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Abstract: This technical note outlines an approach to the problem of synthesizing fixed-
structure low-order controllers for systems whose mathematical models are unknown, but
their frequency responses are available. Stability of the closed-loop system is guaranteed if
the frequency response of the plant and the controller satisfy certain conditions at specific
frequencies. It is shown that the relation between the rate of change of phase of the plant and
the controller, at specific frequencies, characterizes the closed-loop system stability. We use this
characterization in a systematic way to design fixed-structure low-order controllers such as PI
and PID-controllers.
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1. INTRODUCTION

The problem of designing stabilizing controllers requires
an accurate knowledge of the system. Most of the con-
troller design techniques require a model of the system
a priori. Modeling is an intermediate step in a design
problem which intends to approximate the actual system
with a simpler mathematical representation. In many fields
of science and engineering one needs to deal with com-
plex systems where modeling simplifications may result
in unreliable models in the sense that the model loses
the ability to capture all the actual system behaviours.
A fatal consequence of such simplifications occurs when
the designed controller stabilizes the model but not the
actual system.

These observations motivate a new line of research to di-
rectly design controllers based on measurements. Some re-
cent results on model-free design approaches are provided
by Park and Ikeda (2004) and Yasumasa et al. (2005). Keel
and Bhattacharyya (2008) proposed a method to design
three term controllers based directly on frequency domain
test data. A Bode plot characterization of all stabilizing
controllers is presented by Keel and Bhattacharyya (2010).
They showed that if the frequency response of the plant
and the controller satisfy certain conditions at specific
frequencies, the closed-loop system is stable. These con-
ditions depend on the rate of change of phase of the plant
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and the controller. In this paper we use these conditions to
develop a systematic method in designing fixed-structure
controllers based on the frequency response measurements.

Since in our proposed approach the structure of the con-
troller is pre-assumed, the design problem can be handled
for low-order simple controllers such as PID-controllers.
Recent developments in designing PID-controllers are pre-
sented by Bhattacharyya et al. (2009). Low-order con-
trollers are of interest in practical applications because
of their simple structure, easy manufacturing and main-
tenance.

This paper is organized as follows: In section 2 we present
our main results for different classes of controllers, such
as PI and PID-controllers. For each class of controllers we
illustrate the proposed method using an example. Section
3 contains some concluding remarks.

2. MAIN RESULTS

In this section we present the main results of the paper
for 4 classes of fixed-structure low-order controllers and
provide illustrative examples to show how the method
developed here can be used to solve a controller synthesis
problem.

2.1 Constant-gain controller: C(s) = k

The first class of controllers being studied is constant-
gain controllers, C(s) = k. The necessary and sufficient
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conditions under which this class of controllers stabilizes
a general plant, where only the frequency response of
the plant is available, are established. In the following,
the required preliminaries are provided first and then the
stability conditions are developed.

Case 1) k ≥ 0:
Let P (jω) be the frequency response of a plant with no jω
poles, and denote by Ω+ = {ω1, ω2, . . . , ωl}, the sequence
of the roots of

∠P−1(jω)± nπ = 0 , n = 1, 3, 5, . . . , (1)

where

| P−1(jω) |ω=ω1
<| P−1(jω) |ω=ω2

< . . . <| P−1(jω) |ω=ωl
.

For each root, ωt, of (1), an integer, it, may be associated
based on the rate of change of phase of P−1(jω), as follows:

it =


+2 if d

dω∠P
−1(jω)|ω=ωt

< 0

0 if d
dω∠P

−1(jω)|ω=ωt
= 0

−2 if d
dω∠P

−1(jω)|ω=ωt
> 0

(2)

and if ω = 0 and/or ω =∞ are the roots of (1), then the
corresponding integer(s) may be obtained from:

it =


+1 if d

dω∠P
−1(jω)|ω=ωt=0 or ∞ < 0

0 if d
dω∠P

−1(jω)|ω=ωt=0 or ∞ = 0

−1 if d
dω∠P

−1(jω)|ω=ωt=0 or ∞ > 0.

