1.6 1.8

1 24.30 3.43 10.93 2.13 2.16 2.15 2.22

2 26.03 3.59 7.39 1.46 1.45 1.34 1.15

3 05.27 0.73 8.49 1.70 1.87 1.95 1.95

4 17.99 2.65 13.25 2.67 2.94 3.01 2.86

5 19.12 2.74 12.70 2.52 2.72 2.69 2.64

6 22.43 3.15 13.17 2.59 2.69 2.64 2.72

7 23.63 3.28 11.62 2.27 2.37 2.38 2.35

8 23.36 3.40 6.52 1.29 1.18 0.98 0.83

Table 2. IAE performance (1e3).

Process ZN AMIGO M
target
s

N=30 N=3 N=30 N=3 1.4 1.6 1.8

1 3.20 3.09 8.13 8.14 7.66 6.17 5.41

2 1.99 1.93 2.79 2.79 2.67 2.37 2.20

3 0.33 0.33 0.22 0.22 0.15 0.13 0.12

4 0.55 0.56 0.84 0.84 0.66 0.58 0.55

5 0.75 0.75 1.09 1.09 0.93 0.85 0.78

6 0.99 1.00 1.42 1.42 1.34 1.20 1.09

7 1.21 1.21 1.77 1.77 1.78 1.55 1.42

8 2.34 1.95 3.50 3.51 3.27 2.93 2.74

Table 3. Maximum deviation performance

Process ZN AMIGO M
target
s

N=30 N=3 N=30 N=3 1.4 1.6 1.8

1 2.32 2.39 2.92 2.84 3.46 3.33 3.28
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5 0.54 0.55 0.51 0.54 0.55 0.55 0.54

6 0.62 0.63 0.62 0.64 0.67 0.67 0.66

7 0.68 0.70 0.70 0.73 0.76 0.76 0.76

8 1.02 1.14 0.93 0.97 0.99 1.03 1.06

Table 4. Maximum value sensitivity function
performance

Process ZN AMIGO M
target
s

N=30 N=3 N=30 N=3 1.4 1.6 1.8

1 1.83 2.15 1.53 2.06 1.50 1.54 1.56

2 2.77 3.64 1.39 1.47 1.29 1.35 1.44

3 1.10 1.24 1.24 1.52 1.51 1.55 1.58

4 1.52 1.78 1.57 2.12 2.09 2.38 2.39

5 1.68 2.03 1.82 2.41 2.13 2.08 2.30

6 1.81 2.17 1.88 2.43 1.79 1.76 2.03

7 1.89 2.31 1.80 2.19 1.57 1.61 1.67

8 2.14 2.68 1.49 1.53 1.29 1.22 1.22

Table 5. Time performance (secs) for experi-
ment phase and optimization process.
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