(3)

Therefore, corresponding to the sequence of frequencies
Ω+ = {ω1, ω2, . . . , ωl}, one may associate a sequence of
integers I+ = {i1, i2, . . . , il}.
Case 2) k < 0:
In this case one may consider the frequency response of
−P (jω), and solve the following set of equations:

∠− P−1(jω)± nπ = 0 , n = 1, 3, 5, . . . , (4)

to find the sequence of frequencies Ω−. The corresponding
sequence of integers I− may be calculated using (2) and
(3), using the frequency response of −P−1(jω).

If the plant has pole(s) at the origin and/or has jω
poles, the corresponding integers can be obtained using
the results presented by Keel and Bhattacharyya (2010).

Now, we state the conditions for constant-gain stabilizabil-
ity of the feedback control system shown in Fig. 1.

Fig. 1. Schematic of a continuous-time unity feedback
control system

Theorem 1. The unity feedback control system shown in
Fig.1 is constant-gain stabilizable if and only if

max
m

m∑
t=1

it = p+, m = 1, 2, . . . , l, i ∈ I

where p+ is the number of RHP poles of the plant and I
is the sequence of integers, I+ or I−, introduced earlier.

Furthermore, for any m∗ that
∑m∗

t=1 it = p+ and i ∈ I+,
then the interval

k ∈ [| P−1(jω) |ω=ωm∗ , | P−1(jω) |ω=ωm∗+1
]

is in the stability set for k ≥ 0, and for any m∗ that∑m∗

t=1 it = p+ and i ∈ I−, then the interval

k ∈ [− | P−1(jω) |ω=ωm∗+1
,− | P−1(jω) |ω=ωm∗ ]

is in the stability set for k < 0.

Proof. Proof of this theorem is constructed based on
the results developed by Keel and Bhattacharyya (2010).
Consider the following two cases:

Case 1) k ≥ 0:
Let us denote the magnitude of P−1(jω) at the frequency
ωt by Mt =| P−1(jω) |ω=ωt

. Now, consider all the roots of
∠P−1(jω) ± nπ = 0, n = 1, 3, 5, . . ., and denote them by
Ω+ = {ω1, ω2, . . . , ωl}, such that

M1 < M2 < . . . < Ml.

Assume that k = k∗ ≥ 0, and denote the roots of the
following set of equations

∠P−1(jω)± nπ = 0, n = 1, 3, 5, . . . ,

| P−1(jω) |< k∗ (5)

by Ω∗+ = {ω1, ω2, . . . , ωm}. It is clear that the solution
set of (5) does not change for k∗ ∈ [Mm,Mm+1]. For this
interval of constant gain values, the controller C(s) = k∗

stabilizes the plant provided that

i(G) :=
m∑
t=1

it = p+,

where it is as defined previously. Therefore, for each
interval [Mt,Mt+1], t = 0, 1, . . . , l , where M0 = 0 and
Ml+1 =∞, one may check if the equality

∑
t it = p+ holds

for stability. It is clear that the most possible stabilizing
interval is the one for which

∑
t it is maximum.

Case 2) k < 0:
In order to consider the negative gain values, i.e. k < 0, one
may replace P−1(jω) by −P−1(jω), and follow the same
procedure. The corresponding stability intervals obtained
from this case should be finally multiplied by −1. This
completes the proof. 2

Example 1. Consider the following frequency response
of an unknown plant which has no RPH poles; i.e. p+ = 0.

Fig. 2. Frequency response of an unknown plant
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Now, the synthesis problem is to determine the set of all
constant-gain controllers which stabilizes the closed-loop
system shown in Fig.1.

We consider two cases, k ≥ 0 and k < 0.

Case 1) k ≥ 0:
First, one needs to solve the following set of equations:

∠P−1(jω)± nπ = 0 , n = 1, 3, 5, . . . (6)

As shown in Fig.3, (6) has 2 roots, Ω+ = {ω1 = 2.1, ω2 =
7.7}. The magnitudes of P−1(jω) at these frequencies are
M+ = {M1 = 0.18, M2 = 27.3}, respectively. Note that,
as required by theorem 1,M1 < M2. Now, one may find the
corresponding sequence of integers as I+ = {i1 = −2, i2 =
+2} using (2) and the last graph of Fig.3. The intervals to
be considered for this case are:

I1 = [0, 0.18) , I2 = [0.18, 27.3) , I3 = [27.3,∞).

The corresponding i(G) for each interval is:

i(G)I1 = 0 = p+,

i(G)I2 = i1 = −2 < p+,

i(G)I3 = i1 + i2 = −2 + 2 = 0 = p+.

Thus, the stability intervals for the case k ≥ 0 are:

S+ = [0, 0.18) ∪ [27.3,∞)

Case 2) k < 0:
For this case we have:

∠− P−1(jω)± nπ = 0 , n = 1, 3, 5, . . .

which has only one root at Ω− = {ω1 = 0} for which
the magnitude of −P−1(jω) is M− = {M1 = 0.03} .
Now, one may find the corresponding sequence of integer
as I− = {i1 = −1}. The intervals to be considered for this
case are:

I1 = [0, 0.03) , I2 = [0.03,∞).

The corresponding i(G) for each interval is:

i(G)I1 = 0 = p+,

i(G)I2 = i1 = −1 < p+.

The interval [0, 0.03) stabilizes the plant −P (jω); equiv-
alently, the interval (−0.03, 0] stabilizes the original plant
P (jω). Thus, the stability interval for the case k < 0 is:

S− = (−0.03, 0]

The union of the stability sets S+ and S− will be the entire
stability set, which is:

S = S+ ∪ S− = [−0.03, 0.18] ∪ [27.3,∞).

2.2 Integrator controller: C(s) = k/s

In this subsection we consider an integrator controller
C(s) = k/s to stabilizes the closed-loop system shown in
Fig.1. Let P (jω) be the frequency response of an unknown
plant and denote by Ω+ = {ω1, ω2, ..., ωl}, the roots of

∠P−1(jω)± nπ = −π/2 , n = 1, 3, 5, . . . (7)

where

| ωP−1(jω)|ω=ω1
<| ωP−1(jω)|ω=ω2

< . . .

. . . <| ωP−1(jω)|ω=ωl
. (8)

For each ωt satisfying (7) and (8), one may associate an
integer as explained in the previous section. In this case,

Fig. 3. Frequency response of the inverse plant

it is possible to have a nyquist plot cut to the left of the
point −1 + 0j at ω = 0. Thus, the sequence of frequencies
Ω always includes ω = 0. If the plant has no pole at the
origin, the integer corresponding to ω = 0 can be obtained
from:

i =

{
0 if P (0+)C(0+) > 0
−1 if P (0+)C(0+) < 0.

(9)

If the plants has pole(s) at the origin, one may use the
formulas provided by Keel and Bhattacharyya (2010),
instead of (9), to obtain the corresponding integer.

Theorem 2. The unity feedback control system shown in
Fig.1 is k

s -stabilizable if and only if

max
m

m∑
t=1

it = p+, m = 1, 2, . . . , l, i ∈ I

where p+ is the number of RHP poles of the plant and I
is the sequence of integers, I+ or I−, introduced earlier.

Furthermore, for any m∗ that
∑m∗

t=1 it = p+ and i ∈ I+,
then the interval

k ∈ [| ωP−1(jω) |ω=ωm∗ , | ωP−1(jω) |ω=ωm∗+1
]

is in the stability set for k ≥ 0, and for any m∗ that∑m∗

t=1 it = p+ and i ∈ I−, then the interval

k ∈ [− | ωP−1(jω) |ω=ωm∗+1
,− | ωP−1(jω) |ω=ωm∗ ]

is in the stability set for k < 0.

Proof. Proof of this theorem is the same as the proof of
theorem 1; however, the controller introduces a pole at the
origin in the forward loop gain G(s) = P (s)C(s) which
its corresponding nyquist plot cut should be considered
separately at ω = 0. 2

Example 2. Consider the frequency response of the
unknown plant shown in Fig.2 again. In this example
we attempt to stabilize the closed-loop system using an
integrator controller, C(s) = k/s.

First, consider ω1 = 0 for which M1 = 0, and i1 = 0 since
P (0+)C(0+) > 0 and the plant has no pole at the origin.
Similar to the previous example, we consider the following
two cases:

Case 1) k ≥ 0:
The following set of equations
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∠P−1(jω)± nπ = −π/2 , n = 1, 3, 5, . . .

has 2 roots, ω2 = 0.83, ω3 = 13.6. The magnitudes of
ωP−1(jω) at these frequencies are M2 = 0.03, M3 = 279.
Thus we have Ω+ = {ω1, ω2, ω3} for which, as required by
theorem 2, M1 < M2 < M3. The corresponding sequence
of integers is I+ = {i1 = 0, i2 = −2, i3 = +2}. The
intervals to be considered for this case are:

I1 = [0, 0.03) , I2 = [0.03, 279) , I3 = [279,∞).

The corresponding i(G) for each interval is:

i(G)I1 = i1 = 0 = p+,

i(G)I2 = i1 + i2 = −2 < p+,

i(G)I3 = i1 + i2 + i3 = 0 = p+.

Thus, the stability intervals for the case k ≥ 0 are:

S+ = [0, 0.03) ∪ [279,∞).

Case 2) k < 0:
In this case for ω1 = 0 we have i1 = −1 because
P (0+)C(0+) < 0. Also the set of equations

∠− P−1(jω)± nπ = −π/2 , n = 1, 3, 5, . . .

has no root. Therefore, for the interval k < 0 we have
i(G) = −1 < p+, which implies that k < 0 is not in the
stability set, or S− = ∅. The entire stability set is the union
of the intervals from the two cases, which is:

S = S+ ∪ S− = [0, 0.03] ∪ [279,∞).

2.3 PI-controller: C(s) = kp + ki/s

In this subsection we focus on PI-controllers and derive the
conditions under which this class of controllers stabilizes
the closed-loop system shown in Fig.1. The controller
transfer function can be written as C(s) = k

s (Ts+ 1). Let

us assume a new plant P̄ (s) = (Ts+ 1)P (s) which should
be stabilizable by an integrator controller C̄(s) = k/s. In
this case, (7) can be modified as:

∠P̄−1(jω)± nπ = −π/2 , n = 1, 3, 5, . . . (10)

which is

∠P−1(jω)− arctan(Tω)± nπ = −π/2 , n = 1, 3, 5, . . .
(11)

or

∠P−1(jω) + π/2± nπ = arctan(Tω) , n = 1, 3, 5, . . . .
(12)

The left-hand side of (12) is known while the right-hand
side can be plotted as a family of curves for acceptable
intervals of T which gives enough number of roots required
to satisfy the stability condition stated in Theorem 2. Let
us choose a value of T ∗ and denote the roots of

∠P−1(jω) + π/2± nπ = arctan(T ∗ω) , n = 1, 3, 5, . . .
(13)

by Ω+ = {ω1, ω2, . . . , ωl} where

| ωP̄−1(jω)|ω=ω1 <| ωP̄−1(jω)|ω=ω2 < . . .

. . . <| ωP̄−1(jω)|ω=ωl
. (14)

Note that ω = 0 is included in the sequence of frequencies
Ω+. The rate of change of phase of P̄−1(jω), assuming
T = T ∗, can be calculated as:

d

dω
∠P̄−1(jω) =

d

dω
∠P−1(jω)− d

dω
arctan(T ∗ω),

or
d

dω
∠P̄−1(jω) =

d

dω
∠P−1(jω)︸ ︷︷ ︸
known

− T ∗

1 + ω2T ∗2︸ ︷︷ ︸
known

. (15)

The sequence of integers can be obtained as explained
earlier. Thus, at each T ∗, one may find stability intervals
S+(T=T∗) for the gain k, if they exist. For negative gains,

i.e. k < 0, one may substitute P̄−1(jω) by −P̄−1(jω)
in (11), assuming T = T ∗, to find the corresponding
sequences Ω− and I− and determine the stability intervals
S−(T=T∗) for k < 0, if they exist. The stability intervals
at T = T ∗ will be S(T=T∗) = S+(T=T∗) ∪ S−(T=T∗). By
sweeping the values of T ∗ over an admissible range, one
can construct the entire stability set, S, in the space of the
controller parameters (T, k).

Example 3. In this example we explain how to obtain
the set of all PI-controllers stabilizing an unknown plant
using the approach presented here. Consider the frequency
response of an unknown plant with one RHP pole, i.e.
p+ = 1, shown in Fig.4.

Fig. 4. Frequency response of an unknown plant

A family of curves can be obtained for a range of T values
in (12). Let us choose T ∗ = 1 from this family of curves
and further our procedure for the following two cases:

Case 1) k ≥ 0:
At ω1 = 0 we have P̄ (0+)C̄(0+) < 0 and thus i1 = −1.
Solving (13) (Fig.5), the frequency sequence will be Ω+ =

{ω1 = 0, ω2 =
√

3}. At ω2 =
√

3 the rate of change of phase
of P̄ (jω) is negative, using (15), and thus i1 = +2. The
sequence of integers for this case will be I+ = {−1,+2}.
Note that the magnitudes of ωP̄−1(jω) at ω1 and ω2 are
M1 = 0 and M2 = 6, respectively; for which, as required
by theorem 2, M1 < M2. The intervals to be considered
for k ≥ 0 are:

I1 = [0, 6) , I2 = [6,∞).

The corresponding i(G) for each interval is:

i(G)I1 = −1 < p+,

i(G)I2 = −1 + 2 = 1 = p+,

Thus, the stability interval for k ≥ 0 at T = 1 is
S+(T=1) = [6,∞).

Case 2) k < 0:
In this case for ω1 = 0 we have i1 = 0 because
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P̄ (0+)C̄(0+) > 0. Also the set of equations (13) have no
root. Therefore, for the interval k < 0 we have i(G) = 0 <
p+, which implies that k < 0 is not in the stability set, or
S−(T=1) = ∅.
The entire stability set at T = 1 is the union of the
intervals from the two cases, which is:

S(T=1) = S+(T=1) ∪ S−(T=1) = [6,∞).

Fig.6 shows the entire stability region in the space of the
controller parameters (T, k) obtained from Routh-Hurwitz
stability inequalities. As can be seen, at T = 1, the
stability interval for k is [6,∞).

Fig. 5. Frequency response of the inverse plant and the
controller

Fig. 6. Stability set for example 3

2.4 PID-controller: C(s) = kp + ki/s+ kds

In this subsection we extend our method and consider PID-
controllers to stabilize the closed-loop system shown in
Fig.1. We write the controller transfer function as C(s) =
k
s (T1s+ 1)(T2s+ 1) and define a new plant P̄ (s) = (T1s+
1)(T2s + 1)P (s) which for stability should be stabilizable
by an integrator controller C̄(s) = k/s. Following the same
approach, one may write

∠P̄−1(jω)± nπ = −π/2 , n = 1, 3, 5, . . . ,

which is

∠P−1(jω)− arctan(T1ω)− arctan(T2ω)± nπ = −π/2 ,
n = 1, 3, 5, . . . .

or

∠P−1(jω) + π/2± nπ = arctan(T1ω) + arctan(T2ω) ,

n = 1, 3, 5, . . . . (16)

The left-hand side of (16) is known; however, the right-
hand side can be plotted as a family of curves for admissi-
ble intervals of T1 and T2 which yields enough number
of roots required for stability as stated in Theorem 2.
Choosing values of T ∗1 and T ∗2 , one may follow the same
approach described in the previous subsection to find sta-
bility intervals for the gain k, if they exist.

Example 4. This example illustrates how the set
of all stabilizing PID-controllers can be obtained for an
unknown plant for which only the frequency response is
available. Consider the frequency response of an unknown
plant shown in Fig.7 with two RHP poles, i.e. p+ = 2.

Fig. 7. Frequency response of an unknown plant

A family of curves can be obtained for different values of
T1 and T2 in (16). Let us choose T ∗1 = 1 and T ∗2 = 5 from
this family of curves and consider the following two cases:

Case 1) k ≥ 0:
Since at ω1 = 0 we have P̄ (0+)C̄(0+) > 0, the corre-
sponding integer will be i1 = −1. Substituting the values
of T ∗1 and T ∗2 into (16) and finding the roots (Fig.8), the
frequency sequence will be Ω+ = {ω1 = 0, ω2 = 1.2}. At
ω2 = 1.2 the rate of change of phase of P̄ (jω) is negative
(Fig.8), and thus i1 = +2. The sequence of integers for
this case will be I+ = {0,+2}. Note that the magnitudes
of ωP̄−1(jω) at ω1 and ω2 are M1 = 0 and M2 = 0.05, re-
spectively; for which, as required by theorem 2, M1 < M2.
The intervals to be considered for k ≥ 0 are:

I1 = [0, 0.05) , I2 = [0.05,∞).

The corresponding i(G) for each interval is:

i(G)I1 = 0 < p+,

i(G)I2 = 0 + 2 = p+,

Thus, the stability interval for k ≥ 0 at T ∗1 = 1 and T ∗2 = 5
is S+(T∗

1 =1,T∗
2 =5) = [0.05,∞).

Case 2) k < 0:
In this case for ω1 = 0 we have i1 = −1 because
P̄ (0+)C̄(0+) < 0 and the plant has no pole at the origin.
Also the set of equations (16) has one root at ω2 =
0.34 (Fig.9). The corresponding sequences can be easily
obtained as Ω− = {ω1 = 0, ω2 = 0.34}, I+ = {i1 =
−1, i2 = 2} and M− = {M1 = 0, M2 = 0.43} (Fig.9).
The intervals to be considered here are:

I1 = [0, 0.43) , I2 = [0.43,∞).

The corresponding i(G) for each interval is:
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Fig. 8. Frequency response of the inverse plant and the
controller (for k ≥ 0)

i(G)I1 = −1 < p+,

i(G)I2 = −1 + 2 = 1 < p+,

Therefore, for the interval k < 0 we always have i(G) =
0 < p+, which implies that k < 0 is not in the stability
set, or S−(T∗

1 =1,T∗
2 =5) = ∅.

The entire stability set at T1 = 1, T2 = 5 is the union of
the intervals from the two cases, which is:

S(T∗
1 =1,T∗

2 =5) = [0.05,∞).

Fig. 9. Frequency response of the inverse plant and the
controller (for k < 0)

3. CONCLUDING REMARKS

In this paper we developed a method to synthesize the
set of all stabilizing fixed-structure low-order controllers
for the systems whose frequency responses are available.
This measurement-based approach does not require a
mathematical model of the system which means that the
synthesis problem can be carried out directly from the
frequency response measurements. We showed how the
rate of change of phase plays an important role in the
controller design problem.
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